用户名: 密码: 验证码:
磺化聚苯醚基复合高温质子交换膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是以氢气或甲醇作为燃料,将燃料的化学能直接转变成电能,具有能量转换率高、无污染等特点,是一种很有前途的高效绿色能源动力源。质子交换膜(Proton Exchange Membrane,PEM)是PEMFC中的关键材料之一,对其研究开发具有非常重要的意义。虽然杜邦公司生产的Nafion膜在PEMFC中已成功应用,但其工作温度受限、费用昂贵等不足限制了它更为广泛的应用。而高温(120-200°C)下质子交换膜燃料电池的运行具有更多有利之处,如提高Pt催化剂对CO的耐受性;简化水、热管理;提高电化学反应速度以提高电池性能等,因此,开发高效、低成本的新型质子交换膜,特别是耐高温、能在低湿度环境运行的非氟质子交换膜便成为燃料电池技术亟待解决的关键问题。
     由于芳香族聚合物具有良好的热稳定性和较高的强度,因此,其磺化产品是制备质子交换摸的理想材料。本文采用热性能、电性能等综合性能优良的工程塑料聚苯醚(PPO)为原料,以氯磺酸为磺化剂制备磺化聚苯醚(SPPO),并通过红外和核磁共振对结构进行了验证。通过探讨磺化剂用量与产物磺化度(Degree of Sulfonation,DS)的关系,并测试磺化度不同对SPPO溶解性、电导率、拉伸强度、含水率和溶胀度等的影响,得到优选的磺化度值为35%。将此磺化度的SPPO与咪唑(Im)共混,以DMF为溶剂,采用溶液浇铸法制备了Br?nsted酸-碱型磺化聚苯醚-咪唑复合质子交换膜。并分析了不同咪唑掺杂量对最终薄膜电导率、热稳定性、微观结构、机械性能等的影响:所制备的SPPO-xIm系列膜具有良好的热稳定性,可满足高温质子交换膜工作温度的要求;呈现低的溶胀度和适中的含水率;SPPO-xIm膜的电导率随着温度增加而增加,最佳掺杂量x (Im/SPPO单元的摩尔比) = 2,200°C、33%相对湿度时SPPO-2Im膜的电导率可达6.92×10-3S/cm,电导率与温度间符合Arrhenius方程,在高温、低湿度条件下,主要遵循的是Grotthuss机理;DMA结果显示SPPO-2Im是一种硬而韧的材料。
     研究了Br?nsted碱的碱性对复合电解质膜电导率的影响:以咪唑、吡唑、苯并咪唑、1-甲基咪唑、4-甲基咪唑五种Br?nsted碱掺杂制备了五种以SPPO为基底的Br?nsted acid-base复合膜,其质子电导率相差一个数量级,说明对于掺杂的Br?nsted碱来说,不但要考虑pKa的大小,更要考虑Br?nsted碱的分子体积、基团空间位置对构型重排(质子传导)的影响。
     以离子浸渍-沉淀法在SPPO-2Im膜的基础上制备了无机-有机复合质子交换膜SPPO/Im/nano-ZrP(zirconium phosphate, ZrP),该复合膜具有良好的热稳定性;形态分析显示生成的磷酸锆颗粒的尺寸在纳米级别范围;XRD显示生成了α-ZrP;与SPPO-2Im膜相比,SPPO/Im/ZrP复合膜的含水率和溶胀度有不同程度的提高。确定了优化反应条件:反应温度在80°C、与氯氧化锆溶液作用时间在6 h、与磷酸溶液作用时间在12 h、反应物浓度C Zr4+:C H3PO4为1:1时,所制备复合膜的质子电导率较高,120-200°C、35% RH时可以达到10-2 S/cm。
     尝试了咪唑在复合膜中的固定化研究:通过亲核取代反应将咪唑环接枝到烷氧基硅烷上,生成2- (三乙氧基硅丙基)硫基-咪唑,与磺化聚苯醚共混成膜后,放入H2O+ NH3 + EtOH + TEOS的混合体系中,水解、缩合以固定咪唑基团,所制备的接枝有咪唑基团的改性聚硅氧烷/磺化聚苯醚复合膜的质子电导率较低,为10-6 S/cm。虽然需要进一步改进,但较单纯以小分子修饰易造成掺杂物流失的局面,提供了接枝固定的新思路,如果调整咪唑接枝碳链的长短,有可能提高其质子电导率。
     对于膜电极和PEMFC单电池测试,相关的实验尚待进一步展开,但以上的初步探索表明,SPPO-2Im、SPPO/Im/ZrP复合膜有可能运用于120-200°C温度区域的PEMFC。
Proton exchange membrane fuel cells (PEMFC) are attracting people’s attention as clean power sources for vehicular transportation and their potential applications in electrochemical devices. PEMFC has been considered as a promising energy source because of their high efficiency at low temperatures, easily constructed and environment friendly. As one of key components for the PEMFC system, the study of PEM is very important in the development of PEMFC. The commercially available Nafion membranes produced by DuPont have been extensively employed in PEMFC. However, there are still many shortcomings will bind their wider application in PEMFC, including limited operation temperatures, high methanol permeability and high cost. However, a number of advantages were reported for PEMFC to be operated at high temperature (120-200°C), such as improved CO tolerance of the platinum electrode, simplified water and heat managements, and increased the energy efficiency. Thus the preparation of new PEMs which providing a good performance at high temperature and low relative humidity is still one of the critical challenges in the area of fuel cell technologies.
     Due to its good thermal stabilities and high performance, aromatic polymers have been widely employed as PEMFC materials. In this paper, sulfonated poly(phenylene oxide) (SPPO) was prepared through sulfonating poly(phenylene oxide) with chlorosulfonic acid, and its comprehensive properties were investigated. The structure of SPPO was confirmed by FTIR and 1HNMR, and the influences of the factors affecting the sulfonation reaction were studied. In addition, series SPPO membranes with different degree of sulfonation (DS), was also investigated, and the optimum of DS, 35%, was obtained. SPPO-xIm composite membranes with different content of imidazole (Im) from 0.25 to 4 in SPPO (35%DS) polymer matrix were prepared by solution cast film. The relation between doping ratio x (x is the molar ratio of Im to SPPO repeat unit) and membranes properties were studied by means of thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), dynamic mechanical analysis (DMA), and scanning electronic microscope (SEM); and the investigation of conductivity activation energies of the SPPO-xIm at different relative humidity was also performed. TG-DTA curves reveal that these SPPO-xIm composite materials had a high thermal stability, and all these membranes show a lower swelling degree and moderate uptake. The proton conductivity of SPPO-xIm composite material increased with the temperature, and the maximum proton conductivity of SPPO-xIm composite materials was found to be 6.92×10-3 S/cm at 200°C, 33%RH and x = 2. Under high temperature and low relative humidity condition, the proton conduction was mainly in accordance with“Grotthuss mechanism”. Measurement results of DMA showed that the SPPO-2Im composite membranes possess excellent rigidity and tenacity.
     In this study, the effect of Br?nsted basicity on the proton conductivity of composite PEMs was also discussed. Five acid-base composite materials with different basicity were prepared by doping of SPPO of 35% DS with different Br?nsted bases, such as imidazole (Im), pyrazole (Py), benzimidazole (BnIm), 1-methylimidazole (1-MeIm) and 4-methylimidazole (4-MeIm) respectively. The resulting proton conductivities of the SPPO-heterocyclic composite membranes showed differences at approximately one order of magnitude at a high temperature and 33%RH condition, which reveals that the proton conductivities were related with not only dissociation constant (pKa), but also the molecular structure of basic heterocyclic.
