用户名: 密码: 验证码:
充气条件下G105钢在NaCl溶液中腐蚀规律和防护措施的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在钻井的过程中,由于井下多属气、液、固多相混合流动的复杂状态,特别是O_2、CO_2的存在将导致钻具腐蚀更加严重,直接影响了钻井施工的进度和经济效益。为了解决这一问题,必须对O_2、CO_2的腐蚀规律作深入研究,并选择相应的缓蚀剂对钻具进行防护。
     针对充气钻井中钻具的腐蚀,本文首先研究了卤水和3.5wt%NaCl溶液中O_2含量对G105钢腐蚀行为的影响,并研究了的共存对G105钢腐蚀速率的影响。失重实验结果表明:G105钢在卤水中主要发生的是氧腐蚀,其腐蚀速率与O_2含量有关;不同充气条件下G105钢在3.5wt%NaCl溶液中腐蚀规律受温度和O_2含量的影响:同一温度下腐蚀速率随着混合气体中O_2含量的增加而增大;G105钢在3.5wt%NaCl溶液中的腐蚀速率与溶解氧(DO)含量之间有很好的线性关系;同一充气条件下腐蚀速率随着温度的增加先增大后减小,并在338K附近有一个最大值;共存条件下的腐蚀速率小于两者单独存在时的腐蚀速率之和,其主要原因可能是因为O_2去极化的过程中中和了部分的H+或者是因为试样表面腐蚀产物较多起到了一定的保护作用,从而导致腐蚀速率下降。
     利用交流阻抗(EIS)技术研究了G105钢在不同介质条件下阳极、阴极电极过程,并通过热力学公式推断不同介质条件下阳极、阴极反应。结果表明,在3.5wt%NaCl+10%O_2的介质条件下,G105钻具钢阳极反应主要为Fe→Fe2++2e,且反应受活化控制,阴极反应主要为1/2O_2+H2O+2e→2OH-,且反应受扩散控制。在3.5wt%NaCl+40%CO_2的介质条件下,G105钻具钢阳极反应主要以Fe→Fe2++2e和Fe+HCO3-→FeCO3+H++2e为主,且两个反应都受活化控制,阴极反应主要以2H2CO3+2e→2HCO3-+H2和2HCO3-+2e→2CO32-+ H2为主,且反应同时具有扩散控制和活化控制特征。在3.5wt%NaCl+10%O_2+40%CO_2的介质条件下,G105钻具钢阳极反应以Fe→Fe2++2e和Fe+HCO3-→FeCO3+H++2e为主,阳极氧化过程同时具有扩散控制和活化控制特征,阴极反应主要以1/2O_2+2H++2e→H2O或者2HCO3-+2e→2CO32-+ H2为主,阴极过程受扩散控制。
     合理使用缓蚀剂是防止金属及其合金发生腐蚀的有效方法。通过失重实验挑选CO_2和O_2共存条件下的缓蚀剂。三种咪唑啉类缓蚀剂均可有效地抑制G105钢在CO_2和O_2共存条件下的腐蚀,且缓蚀率均达80%以上。采用扫描电镜和体视显微镜观察试样在空白3.5wt%NaCl+10%O_2+40%CO_2溶液中和添加40mg/L咪唑啉类缓蚀剂的腐蚀溶液中浸泡168h后的表面状况,结果表明,三种咪唑啉类缓蚀剂均能够很好的抑制G105钢在此介质中的腐蚀。
     为了探讨缓蚀剂的作用机理,作者采用极化曲线法、交流阻抗法和循环伏安法对缓蚀剂的缓蚀机理进行了深入地研究。
     (1)极化曲线显示,缓蚀剂是抑制阳极过程为主的混合型缓蚀剂。(2)交流阻抗法分析了缓蚀剂的成膜过程,其成膜过程分三个阶段:反应初期,缓蚀剂分子优先在阳极反应或阴极反应活性点上吸附;反应中期,咪唑基团和其他基团的竞争吸附逐渐达到了平衡,金属表面的腐蚀产物膜也不断增厚,电荷转移电阻和高频容抗弧半径随着时间的延长而不断增大;反应后期,吸附较不牢固的基团逐渐脱落,交流阻抗谱图的感抗弧消失。(3)咪唑啉类缓蚀剂的缓蚀性能主要通过吸附和与腐蚀产物成膜达到保护效果。(4)采用极化曲线法,循环伏安法分析了缓蚀剂的阳极脱附行为,结果表明,其中的两种咪唑啉类缓蚀剂均存在阳极脱附现象,当阳极极化电位超过-0.52V(vs.SCE,下同)左右时,极化电流迅速增大,缓蚀剂因发生大量脱附而失去对阳极过程的抑制;缓蚀剂的阳极脱附电位分别是-0.526V和-0.518V。另一种缓蚀剂没有明显的阳极脱附现象。
Fluids of well corrupt drilling tools badly because it belongs to gas, liquid, solid multiphase blending flow, especially O_2 or/and CO_2 exists. In order to reduce drilling tools corrosion, the corrosion mechanism of G105 steel with present of O_2 or/and CO_2 must be studied and inhibitors will be applied.