     Based on SPPO-2Im, SPPO/2Im/nano-23wt%ZrP (zirconium phosphate) organic-inorganic composite membranes were prepared by method of ion impregnation-precipitation. TG-DTA analysis showed that SPPO/2Im/nano-23wt%ZrP has a high thermal stability. SEM pictures showed that the ZrP particles uniformly dispersed in the SPPO matrix and the size of ZrP particles reached nanometer level. XRD spectra showed thatα-ZrP was generated. Water uptake and swelling degree of SPPO/2Im/nano-23wt%ZrP was higher than that of SPPO-2Im membrane. This SPPO/2Im/nano-23wt%ZrP membrane provided proton conductivity as high as 10-2 S/cm at 120-200°C and 33%RH conduction. The optimized preparation ways were obtained: the reaction temperature was 80°C, the concentration ratio of C Zr4+/C H3PO4was 1, and the reaction time with zirconyl chloride and phosphoric acid was 6h and 12h respectively.
     The fixation of imidazole in composite membrane was also attempted. Imidazole ring were grafted on alkoxysilane with a nucleophilic reaction to synthesis 2-((3-triethoxysilylpropyl) thio)-imidazole, which was mixed with SPPO to form hybrid composite membranes with fixed imidazole rings by cross linkage. The hybrid composite membranes exhibited a low proton conductivity of approximately 10-6 S/cm. Although it needs further improvement, by comparing with the situation that imidazole dopant gets lost from membrane, it provide new idea of immobilization of imidazole.
     The above primary exploration indicate that SPPO-2Im、SPPO/Im/ZrP composite membranes can be applied on PEMFC at 120-200°C.
引文
1.查全性.化学电源选论.武汉:武汉大学出版社,2005.
    2.衣宝廉.燃料电池――高效、环境友好的发电方式.北京:化学工业出版社,2000
    3.黄倬,屠海令、张翼强等.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社,2000
    4.谢晓峰,范星河,電気学会.燃料电池发电21世纪系统技术调查专门委员会.燃料电池技术.北京:化学工业出版社,2004
    5.拉米尼(Larminie James),迪克斯(Dicks Andrew),朱红.燃料电池系统.北京:科学出版社,2006
    6.毛宗强.燃料电池.北京:化学工业出版社,2005
    7. Larminie J, Dicks A.L. Fuel cell systems explained, Wiley, New York, 2000:308-345
    8. Grot WG. Perfluorinated ion exchange polymers and their use in research and in dustry, Macromdl Symposia 1994, 82,161-172
    9. Song C. Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, 2002, 77(1-2), 17-49
    10. Datta BK, Velayutham G, Prasad Goud A. Fuel cell power source for a cold region, Journal of Power Sources 2002, 106, 370
    11. G ardner K , Jacobs R, Schmidt J, Quakenbush T, Stephens J. Polymere lectorlyte membrane fuel cells for communication applications, Journal of Power Sources 2001, 96 (1), 174
    12. Virji MBV, Thring RH. Analysis of a 50 kWe indirect methanol proton exchange membrane fuel cell (PEMFC) system for transportation application, Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2005, 219 (D8): 937-950
    13. Hwang JJ, Wang DY, Shih NC. Development of a lightweight fuel cell vehicle, Journal of Power Sources, 2005, 141 (1): 108-115
    14. Oszcipok M, Zedda M, Hesselmann J, et al. Portable proton exchange membrane fuel-cell systems for outdoor applications, Journal of Power Sources, 2006, 157(2): 666-673
    15. Tuber K, Zobel M, Schmidt H, et al. A polymer electrolyte membrane fuel cell system for powering portable computers, Journal of Power Sources, 2003, 122 (1): 1-8
    16. Chu D, Jiang R, Gardner K, et al. Polymer electrolyte membrane fuel cells for communication applications, Journal of Power Sources 2001, 96 (1): 174-178
    17. Seo YT, Seo DJ, Jeong JH, Yoon WL. Development of compact fuel processors for 2 kW class residential PEMFCs, Journal of Power Sources, 2006, 163(1): 119-124.
    18. Oyarzabal B, Ellis MW, von Spakovsky MR. Development of thermodynamic, geometric, and economic models for use in the optimal synthesis/design of a PEM fuel, cell cogeneration system for multi-unit residential applications, Journal of Energy Resources Technology-Transactions of The ASME 2004, 126 (1): 21-29
    19. Psoma A, Sattler G. Fuel cell systems for submarines: from the first idea to serial production, Journal of Power Sources, 2002, 106 (1-2): 381-383
    20. Sattler G. Fuel cells going on-board, Journal of Power Sources, 2000, 86 (1-2): 61-67
    21.任学佑.质子交换膜燃料电池开发现状,电池,2004, 34 (6): 455-456
    22.张燕,王正.质子交换膜燃料电池,可再生能源,2005,122 (4): 47-53
    23.陈世全,仇斌,谢起成.燃料电池电动汽车.北京:清华大学出版社,2005
    24.刘朝玮,王保国,何小荣.质子交换膜燃料电池研究及应用现状,现代化工,2004,24 (9): 10-13
    25. Ekdunge P, Raberg M. The fuel cell vehicle analysis of energy use, emissions and cost, International Journal of Hydrogen Energy, 1998, 23 (5): 381-385
    26. MacLean HL, Lave LB. Evaluating automobile fuel/propulsion system technologies, Progress In Energy and Combustion Science, 2003, 29 (1): 1-69
    27. Damen K, van Troost M, Faaij A. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies, Progress in Energy and Combustion Science, 2006, 32 (2): 215-246
    28. Cowey K, Green KJ, Mepsted GO, et al. Portable and military fuel cells, Current Opinion in Solid State & Materials Science, 2004, 8 (5): 367-371
    29.田玉冬,朱新坚,曹广益.质子交换膜燃料电池(PEMFC)移动电源技术,移动电源与车辆,2004,(1): 35-39
    30.卢琛钰.标准早期介入燃料电池研究领域推动新技术产业化进程,中国标准化,2006,(5):13-15
    31.于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展,电化学,2001,7:385-395
    32. Savadogo O. Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cells systems, Journal of New Materials for Electrochemical Systems, 1998, 1: 47-66
    33. Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbonpolymers, Progress in Polymer Science 2000, 25 (10): 1463-1502
    34. Grot W. Use of Nafion perfluorosulfonic acid products as separators in electrolytic cells, Chemie Ingenieur Technik, 1978, 50 (4) , 299-301
    35. Gierke TD, Munn GE, Wilson FC. The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, Journal of Polymer Science: Polymer Physics Edition, 1981, 19 (11), 1687-1704
    36. Hsu WY, Gierke TD. Elastic theory for ionic clustering in perfluorinated ionomers, Macromolecules, 1982, 15(1), 101-105
    37. Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, 2001, 185 (1): 29-39
    38. R. S. Yeo, J. Orehotsky, W. Visscher. Ruthenium-Based Mixed Oxides as Electrocatalysts for Oxygen Evolution in Acid Electrolytes, Journal of the Electrochemical Society, 1981, 128(9): 1900-1904
    39. Sumner JJ, Creager SE, Ma JJ, et al. Proton conductivity in Nafion (R) 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane, Journal of the Electrochemical Society, 1998, 145(1): 107-110
    40. Steele BCH, Heinzel A. Materials for fuel-cell technologies, Nature 2001, 414 (6861): 345-352
    41. Kerres JA. Development of ionomer membranes for fuel cells, Journal of Membrane Science 2001, 185 (1): 3-27
    42. Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science 2001, 185 (1): 29-39
    43. Reginald M. Penner and Charles R. Martin. Ion Transporting Composite Membranes, Journal of the Electrochemical Society, 1985, 132 (2): 514-515
    44. Verbrugge MW, Hill RF, Schneider EW. Composite membranes for fuel-cell applications, AIChE journal, 1992, 38 (1): 93-100
    45. Liu C, Martin CR. Ion transporting composite membranes, Journal of the Electrochemical Society, 1990, 137 (2): 510-515
    46.刘富强,邢丹敏,于景荣等.质子交换膜燃料电池Nafion/PTFE复合膜的研究,电化学,2002,8 (1):86-92
    47. Tazi B, Savadogo O. Effect of various heteropolyacids (HPAs) on the characteristics of Nafion((R)) - HPAS membranes and their H2 /O2 polymer electrolyte fuel cell parameters Journal of New Materials for Electrochemical Systems 2001, 4 (3): 187-196
    48. Yang C, Srinivasan S, Arico AS, et al. Composition Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochemical and Solid State Letters, 2001, 4 (4): A31-A34
    49. Costamagna P, Yang C, Bocarsly AB, et al. Nafion (R) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 degrees C, Electrochimica Acta, 2002, 47 (7): 1023-1033
    50. Tiwari SK, Nema SK, Agarwal YK. Thermolytic degradation behavior of inorganic ion-exchanger incorporated Nafion-117, Thermochimica Acta, 1998, 317 (2): 175-182
    51. Doyle M, Choi SK, Proulx G. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites, Journal of The Electrochemical Society, 2000, 147 (1): 34-37
    52. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes, Journal of The Electrochemical Society, 1997, 144 (4): L67-L70
    53. Watanabe M, Uchida H, Seki Y, et al. The electrochemical society meeting, PV94-2, Abstract No.
    606, Electrochemical Society: Pennington, NJ, 1994: 946-947
    54. Wang, H, Holmberg, BA, Yan, Y. Homogeneous polymer-zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals, Journal of Materials Chemistry, 2002, 12 (12): 3640-3643
    55. Antonucci PL, Arico AS, Creti P, et al. Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation, Solid State Ionics, 1999, 125 (1-4): 431-437
    56. Mauritz, KA. Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Materials Science and Engineering C, 1998, 6 (2-3): 121-133
    57. Deng Q, Moore RB, Maurtiz KA. Novel Nafion ORMOSIL hybrids via in situ sol-gel reactions .1. Probe of ORMOSIL phase nanostructures by infrared spectroscopy, Chemistry of Materials, 1995, 7 (12): 2259-2268
    58. Deng Q, Moore RB, Mauritz KA. Nafion (R) (SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions: Characterization of fundamental properties, Journal of Applied Polymer Science, 1998, 68 (5): 747-763
    59. Deng Q, Wilkie CA, Moore RB, et al. TGA-FTi.r. investigation of the thermal degradation of Nafion (R) and Nafion (R)/[silicon oxide]-based nanocomposites, Polymer, 1998, 39 (24):5961-5972
    60. Jung, DH, Cho, SY, Peck, DH, et al. Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, Journal of Power Sources, 2002, 106 (1-2): 173-177
    61. Hodgdon RB. Polyelectrolytes prepared from perflioroalkyaryl macromolecules, Journal of Polymer Science, Part A, 1968, 6, 171-191
    62. Wei J, Stone C, Steck AE. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom, US Patent:5 422 411, 1995
    63. Basura VI, Beattie PD, Holdcroft S. Solid-state electrochemical oxygen reduction at Pt vertical bar Nafion (R) 117 and Pt vertical bar BAM3G (TM) 407 interfaces, Journal of Electroanalytical Chemistry, 1998, 458 (1-2): 1-5
    64. Beattie PD, Basura VI, Holdcroft S. Temperature and pressure dependence of O-2 reduction at Pt vertical bar Nafion((R)) 117 and Pt vertical bar BAM((R)) 407 interfaces, Journal of Electroanalytical Chemistry, 1999, 468 (2): 180-192
    65. Guzman-Garcia, AG, Pintauro, PN, Verbrugge, MW, et al. Analysis of radiation-grafted membranes for fuel cell electrolytes, Journal of Applied Electrochemistry, 1992, 22 (3): 204-214
    66. Wang H, Capuano GA. Behavior of Raipore radiation-grafted polymer membranes in H2/O2 fuel cells, Journal of the Electrochemical Society, 1998, 145 (3): 780-784
    67. Lee W, Shibasaki A, Saito K, et al. Proton transport through polyethylene-tetrafluoroethylene- copolymer-based membrane containing sulfonic acid group prepared by RIGP, Journal of the Electrochemical Society, 1996, 143 (9): 2795-2799
    68. Yamaki, T, Kobayashi, K, Asano, M, et al. Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications, Polymer, 2004, 45 (19): 6569-6573
    69. Soresi B, Quartarone E, Mustarelli P, et al. PVDF and P(VDF-HFP)-based proton exchange membranes, Solid State Ionics, 2004, 166 (3-4): 383-389
    70. Buchi FN, Gupta B, Haas O, et al. Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells, Electrochimica Acta, 1995, 40 (3): 345-353
    71. Agostino D, Lee JY, Jr Cook EH. Trifluorostyrene sulfonic acid membranes, US Patent:4 012 303, 1977
    72. Takshi M, Kozuo T, Hiroshi M, et al. Method for preparation of graft polymeric mambranes, US Patent:4 605 685, 1986
    73. Nezu S, Gondo M. Solid-polymer-electrolyte membranes for fuel cell andprocess for producing the same, US Patent:5 994 426, 1999
    74. Gupta B, Buchi FN, Scherer GG. Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. I. Influence of synthesis conditions, Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32 (10): 1931-1938
    75. Gupta B, Buchi FN, Staub M, et al. Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes, Journal of Polymer Science, Part A: Polymer Chemistry, 1996, 34 (10): 1873-1880
    76. Scherer GG, Killer E, Grman D. Radiation grafted membranes. Some structural investigations in relation to their behavior in ion-exchange-membrane water electrolysis cells, International Journal of Hydrogen Energy, 1992, 17 (2): 115-123
    77. Lehtinen T, Sundholm G, Holmberg S, et al. Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells, Electrochimica Acta, 1998, 43 (12-13): 1881-1890
    78. Buchi FN, Gupta B, Haas O, et al. Performance of differently cross-linked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cells,Journal of the Electrochemical Society,1995,142 (9):3044-3048
    79. Boysen DA, Chisholm CRI, Haile SM, et al. Polymer solid acid composite membranes for fuel-cell applications, Journal of the Electrochemical Society, 2000, 147 (10): 3610-3613
    80. Neuse EW, Loonat MS. Two-stage polybenzimidazole synthesis via poly(azomethine) intermediates, Macromolecules, 1983, 16 (1): 128-136
    81. Moelter GM, Tetreault RF, Hefferon MJ. Polybenzimidazole Fiber, Polymer News, 1983, 9 (5): 134-138
    82. Marx S, Junghans R. Friction and wear of highly stressed thermoplastic bearings under dry sliding conditions, Wear, 1996, 193 (2): 253-260
    83. Banihashemi A, Atabaki F. Synthesis and characterization of new thermally stable polybenzimidazoles and poly(amide-benzimidazole)s, European Polymer Journal, 2002, 38 (10): 2119-2124
    84. Hira MA. Fire-protective clothing and its performance testing, Textile Asia, 2003, 34 (3): 36-40
    85. Wang KY, Chung T-S, Rajagopalan R. Novel polybenzimidazole (PBI) nanofiltration membranes for the separation of sulfate and chromate from high alkalinity brine to facilitate the chlor-alkali process, Industrial and Engineering Chemistry Research, 2007, 46 (5): 1572-1577
    86. Jones DJ, Rozière J. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications,Journal of Membrane Science, 2001, 185 (1): 41-58
    87. Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cell (PEMFC) basedon acid-doped polybenzimidazole (PBI), Journal of New Materials for Electrochemical Systems, 2000, 3 (4): 343-347
    88. Staiti P, Lufrano F, AricòAS, et al. Sulfonated polybenzimidazole membranes-Preparation and physico-chemical characterization, Journal of Membrane Science, 2001, 188 (1): 71-78
    89. Carollo A, Quartarone E, Tomasi C, et al. Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, Journal of Power Sources, 2006, 160 (1): 175-180
    90. Pu H, Liu G. Preparation and proton conductivity of poly(N-methylbenzimidazole) doped with acid, Polymers for Advanced Technologies, 2004, 15 (12): 726-730
    91. Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole, Solid State Ionics, 1999, 118 (3-4): 287-299
    92. Kawahara M, Morita J, Rikukawa M, et al. Synthesis and proton conductivity of thermally stable polymer electrolyte: Poly(benzimidazole) complexes with strong acid molecules, Electrochimica Acta, 2000, 45 (8): 1395-1398
    93. Xing B, Savadogo O. The effect of acid doping on the conductivity of polybenzimidazole (PBI), Journal of New Materials for Electrochemical Systems, 1999, 2 (2): 95-101
    94. Fu X, Li J, Lu C, et al. Progress in proton-exchange membranes for direct methanol fuel cells, Progress in Chemistry, 2004, 16 (1): 77-82
    95. Fontanella JJ, Wintersgill MC, Wainright JS, et al. High pressure electrical conductivity studies of acid doped polybenzimidazole, Electrochimica Acta, 1998, 43 (10-11): 1289-1294
    96. Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole,Solid State Ionics, 1999,118 (3-4):287-299
    97. He R, Li Q, Xiao G, et al. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 2003, 226 (1-2): 169-184