     The main research content and innovation of paper are listed as follows:
     Aimed at the corrosion of G105 drill pipes in aerated drilling fluids, the impact of dissolved oxygen(DO) of 3.5wt%NaCI solution and brine on the corrosion behavior of G105 steel is studied using weight loss method. The tests reveal that the corrosion of G105 steel in brine is considered as oxygen corrosion; the temperature and DO affect the corrosion rate of G105 steel in aerated 3.5wt%NaCl solution; at the same temperature, the corrosion rate increases with the content of DO; at the same aerated condition, the corrosion rate increases when the temperature is elevated from 298K to 338K and reaches the maximum at 338K.The corrosion rate of G105 steel and DO of 3.5wt%NaCI solution takes on linear relationship.When O_2 and CO_2 are present at the same time,the corrosion rate of G105 steel is less than the sum of the corrosion rate when O_2 or CO_2 exists alone.The reason is that the deoxidization of O_2 used a part of H+ or the corrosion production of 3.5wt%NaCl+10%O_2+40%CO_2 is so much to restrain the corrosion rate.
     The electrochemical impedance spectroscopy (EIS) was used to analyze the electrode of O_2 or/and CO_2 corrosion of G105 steel in various electrolytes, and corresponding thermodynamics equation was used to analyze the possible anodic and cathodic reactions. The results demonstrate that O_2,H+, H2CO3 and HCO3- all could be reduced. But the reduction rate is different in various electrolytes. In 3.5wt%NaCl solution saturated with 10%O_2, the activation controls anodic reaction and the reduction of O_2 is main and diffuse rate controls cathodic reaction rate. In 3.5wt%NaCl solution saturated with 40%CO_2, the main anodic reaction are Fe→Fe2++2e and Fe+HCO3-→FeCO3+H++2e and the most important cathodic reaction are 2H2CO3+2e→2HCO3-+H2 controlled by the activation and 2HCO3-+2e→2CO32-+ H2 controlled by the diffuse rate. In 3.5wt%NaCl solution saturated with 10%O_2 and 40%CO_2, the main anodic reaction are Fe→Fe2++2e and Fe+HCO3-→FeCO3+H++2e. 1/2O_2+2H++2e→H2O or 2HCO3-+2e→2CO32-+ H2 is the main cathodic reaction and the diffuse rate of O_2 or HCO3-controls cathodic reaction rate. The reduction rate of H2O is low and could not influence cathodic exchange current density.
     Making use of corrosion inhibitors in reason is an efficient method to prevent the metal and its alloy from eroding in environmental medium. Imidazoline inhibitors are selected by weight loss method, and the inhibitory efficiency is above 80% in 3.5wt%NaCl solution saturated with 10%O_2 and 40%CO_2 at 338K. The inhibitory efficiency becomes lower along with the temperature go up.Using the SEM and stereo-microscope to observe the corrosion appearance of metals, the result is that the imidazoline inhibitor protected G105 samples well.
     Inhibitory mechanism is studied by electrochemistry methods such as polarization curve, EIS and cyclic polarization curve(CV).