    98. Staiti P. Proton Conductive Membranes Constituted of Silicotungstic Acid Anchored to Silica-Polybenzimidazole Matrices, Journal of New Materials for Electrochemical Systems, 2001, 4 (3): 181-186
    99. Staiti P. Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole, Materials Letters, 2001, 47 (4-5): 241-246
    100. Staiti P, Minutoli M. Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes, Journal of Power Sources, 2001, 94 (1): 9-13
    101. Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry Communications, 2000, 2 (10): 697-702
    102. Rozière J, Jones DJ, Marrony M, et al. On the doping of sulfonated polybenzimidazole with strong bases, Solid State Ionics, 2001, 145 (1-4): 61-68
    103. Ariza MJ, Jones DJ, Rozière J. Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly (benzimidazole) membranes, Desalination, 2002, 147 (1-3): 183-189
    104. Linkous CA, Anderson HR, Kopitzke RW, et al. Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures,International Journal of Hydrogen Energy, 1998, 23 (7): 525-529
    105. Bae J-M, Honma I, Murata M, et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, 2002, 147 (1-2): 189-194
    106. Kawahara M, Rikukawa M, Sanui K, et al. Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films, Solid State Ionics, 2000, 136-137: 1193-1196
    107. Kawahara M, Rikukawa M, Sanui K. Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole), Polymers for Advanced Technologies, 2000, 11 (8-12): 544-547
    108. Asensio JA, Borrós S, Gómez-Romero P. Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles, Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 40 (21): 3703-3710
    109. Devaux J, Delimoy D, Daoust D, et al. On the molecular weight determination of a poly(aryl-ether-ether-ketone) (PEEK), Polymer, 1985, 26 (13): 1994-2000
    110. Bailly C, Williams DJ, Karasz FE, et al. Sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): preparation and characterization, Polymer, 1987, 28 (6): 1009-1016
    111. Jia LD, Xu XF, Zhang HJ, et al. Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor, Journal of Applied Polymer Science, 1996, 60 (8): 1231-1237
    112. Kobayashi T, Rikukawa M, Sanui K, et al. Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics, 1998, 106 (3-4): 219-225
    113. Litter MI, Marvel CS. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4 prime -dichloroformyldiphenyl ether, Journal of polymer science. Part A-1, Polymer chemistry, 1985, 23 (8): 2205-2223
    114. Ogawa T, Marvel CS. Polyaromatic ether-ketones and ether-keto-sulfones having various hydrophilic groups, Journal of polymer science. Part A-1, Polymer chemistry, 1985, 23 (4): 1231-1241
    115. Johnson BC, Yilgor I, Tran C, et al. Synthesis and characterization of sulfonated poly(arylene ether sulfones), Journal of polymer science. Part A-1, Polymer chemistry, 1984, 22 (3): 721-737
    116. Chan Man Fong, CF, Moresoli C, Xiao S, et al. Modeling diffusion through geomembranes, Journal of Applied Polymer Science, 1998, 67 (11): 1885-1889
    117. Lee Jasun, Marvel CS. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines, Journal of polymer science. Part A-1, Polymer chemistry, 1984, 22 (2): 295-301
    118. Bishop MT, Karasz FE, Russo PS, et al. Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules, 1985, 18 (1): 86-93
    119. Trotta F, Drioli E, Moraglio C, et al. Sulfonation of polyetheretherketone by chlorosulfuric acid, Journal of Applied Polymer Science, 1998, 70 (3): 477-482
    120. Helmer-metzmann FD, Osan FD, Schneller AD; et al. Polymer electrolyte membrane and process for its manufacture, E Patent 0 574 791, 1993
    121. Nunes SP, Ruffmann B, Rikowski E, et al. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, Journal of Membrane Science, 2002, 203 (1-2): 215-225
    122. Ponce ML, Prado LASD, Silva V, et al. Membranes for direct methanol fuel cell based on modified heteropolyacids, Desalination, 2004, 162 (1-3): 383-391
    123. Silva VS, Schirmer J, Reissner R, et al. Proton electrolyte membrane properties and direct methanol fuel cell performance - II. Fuel cell performance and membrane properties effects, Journal of Power Sources, 2005, 140 (1): 41-49
    124. Zaidi SMJ, Mikhailenko SD, Robertson GP, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 2000, 173 (1): 17-34
    125. Kopitzke RW, Linkous CA, Anderson HR, et al. Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes, Journal of the Electrochemical Society, 2000, 147 (5): 1677-1681
    126. De Jaeger R, Gleria M. Poly(organophosphazene)s and related compounds: Synthesis, properties and applications, Progress in Polymer Science (Oxford),1998,23 (2): 179-276
    127. Allcock HR. Products of the reaction of phosphonitrilic chloride trimer with catechol,US Patent 3 294 872, 1966
    128. Hettich BV. Performance characteristics and applications of flame-resistant rayon fabrics, Textile Research Journal, 1984, 54 (6): 382-390
    129. Chattopadhyay AK, Hinrichs RL, Rose SH. Polyphosphazenes as new coating binders, Journal of Coatings Technology, 1979, 51 (658): 87-98
    130. Fabris HJ, Sommer JG. Flammability of elastomeric materials, Rubber Chemistry and Technology, 1977, 50 (3): 523-569
    131. Olshavsky MA, Allcock HR. Polyphosphazenes with high refractive indices: Synthesis, characterization, and optical properties, Macromolecules, 1995, 28 (18): 6188-6197
    132. Facchin G, Guarino L, Modesti M, et al. Thermosetting resins and azo dyes based on phosphazenes, Journal of Inorganic and Organometallic Polymers, 1999, 9 (3): 133-150
    133. Andrianov AK. Water-soluble polyphosphazenes for biomedical applications,Journal of Inorganic and Organometallic Polymers and Materials,2006,16 (4):397-406
    134. Grassi G, Farra R, Caliceti P, et al. Temperature-sensitive hydrogels: Potential therapeutic applications, American Journal of Drug Delivery, 2005, 3 (4): 239-251
    135. Chalkova E, Zhou X, Ambler C, et al. Sulfonimide polyphosphazene-based H2/O2 fuel cells, Electrochemical and Solid-State Letters, 2002, 5 (10): A221-A222
    136. Allcock HR, Hofmann MA, Ambler CM, et al. Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells, Journal of Membrane Science, 2002, 201 (1-2): 47-54
    137. Hofmann MA, Ambler CM, Maher AE, et al. Synthesis of polyphosphazenes with sulfonimide side groups, Macromolecules, 2002, 35 (17): 6490-6493
    138. Chalkova E, Zhou X, Ambler C, et al. Sulfonimide polyphosphazene-based H/O fuel cells, Electrochemical and Solid-State Letters, 2002, 5 (10): A221-A222
    139. Lufrano F, Gatto I, Staiti P, et al. Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics, 2001, 145 (1-4): 47-51
    140. Kim SY, Sumner MJ, Harrison WL, et al. Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile) copolymers, Journal of the Electrochemical Society, 2004, 151 (12): A2150-A2156
    141. Genova-Dimitrova P, Baradie B, Foscallo D, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): Sulfonated polysulfone associated with phosphatoantimonic acid, Journal of Membrane Science, 2001, 185 (1): 59-71
    142. Kerres J, Cui W, Reichle S. New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel? via metalation-sulfination-oxidation, Journal of Polymer Science, Part A: Polymer Chemistry, 1996, 34 (12): 2421-2438
    143. Robeson LM, Farnham AG, McGrath JE. Synthesis and dynamic mechanical characteristics of poly(aryl ethers), Appl Polym Symp, 1975 (26): 373-385
    144. Ueda M, Toyota H, Ouchi T, et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups, Journal of Polymer Science, Part A: Polymer Chemistry, 1993, 31 (4): 853-858
    145. Manea C, Mulder M. New polymeric electrolyte membranes based on proton donor-proton acceptor properties for direct methanol fuel cells, Desalination, 2002, 147 (1-3): 179-182
    146. Kim YS, Wang F, Hickner M, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, Journal of Membrane Science, 2003, 212 (1-2): 263-282
    147. Xiao G, Sun G, Yan D, et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43 (19): 5335-5339
    148. Ghosh MK, Mittal KL. Polyimides: Fundamentals & Applications, NewYork: Marcel Dekker, 1996
    149.浦鸿汀,乔磊.磺化聚酰亚胺类质子导电材料的研究进展,材料导报,2004,18 (12): 47-50
    150. Genies C, Mercier R, Sillion B, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium, Polymer, 2001, 42 (12): 5097-5105
    151. Jang W, Kim D, Choi S, et al. Synthesis and characterization of sulfonated polyimides containing aliphatic linkages in the main chain, Polymer International, 2006, 55 (11): 1236-1242
    152. Watari T, Fang J, Tanaka K, et al. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4’-bis(4-aminophenoxy)biphenyl-3,3’-disulfonic acid, Journal of Membrane Science, 2004, 230 (1-2): 111-120
    153. Jang W, Lee C, Sundar S, et al. Thermal and hydrolytic stability of sulfonated polyimide membranes with varying chemical structure, Polymer Degradation and Stability, 2005, 90 (3): 431-440
    154. Genies C, Mercier R, Sillion B, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium, Polymer, 2001, 42 (12): 5097-5105
    155. Kim J, Kim B, Jung B. Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block- polystyrene copolymers, Journal of Membrane Science, 2002, 207 (1): 129-137
    156. Kim J, Kim B, Jung B, et al. Effect of casting solvent on morphology and physical properties of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers, Macromolecular Rapid Communications, 2002, 23 (13): 753-756
    157. Serpico JM, Ehrenberg SG, Fontanella JJ, et al. Transport and structural studies of sulfonated styrene-ethylene copolymer membranes, Macromolecules, 2002, 35 (15): 5916-5921
    158. Won J, Choi SW, Kang YS, et al. Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes, Journal of Membrane Science, 2003, 214 (2): 245-257
    159. Passaglia E, Ghetti S, Picchioni F, et al. Grafting of diethyl maleate and maleic anhydride onto styrene-b-(ethylene-co-l- butene)-b-styrene triblock copolymer (SEBS), Polymer, 2000, 41 (12): 4389-4400
    160. Chang YW, Shin JY, Ryu SH. Preparation and properties of styrene-ethylene/butylene-styrene(SEBS)-clay hybrids, Polymer International, 2004, 53 (8): 1047-1051
    161. Li QF, He RH, Jensen JO, et al. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100°C, Chemistry of Materials, 2003,15 (26): 4896-4915
    162. Eckl R, Zehtner W, Leu C, et al. Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack, Journal of Power Sources, 2004, 138 (1-2): 137-144
    163. Berg P, Promislow K, Pierre JSt, et al. Water Management in PEM Fuel Cells, Journal of the Electrochemical Society, 2004, 151 (3): A341-A353
    164. Mallant RKAM. PEMFC systems: The need for high temperature polymers as a consequence of PEMFC water and heat management, Journal of Power Sources, 2003, 118 (1-2): 424-429
    165. Zhang JL, Xie Z, Zhang JJ, et al. High temperature PEM fuel cells, Journal of Power Sources, 2006, 160 (2): 872-891
    166. Yan WM, Chen FL, Wu HY, et al. Analysis of thermal and water management withtemperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells, Journal of Power Sources, 2004, 129 (2): 127-137
    167. Xiao G, Li QF, Hjuler HA, et al. Hydrogen oxidation on gas diffusion electrodes for phosphoric acid fuel cells in the presence of carbon monoxide and oxygen, Journal of the Electrochemical Society, 1995, 142 (9): 2890-2893
    168. Oetjen H-F, Schmidt VM, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas, Journal of the Electrochemical Society, 1996, 143 (12): 3838-3842
    169. Santiago EI, Batista MS, Assaf EM, et al. Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC, Journal of the Electrochemical Society, 2004, 151 (7): A944-A949
    170. Grgur BN, Markovic NM, Ross, PN. Electro-oxidation of H and H/CO mixtures on carbon-supported PtMo alloy catalysts, Journal of the Electrochemical Society, 1999, 146 (5): 1613-1619
    171. Gasteiger HA, Markovi? N, Ross Jr PN, et al. CO electrooxidation on well-characterized Pt-Ru alloys, Journal of Physical Chemistry, 1994, 98 (2): 617-625
    172. Koper MTM, Shubina TE, Van Santen RA. Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts, Journal of Physical Chemistry B, 2002, 106 (3): 686-692
    173. Shubina TE, Koper MTM. Co-adsorption of water and hydroxyl on a Pt2Ru surface, Electrochemistry Communications, 2006, 8 (5): 703-706
    174. Li Q, He R, Gao J-A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200°C, Journal of the Electrochemical Society, 2003, 150 (12): A1599-A1605
    175. Izenson MG, Hill RW. Water and thermal balance in PEM and direct methanol fuel cells, Journal of Fuel Cell Science and Technology, 2004, 1 (1): 10-17
    176. Amphlett JC, Mann RF, Peppley BA, et al. A model predicting transient responses of proton exchange membrane fuel cells, Journal of Power Sources, 1996, 61 (1-2): 183-188
    177. Rosen MA. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices, International Journal of Hydrogen Energy, 1990, 15 (4): 267-274
    178. Savinell R, Yeager E, Tryk D, et al. Polymer electrolyte for operation at temperatures up to 200°C, Journal of the Electrochemical Society, 1994, 141 (4): L46-L48
    179. Wasmus S, Valeriu A, Mateescu GD, et al. Characterization of H3PO4-equilibrated Nafion 117membranes using 1H and 31P NMR spectroscopy, Solid State Ionics, 1995, 80 (1-2): 87-92
    180. Bouchet R, Siebert E, Vitter G. Acid-doped polybenzimidazole as the membrane of electrochemical hydrogen sensors, Journal of the Electrochemical Society, 1997, 144 (5): L95-L97
    181. Wieczorek W, Florjanczyk Z, Stevens JR. Proton conducting polymer gels based on a polyacrylamide matrix, Electrochimica Acta, 1995, 40 (13-14): 2327-2330
    182. Wieczorek W, Stevens JR. Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4, Polymer, 1997, 38 (9): 2057-2065
    183. Gupta PN, Singh KP. Characterization of H3PO4 based PVA complex system, Solid State Ionics, 1996, 86-88 (PART 1): 319-323
    184. Petty-Weeks S, Zupancic JJ, Swedo JR. Proton conducting interpenetrating polymer networks, Solid State Ionics, 1988, 31 (2): 117-125
    185. Grondin J, Rodriguez D, Lassegues JC. Proton conducting polymer electrolyte-The Nylon 6–10/H3PO4 blends, Solid State Ionics, 1995, 77: 70-75
    186. Baradie B, Poinsignon C, Sanchez JY, et al. Thermostable ionomeric filled membrane for H2/O2 fuel cell, Journal of Power Sources, 1998, 74 (1): 8-16
    187. Yang MJ, Casalbore-Miceli G, Camaioni N, et al. Characterization of capacitive humidity sensors based on doped poly(propargyl-alcohol), Journal of Applied Electrochemistry, 2000, 30 (6): 753-756
    188. Camaioni N, Casalbore-Miceli G, Martelli A, et al. A novel solid state battery based on a polymer proton conductor: Poly(propargyl alcohol) doped with perchloric acid, Journal of Applied Electrochemistry, 1997, 27 (7): 862-866
    189. Tanaka R, Yamamoto H, Shono A, et al. Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid, Electrochimica Acta, 2000, 45 (8): 1385-1389
    190. Tsuruhara K, Rikukawa M, Sanui K, et al. Synthesis of proton conducting polymer based on poly(silamine), Electrochimica Acta, 2000, 45 (8): 1391-1394