     (1) Results of polarization curve show that the inhibitor is a mix-type inhibitor, which mainly inhibits anodic process. (2) The reaction of forming film has three stages: firstly, the imidazoline inhibitor activately adsorpts on mild steel surface; secondly, the imidazole bond and the rest bond arrive at the equilibrium adsorption while the film of corrosion production becomes thick and the absorption resistance (Rt) becomes great gradually; finally , the frail bond brushs off and the absorption induction disappears. (3) The inhibitory capability comes from covalent adsorption of the N atom and metal. (4) Inhibitor desorption was studied by electrochemistry methods such as polarization curve and CV. When anodic polarization potential exceeded–0.52V electronic current increased rapidly and inhibitor would not control anodic process, so that the anodic desorption potential (Edes) are -0.526V and -0.518V.HSJ-C did not desorpt obvious. (5) After the imidazoline inhibitor was added, the G105 samples were protected well. Because the inhibitory film can lay over activity points on mild steel and inhibitors have competitive adsorption on mild steel surface result in the concentration of Cl- on steel surface fell, so that the inhibitor could prevent corrosion.
引文
[1]《中国石油天然气的勘查与发现》编辑部.中国石油天然气的勘查与发现[M].北京:地质出版社.1992:11-13.
    [2]候永,周永璋,魏无际.钻具的腐蚀与防护[J].钻井液与完井液.2003,20(2):48-51.
    [3]中国腐蚀与防护学会.石油工业中的腐蚀与防护[M].北京:化学工业出版社.2001:91-98.
    [4]魏宝明.金属腐蚀理论及应用[M].化学工业出版社.1984.103-111.108.
    [5]侯保荣.腐蚀研究与防护技术[M].海洋出版社.1998.66.
    [6]Crolet J L.Predicting CO2 Corrosion in the Oil and Gas Industry[J].UK,London:The Institute of Materials,1994,l.
    [7]张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000.
    [8]陈长风.油套管CO2腐蚀电化学行为与腐蚀产物膜特性研究[D].西北工业大学博士学位论文.
    [9]C.de Waard,Y.Lotz,D.E.Milliam.Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines[J].Corrosion.1991,47(12):976.
    [10]Dunlop A K,Hassell H L,Rhode P R.Fundamental Consideration in Sweet Gas Well Corrosion.In: Hausler R H,Giddard H P(Eds),Advances in CO2 Corrosion.Corrosion.NACE,Hous- ton,Texas.1984(1):52.
    [11]Hausler R H.Laboratory Investigation of the CO2 Corrosion Mechanism as Applied to Hot Deep Gas Wells.In:Hausler R H,Giddard H P(Eds),Advances in CO2 Corrosion.Corrosion,NACE, Houston,Texas.1984(1):72.
    [12]Schmitt G.Fundamental Aspects of CO2 Corrosion.Advances in CO2 Corrosion[C].Corrosion, NACE,Houston,Texas.1984(1):10.
    [13]苏俊华,张学元,王凤平等.高矿化度介质中二氧化碳腐蚀金属的规律[J].材料保护,1998,31(11),21-23.
    [14]Schmitt G.CO2 Corrosion of Steels-An Attempt to Range Parameter and Their Effects.In: Hausler R H,Giddard H P(Eds),Advances in CO2 Corrosion.NACE,Houston,Texas.1984(1):1.
    [15]Videm K.The Anodic Behavior of Iron and Steel in Aqueous Solutions with CO2,HCO3-,CO32- and Cl-Corrosion[C].Corrosion.NACE,Houston.2000,39.
    [16]Guo X P,Tomoe Y.Electrochemical Behavior of Carbon Steel in Carbon Dioxide Saturated Diglycolamine Solutions.Corrosion,1998,54(11),931-939.
    [17]李静.油管钢CO2腐蚀行为与机理研究[D].北京科技大学博士学位论文.
    [18]M.I.Khokhar,I.M.Allam,A.Quddus.Technical Note:The Role of Corrosion in the Deposition of ScCO3 Crystal[J].Corrosion.1991,47(5):341.
    [19]K.Videm,A.M.Koren.Corrosion,Passivity,and Pitting of Carbon Steel in Aqueous Solutions of HCO3-,CO2,and Cl-[J].Corrosion.1993,49(9):746.
    [20]Burke P A.Synopsis: Recent Progress in the Understanding of CO2 Corrosion.In:Hausler R H,Giddard H P(Eds),Advances in CO2 Corrosion[C].Corrosion,NACE,Houston,Texas.1984(1):3.
    [21]Xueyuan Zhang.Study of the Inhibitor Mechanism of Imidazoline Amide on CO2 Corrosion of Armco Iron[J].Corrosion Science.2001,43:1417-1431.