    191. Wang J-T, Wainright JS, Savinell RF, et al. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte, Journal of Applied Electrochemistry, 1996, 26 (7): 751-756
    192. Vargas MA, Vargas RA, Mellander B-E. New proton conducting membranes based on PVAL/H3PO2/H2O, Electrochimica Acta, 1999, 44 (24): 4227-4232
    193. Vargas MA, Vargas RA, Mellander B-E. More studies on the PVA1 + H3PO2 + H2O protonconductor gels, Electrochimica Acta, 2000, 45 (8-9): 1399-1403
    194. Wu Q, Wang H, Yin C, et al. Preparation and performance of PVA films composited with 12-tungstogermanic heteropoly acid, Materials Letters, 2001, 50 (2-3): 61-65
    195. Checkiewicz K, Zukowska G, Wieczorek W. Synthesis and characterization of the proton-conducting gels based on PVdF and PMMA matrixes doped with heteropolyacids, Chemistry of Materials, 2001, 13 (2): 379-384
    196. Kreuer KD, Fuchs A, Ise M, et al. Imidazole and pyrazole-based proton conducting polymers and liquids, Electrochimica Acta, 1998, 43 (10-11): 1281-1288
    197. Kerres J, Zhang W, Jorissen L, et al. Application of Different Types of Polyaryl-Blend-Membranes in DMFC, Journal of New Materials for Electrochemical Systems, 2002, 5 (2): 97-107
    198. Jorissen L, Gogel V, Kerres J, et al. New membranes for direct methanol fuel cells, Journal of Power Sources, 2002, 105 (2): 267-273
    199. Kerres J, Ullrich A, Meier F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125 (1): 243-249
    200. Kerres J, Cui W. Acid-base polymer blends and their use in membrane processes, US Patent: 6 759 441, 2004
    201. Kerres J, Ullrich A, Haring Th, et al. Preparation, characterization and fuel cell application of new acid-base blend membranes, Journal of New Materials for Electrochemical Systems, 2000, 3 (3): 229-239
    202. Kerres J, Ullrich A, and Haring Th. Extended Abstracts of the 3rd International Symposium on New Materials for Electrochemical Systems, 231 Montreal, Canada, 1999, July 4-8: 231
    203. Guiver MD, Robertson GP, Foley S. Chemical modification of polysulfones II: An efficient method for introducing primary amine groups onto the aromatic chain, Macromolecules, 1995, 28 (23): 7612-7621
    204. Zhang W, Tang C-M, Kerres J. Development and characterization of sulfonated-unmodified and sulfonated-aminated PSU Udel? blend membranes, Separation and Purification Technology, 2001, 22-23: 209-221
    205. Kosmala B, Schauer J. Ion-exchange membranes prepared by blending sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) with polybenzimidazole, Journal of Applied Polymer Science, 2002, 85 (5): 1118-1127
    206. Han-Lang WU, Ma C-CM, Kuan H-C, et al. Sulfonated poly(ether etherketone)/poly(vinylpyrrolidone) acid-base polymer blends for direct methanol fuel cell application, Journal of Polymer Science, Part B: Polymer Physics, 2006, 44 (3): 565-572
    207.蔡雨泉、黄绵延、王宇新等. DMFC用磺化聚醚醚酮/聚苯胺共混型质子交换膜的研究,高分子材料科学与工程,2007, 23 (1): 246-249
    208. Pak J, Pyda M, Wunderlich B. Rigid amorphous fractions and glass transitions in poly(oxy-2,6-dimethyl-1,4-phenylene), Macromolecules, 2003, 36 (2): 495-499
    209. Tongwen X, Weihua Y. Fundamental studies of a new series of anion exchange membranes: Membrane preparation and characterization, Journal of Membrane Science, 2001, 190 (2): 159-166
    210. Fried JR, Sadat-Akhavi M, Mark JE. Molecular simulation of gas permeability: poly(2,6-dimethyl-1,4-phenylene oxide), Journal of Membrane Science, 1998, 149 (1): 115-126
    211. Kruczek B, Matsuura T. Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide,Journal of Membrane Science,1998,146 (2):263-275
    212. Kruczek B, Matsuura T. Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance,Journal of Membrane Science,2000,167 (2):203-216
    213. Kruczek B, Matsuura T. Effect of solvent on properties of solution-cast dense SPPO films, Journal of Applied Polymer Science,2003,88 (5):1100-1110
    214. Mohr R, Kudela V, Schauer J, et al. Comparison of different cells for resistance determination of freely standing polymer membranes developed for direct methanol fuel cell (DMFC) applications, Desalination, 2002, 147 (1-3): 191-196
    1. Bikson B, Gotz G, Ozcayir Y, et al. Modified poly (phenylene oxide) based membranes for enhanced fluid separation, EP 0631807, 1995
    2. Kim JH, Jang J, Lee DY, et al. Thickness and composition dependence of the glass transition temperature in thin homogeneous polymer blend films, Macromolecules, 2002, 35 (1): 311-313
    3. Li SW, Lui M, Sun Q, et al. Polymer electrolyte membranes (pems) based on imidazole ring terminated flexible branches grafted on hybrid inorganic-organic polymers, US2007099035, 2007
    4. Lee MH, Kim HJ, Kim E, et al. Effect of phase separation on ionic conductivity of poly(methyl methacrylate)-based solid polymer electrolyte, Solid State Ionics, 1996, 85 (1-4): 91-98
    5. Zawodzinski Jr TA, Neeman M, Sillerud LO, et al. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, Journal of Physical Chemistry, 1991, 95 (15): 6040-6044
    6. Sumner JJ, Creager SE, Ma JJ, et al. Proton conductivity in nafion? 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane, Journal of the Electrochemical Society, 1998, 145 (1): 107-110
    7. Sone Y, Ekdunge P, Simonsson D. Proton conductivity of nafion 117 as measured by a four-electrode AC impedance method, Journal of the Electrochemical Society, 1996, 143 (4): 1254-1259
    8. Pourcelly G, Oikonomou A, Gavach C, et al. Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes, Journal of electroanalytical chemistry and interfacial electrochemistry, 1990, 287 (1): 43-59
    9. Millet P. Determination of self-diffusion coefficients from conductivity measurements in perfluorinated ionomer membranes, Journal of Membrane Science, 1990, 50 (3): 325-328
    10. Hsu WY, Berkley JR, Meakin P. Ion percolation and insulator-to-conductor transition in nafion perfluorosulfonic acid membranes, Macromolecules, 1980, 13 (1): 198-200
    11. Gardner CL, Anantaraman AV. Measurement of membrane conductivities using an open-ended coaxial probe, Journal of Electroanalytical Chemistry, 1995, 395 (1-2): 67-73
    12. Gardner CL, Anantaraman AV. Studies on ion-exchange membranes. II. Measurement of the anisotropic conductance of Nafion, Journal of Electroanalytical Chemistry, 1998, 449 (1-2): 209-214
    13.余晴春.锂聚合物二次电池PVB基固体电解质及(PEG_x(PAn)y/XXG纳米复合正极材料的研究[学位论文],上海交通大学,2000
    1.马德柱,何平笙,徐钟德等.高聚物的结构与性能(第2版).北京:科学出版社,1995
    2.徐铜文.膜科学与技术教程.合肥:中国科学技术大学出版社,2003
    3. Allan F. M. Barton. CRC handbook of solubility parameters and other cohesion parameters (2nd ed), Boca Raton Florida, CRC Press, 1991
    4.杨军,解晶莹,王久林.化学电源测试原理与技术.北京:化学工业出版社,2006
    5.曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002
    6. Kruczek B, Matsuura T. Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide, Journal of Membrane Science, 1998, 146 (2): 263-275
    7. Yeo RS, Chan SF, Lee J. Swelling behavior of Nafion and radiation-grafted cation exchange membranes, 1981, 9 (3): 273-283
    8.吴洪,王宇新,王世昌.水分子参与下的质子输运机理,Chemistry Online, 1999,13: 99035
    9. Wei D, Salahub DR. Hydrated proton clusters: Ab initio molecular dynamics simulation and simulated annealing, Journal of Chemical Physics, 1997, 106 (14): 6086-6094
    10. Lechner RE. Neutron investigations of superprotonic conductors, Ferroelectrics, 1995, 167 (1-2): 83-98
    11. Bockris JO'M, Reddy AKN, Gamboa-Aldeco M. Modern Electrochemistry. Volume 1, Ionics [electronic resource], New York: Kluwer Academic, 2nd ed, c2002.
    12. Catana D, Hategan Alina, Ionescu MS. Diffusional transport of water and protons across human ecythrocyte membranes, Romanian Reports in Physics, 1996, 48(1-2): 117~132
    13. Pomes R, Roux B. Structure and dynamics of a proton wire: A theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel, Biophysical Journal, 1996, 71 (1): 19-39
    14. Cheng HP. The motion of protons in water-ammonia clusters, Journal of Chemical Physics, 1996, 105 (16): 6844-6855
    15. Arribart H, Piffard, Y. Indication from NMR of Grotthuss mechanism for proton conduction in H2Sb4O11·nH2O, Solid State Communications, 1983, 45 (7): 571-575
    16. Kreuer KD, Rabenau A, Messer R. Proton conductivity in the layer compound H3OUO2AsO4·3H2O (HUAs). I. conductivity in the orthorhombic low-temperature phase and the vehicle mechanism of proton transport in solids. Applied physics. A, Solids and surfaces, 1983, A32 (2): 45-53
    17. Kreuer KD, Rabenau A, Weppner W. Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angewandte Chemie International Edition in English, 1982, 21 (3): 208– 209
    18. Sumner JJ, Creager SE, Ma JJ, et al. Proton Conductivity in Nation117 and in a Novel Bis[(perfluoroalkyl)sulfonyl]imide Ionomer Membrane, Journal of the Electrochemical Society, 1998, 145 (1): 107-110
    19. Howe AT, Shilton MG. Studies of layered uranium(VI) compounds. IV. Proton conductivity in single-crystal hydrogen uranyl phosphate tetrahydrate (HUP) and in polycrystalline hydrogen uranyl arsenate tetrahydrate (HUAs), Journal of Solid State Chemistry, 1980, 34 (2): 149-155
    20. Dippel Th, Kreuer KD. Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids, Solid State Ionics, 1991, 46 (1-2): 3-9
    21. Kreuer KD, Proton Conductors, Chemistry of Solid State Materials 2, Ph. Colomban: Cambridge University Press, 1992
    22. Newman JS. Electrochemical systems, Englewood Cliffs, N.J., Prentice-Hall, Inc. c1973
    23. Kreuer KD, Dippel T, Meyer W, et al. Nafion membranes: Molecular diffusion, proton conductivity and proton conduction mechanism, Materials Research Society Symposium Proceedings, 1993, 293: 273-282
    24. Kobayashi C, Iwahashi K, Saito S, et al. Dynamics of proton attachment to water cluster: Proton transfer, evaporation, and relaxation, Journal of Chemical Physics, 1996, 105 (15): 6358-6366
    25. Schuster MFH, Meyer WH. Anhydrous Proton-Conducting Polymers, Annual Review of Materials Research, 2003, 33: 233-261 26. Mu
    1. J.A.迪安,尚久方,操时杰等.兰氏化学手册.北京:科学出版社,1991
    2.袁开基,夏鹏.有机杂环化学(基本原理与合成药).北京:人民卫生出版社,1984
    3.艾歇尔(Eicher, Theophil),豪普特曼(Hauptmann, Siegfried),李润涛等.杂环化学.北京:化学工业出版社,2006
    4. J.A.焦耳,K.米尔斯.杂环化学.北京:科学出版社,2004
    1. Clearfield A, Stynes JA. The Preparation of Crystalline Zirconium Phosphate and Some Observations on its Ion Exchange Behavior, J. Inorg. Nucl. Chem., vol. 26, 1964, pp. 117-129
    2. Clearfield A, Blessing RH, Stynes J A. New crystalline phases of zirconium phosphate possessing ion-exchange properties, Journal of Inorganic and Nuclear Chemistry, 1968, 30 (8): 2249-2258
    3. Alberti G, Vivani R, Marmottini F, et al. Microporous Solids Based on Pillared Metal(IV) Phosphates and Phosphonates, Journal of Porous Materials, 1998, 5 (3-4): 205-220
    4.耿利娜,相明辉,李娜,等.层状无机化合物――磷酸锆的研究和应用进展,化学进展,2004,16 (5):717-727
    5. Kaschak DM, Lean JT, Waraksa CC, et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: Toward an inorganic "leaf", Journal of the American Chemical Society, 1999, 121 (14): 3435-3445
    6. Lacroix PG. Organic nonlinear optical chromophores in an inorganic environment. Toward an interplay between magnetism, conductivity, and nonlinear optics,Chemistry of Materials,2001,13 (10):3495-3506
    7. Vermeiden LA, Snover JL, Sapochak LS, et al. Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds, Journal of the American Chemical Society, 1993, 115 (25): 11767-11774
    8. Alberti G, Carbone A, Palombari R. Oxygen potentiometric sensors based on thermally stable solid state proton conductors: A preliminary investigation in the temperature range 150-200°C, Sensors and Actuators, B: Chemical, 2002, 86 (2-3): 150-154
    9. Kim CH, Yim HS, Jeon IC. Dielectric property and equivalent circuit ofα-zirconium phosphate system related to the phase transition and its AFM image, Solid State Communications, 1998, 106 (8): 535-540
    10. Bellezza F, Cipiciani A, Costantino U, et al. Zirconium phosphate and modified zirconium phosphates as supports of lipase. Preparation of the composites and activity of the supported enzyme, Langmuir, 2002, 18 (23): 8737-8742
    11. Shen S, Hsu AF, Foglia TA, et al. Effectiveness of cross-linked phyllosilicates for intercalative immobilization of soybean lipoxygenase, Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 1998, 69 (2): 79-90
    12. Choy JH, Kwak SY, Park JS, et al. Cellular uptake behavior of [γ-32P] labeled ATP-LDHnanohybrids, Journal of Materials Chemistry, 2001, 11 (6): 1671-1674
    13. Dragone R, Galli P, Massucci MA, et al. Preparation and characterisation of histidine- and iron-histidine-α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2, Journal of Materials Chemistry, 2003, 13 (4): 834-840
    14. Jimenez-Lopez A, Rodriguez-Castellon E, Santamaria-Gonzalez J, et al. Insertion of porous chromia inγ-zirconium phosphate and its catalytic performance in the oxidative dehydrogenation of propane, Langmuir, 2000, 16 (7): 3317-3321
    15. Alberti G, Casciola M, Cavalaglio S, et al. Proton conductivity of mesoporous zirconium phosphate pyrophosphate, Solid State Ionics, 1999, 125 (1): 91-97
    16. Hogarth WHJ, Da Costa JCD, Drennan J, et al. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications, Journal of Materials Chemistry, 2005, 15 (7): 754-758
    17. Yang C, Srinivasan S, Arico AS, et al. Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochemical and Solid-State Letters, 2001, 4 (4): A31-A34
    18. Costamagna P, Yang C, Bocarsly AB, et al. Nafion?115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C, Electrochimica Acta, 2002, 47 (7): 1023-1033
    19. Grot WG. Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same, US P 5 919 583, 1999
    20. Kim JD, Honma I. Proton conducting polydimethylsiloxane/zirconium oxide hybrid membranes added with phosphotungstic acid, Electrochimica Acta, 2003, 48 (24): 3633-3638
    21. Kim JD, Honma I. Proton conducting polydimethylsiloxane/metal oxide hybrid membranes added with phosphotungstic acid(II), Electrochimica Acta, 2004, 49 (20): 3429-3433
    22. Kwak SH, Yang TH, Kim CS, et al. Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell, Solid State Ionics, 2003, 160 (3-4): 309-315