    [22]顾明广.油气田气液两相缓蚀剂的开发[D].北京化工大学硕士学位论文.
    [23]于建辉,彭乔.MZL-1型酸洗缓蚀剂配方及性能研究[J]腐蚀与防护.2004,25(11):465-467.
    [24]马涛,张贵才,葛际江等.改性咪唑啉缓蚀剂的合成与评价[J].石油与天然气化工.2004,33(5):359-361.
    [25]李志远,赵景茂,左禹等.双咪唑啉季铵盐的合成与缓蚀性能研究[J].腐蚀与防护.2004,25(3):115-117.
    [26]张光华,李俊国,郭炎等.三苯环咪唑啉季铵盐的合成与缓蚀性能[J].腐蚀科学与防护技术.2002,14(2):95-97.
    [27]雷良才,沈愚.咪唑啉缓蚀剂的合成与缓蚀性能研究[J].腐蚀与防护.2001,22(10):420-423.
    [28]郭睿,吴从华,左笑等.一种复合型咪唑啉缓蚀剂[J].腐蚀与防护.2006,27(7):341-343.
    [29]艾俊哲,姬鄂豫,祖荣等.咪唑啉硫脲衍生物对电偶腐蚀的抑制作用[J].石油与天然气化工.2004,33(5):357-358,361.
    [30]吴鲁宁,由庆.咪唑啉型缓蚀剂的合成及其缓蚀性能研究[J].石油炼制与化工.2006,37(4):60-63.
    [31]王业飞,由庆,赵福麟.一种新型咪唑啉复配缓蚀剂对A3钢在饱和CO2盐水溶液中的缓蚀性能[J].石油学报:石油加工.2006,22(3):74-78.
    [32]刘建平,苗永霞,周晓湘.复配咪唑啉类酸洗缓蚀剂的缓蚀性能研究[J].材料保护.2005,38(8):21-23.
    [33]赵景茂,刘鹤霞,狄伟.左禹咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J].电化学.2004,10(4):440-445.
    [34]蒋秀,骆素珍,郑玉贵等.炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3%NaCl溶液中的缓蚀性能研究[J].中国腐蚀与防护学报.2004,24(1):10-15.
    [35]史足华,张利平,黄敏.高效咪唑啉污水缓蚀剂的合成及现场应用[J].工业水处理.2003,23(6):42-44.
    [36]颜红侠,张秋禹,张军平等.抗CO2腐蚀的气-液双相缓蚀剂的研究[J].材料保护.2003,36(8):18-20.
    [37]王大喜,刘丽.IMC—1新型缓蚀剂的复配测试结果及评价[J].材料保护.2001,34(6):37-38.
    [38]王大喜,王琦.IMC—石大1号新型咪唑啉缓蚀剂的合成和应用研究[J].腐蚀与防护.2000,21(3):102-103,101.
    [40]尹成先,冯耀荣,兰新哲等.一种新型固体缓蚀剂的合成及性能[J].精细化工.2006,23(9):930-932.
    [41]李国敏,李爱奎,郭兴蓬等.松香胺类RA缓蚀剂对碳钢在高压CO2体系中缓蚀机理研究[J].腐蚀科学与防护技术.2004,16(3):125-128.
    [41]陈普信,郑家燊,王海等.SIM-1气举井固体缓蚀剂的研究与应用[J].油田化学.2001,18(3):232-234.
    [42]刘鹤霞,郑家燊.气田气井缓蚀剂研究[J].四川化工与腐蚀控制.2003,6(2):24-25,63.
    [43]D.A.Lopez,S.N.Simison,etc.Inhibitors Performance In CO2 Corrosion:EIS Studies On The Interaction Between Their Molecular Structure and Steel Microstructure[J].Corrosion Science.2005,47:735-755.
    [44]李静,孙冬柏,李桂芝等.CO2腐蚀缓蚀剂研究现状及进展[J].石油化工腐蚀与防护.1998,15(4):39-41.
    [45]T Hong,Y H Sun,W P Jepson.Study On Corrosion Inhibitor In Large Pipelines Under Multiphase Flow Using EIS[J].Corrosion Science.2002,44:101-112.
    [46]王大喜,王兆辉.取代基咪唑啉分子结构与缓蚀性能的实验研究[J].中国腐蚀与防护学报.2001,21(2):112-116.
    [47]杨怀玉,陈家坚,曹楚南.H2S水溶液中的腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报.2002,22(3):148-152.