    23. Jung DH, Cho SY, Peck DH, et al. Preparation and performance of a Nafion (R)/montmorillonite nanocomposite membrane for direct methanol fuel cell, Journal of Power Sources, 2003, 118 (1-2): 205-211
    24. Jalani NH, Dunn K, Datta R. Synthesis and characterization of Nafion (R)-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochimica Acta, 2005, 51 (3): 553-560
    25. Costantino U, Vivani R, Zima V, et al. Thermoanalytical study, phase transitions, and dimensional changes of alpha-Zr(HPO4)(2)center dot H2O large crystals, Journal of Solid State Chemistry, 1997, 132 (1): 17-23
    26. Peeters K, Carleer R, Mullens J, et al. Thermal decomposition of n-alkylamineα-zirconium phosphate intercalates, Microporous Materials, 1995, 4 (6): 475-487
    27. Clearfield A, Smith DS. The crystal structure of zirconium phosphate and the mechanism of its ion exchange behavior, Journal of Colloid and Interface Science, 1968, 28 (2): 325-330
    28. Troup JM, Clearfield A. On the mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure ofα-zirconium phosphate, Inorganic Chemistry, 1977, 16 (12): 3311-3314
    29.刘富强,邢丹敏,于景荣,等.质子交换膜燃料电池Nafion/PTFE复合膜的研究,电化学,2002,8:86-92
    1.周宁琳.有机硅聚合物导论,北京:科学出版社,2000
    2.晨光化工研究院有机硅编写组.有机硅单体及聚合物.北京:化学工业出版社,1986
    3. Kawakami Y, Imae I. Functionality and stereochemical design of silicon-containing polymers, Macromolecular Chemistry and Physics, 1999, 200 (6): 1245-1256
    4. Kowalewska A, Stańczyk WA, Boileau S, et al. Novel polymer systems with very bulky organosilicon side chain substituents, Polymer, 1999 40 (3): 813-818
    5. Satriano C, Conte E, Marletta G. Surface chemical structure and cell adhesion onto ion beam modified polysiloxane, Langmuir, 2001, 17 (7): 2243-2250
    6. Zollfrank C, Kladny R, Sieber H, et al. Biomorphous SiOC/C-ceramic composites from chemically modified wood templates, Journal of the European Ceramic Society, 2004, 24 (2): 479-487
    7. Yan Y, Bein T. Molecular recognition on acoustic wave devices: Sorption in chemically anchored zeolite monolayers, Journal of Physical Chemistry, 1992, 96 (23): 9387-9393
    8. Ebdon JR, Hourston DJ, Klein PG. Polyurethane-polysiloxane interpenetrating polymer networks:
    2. morphological and dynamic mechanical studies, Polymer, 1986, 27 (11): 1807-1814
    9. Tahara S, Takeda Y, Sugahara Y. Preparation of organic-inorganic hybrids possessing nanosheets with perovskite-related structures via exfoliation during a sol-gel process, Chemistry of Materials, 2005, 17 (24): 6198-6204
    10. Haggblad HA, Hockauf M, Eriksson M, et al. Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titanium powder using a modified split Hopkinson set-up, Powder Technology, 2005, 154 (1): 33-42
    11. Gao JX, Yeo LP, Chan-Park MB, et al. Antistick postpassivation of high-aspect ratio silicon molds fabricated by deep-reactive ion etching,Journal of Microelectromechanical Systems,2006,15 (1): 84-93
    12. Tsai MF, Lee YD, Long YC. Synthesis of a polydimethylsiloxane-block-hydroxyl grafted acrylate prepolymer copolymer to improve the adhesion between silicone rubber and polyurethane by induced surface reconstruction, Journal of Polymer Research, 2000, 7 (2): 73-79
    13. Lampe I, Marton S, Hegedus M. Effect of mixing technique on shrinkage rate of one polyether and two polyvinyl siloxane impression materials, International Journal of Prosthodontics, 2004, 17 (5): 590-590
    14. Perakis N, Belser UC, Magne P. Final impressions: A review of material properties and descriptionof a current technique, International Journal of Periodontics and Restorative Dentistry, 2004, 24 (2): 109-117
    15. Reitz CD, Clark NP. The setting of vinyl polysiloxane and condensation silicone putties when mixed with gloved hands, The Journal of the American Dental Association, 1988, 116 (3): 371-375
    16. Capan R, Richardson TH. Pyroelectric effect in a mixed polysiloxane/eicosylamine Langmuir-Blodgett thin film, Materials Letters,2004, 58 (25): 3131-3135
    17. Fortini S, Lavanchy F, Nising P, et al. A new tool for the study of polymerization under supercritical conditions-Preliminary results, Macromolecular Symposia, 2004, 206: 79-92
    18. Schulze M, Knori T, Schneider A, et al. Degradation of sealings for PEFC test cells during fuel cell operation, Journal of Power Sources, 2004, 127 (1-2): 222-229
    19. Baxter J. Valve seal eliminates coolant leakage problem, European Semiconductor, 2003, 25 (6): 21-22
    20. Mazali CAI, Felisberti MI. Vinyl ester resin modified with silicone-based additives: II. Flammability properties, Journal of Applied Polymer Science, 2006, 99 (3): 644-649
    21. Ganicz T, Pakula T, Fortuniak W, et al. Linear and hyperbranched liquid crystalline polysiloxanes, Polymer, 2005, 46 (25): 11380-11388
    22. Marty JD, Gornitzka H, Mauzac M. Chiral molecular imprinting in liquid-crystalline network, European Physical Journal E, 2005, 17 (4): 515-520
    23. Sela Y, Magdassi S, Garti N. Release of markers from the inner water phase of W/O/W emulsions stabilized by silicone based polymeric surfactants, Journal of Controlled Release, 1995, 33 (1): 1-12
    24. Gupta DC, Sumana G, Prakash S. Polysiloxane based slow release formulations of N,N-diethylphenylacetamide - A broad spectrum insect repellent, Journal of Polymer Materials, 2000, 17 (2): 215-219
    25. Potter M, Morrison S, Wiener F, et al. Induction of plasmacytomas with silicone gel in genetically susceptible strains of mice, Journal of the National Cancer Institute, 1994, 86 (14): 1058-1065
    26. Abbasi F, Mirzadeh H, Katbab AA. Modification of polysiloxane polymers for biomedical applications: A review, Polymer International, 2001, 50 (12): 1279-1287 27. Hron P, Seffects, Journal of Non-Crystalline Solids, 1997, 217 (1): 11-21
    29. Greil, P. Polymer derived engineering ceramics, Advanced Engineering Materials, 2000, 2 (6): 339-348
    30. Persson JC, Jannasch P. Intrinsically proton-conducting benzimidazole units tethered to polysiloxanes, Macromolecules, 2005, 38 (8): 3283-3289
    31. Steininger H, Schuster M, Kreuer KD, et al. Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes, Solid State Ionics, 2006, 177 (26-32): 2457-2462
    32. Li S, Liu M. Synthesis and conductivity of proton-electrolyte membranes based on hybrid inorganic–organic copolymers, Electrochimica Acta, 2003, 48 (28): 4271-4276
    33. Honma I, Nakajima H, Nomura S. High temperature proton conducting hybrid polymer electrolyte membranes, Solid State Ionics, 2002, 154-155: 707-712
    34. Li S, Zhou Z, Liu M, et al. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes, Electrochimica Acta, 2006, 51 (7): 1351-1358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700