    [48]颜红侠,张秋禹,马晓燕.盐酸酸洗咪峥琳型缓蚀剂IM的研究[J].应用化工,2001.30(3):21- 22.
    [49]王大喜,王兆辉.取代基咪唑啉分子结构与缓蚀性能的实验研究[J].中国腐蚀与防护学报.2001,21(2):112-116.
    [50]于建辉.新型咪唑啉酸洗缓蚀剂配方及性能研究[D].大连理工大学硕士学位论文.
    [51]张高波,黄新成,史沛谦等.中国低密度欠平衡钻井液研究应用现状[J].钻采工艺.2002,25(6):74-77.
    [52]Bradley B W.Oxygen-A Major Element in Drill Pipe Corrosion[J].Material Protection.1967, 40.
    [53]Bradley B W.Oxygen Cause of Drill Pipe Corrosion[J].Protection Engineering.1970,50.
    [54]杨智光,赵德云,刘永贵等.大庆外围深层实施气体钻井的可行性分析[J].探矿工程,2005,9:55-58.
    [55]MT 252-1991煤矿水中钾离子和钠离子的测定方法[S].
    [56]GB/T 13025.5-1991制盐工业通用试验方法氯离子的测定[S].
    [57]GB/T 13025.6-1991制盐工业通用试验方法钙和镁离子的测定[S].
    [58]GB/T 13025.8-1991制盐工业通用试验方法硫酸根离子的测定[S].
    [59]王慧龙,汪世雷,郑家焱等.碳钢在盐水-油-气多相流中腐蚀规律的研究[J].石油化工腐蚀与防护.2002,19(2):49-51.
    [60]宋学锋,周永璋.钻具在磺化钻井液中发生腐蚀的影响因素研究[J].钻井液与完井液.2005,22(6):30-34.
    [61]M.Whitfield,D.Jagner.Marine Electrochemistry—A Practical Introduction[M].Chichester,New York,Brisbane,Toronto:A Wiley—Interscience Publication.1980.
    [62]Waard C D,Milliams D E.Carbonic axid corrosion of steel[J].Corrosion.1975,31(5):131.
    [63]Davies D H,Burstein G T.The effects of bicarbonate on the corrosion and passivation of iron[J].Corrosion.1980,36(8):416.
    [64]Ogundele G I,White W E.Some observation on the corrosion of carbon steel in aqueous environments containing carbon dioxide[J].Corrosion.1986,42(2):71-76.
    [65]Nesic S,Thevenot N,Crolet J L,Drazic D.Electrochemical properties of iron dissolution in the presence of CO2-basics revisited.Corrosion.Houston:NACE.1996:3.
    [66]Linter B R,Burstein GT.Reaction of pipeline steels in carbon dioxide solutions[J].Corrosion Science.1999,42(2):117-139.
    [67]Schmitt G.Fundamental Aspects of CO2 Corrosion of Steel[J].Corrosion.1983,43.
    [68]Nesic S,Postlethwaite J,Olsen S.An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions[J].Corrosion.1996,52(4):280-294.
    [69]张学元,余刚,王凤平等.C1-对API P 105钢在含CO2溶液中的电化学腐蚀行为的影响[J].高等学校化学学报.1999.20(7),1115-1118.
    [70]陈卓元,张学元,王凤平等.二氧化碳腐蚀机理及影响因素[J].材料开发与应用.1998,13(5):34-40.
    [71]Edwards A,Osborne C.Mechanistic studies of the corrosion inhibitors oleic imidazoline[J].Co- rrosion Science.1994,36(2):315-325.
    [72]杨怀玉,陈家坚,曹楚南等.H2S水溶液中的腐蚀与缓蚀机理的研究Ⅳ.H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J].中国腐蚀与防护学报.2002,22(3):148-152.
    [73]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社.2004:72.
    [74]王佳.有机缓蚀剂作用机理和脱附行为的研究[D].中国科学院金属腐蚀与防护研究所博士论文.
    [75]甘复兴,汪的华,邹津耘.界面缓蚀剂的吸附稳定性[J].电化学.1999,5(2):157-161.
    [76]汪的华,卜宪章,邹津耘等.有机缓蚀剂和I-的联合吸附与阳极脱附[J].中国腐蚀与防护学报.1999,19(1):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700