用户名: 密码: 验证码:
三苯基氧膦磺酸质子交换膜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜是质子交换膜燃料电池的关键材料。目前,PEMFC主要采用Nafion全氟膜。然而,Nafion在温度高温或湿度较低时,电导率急剧下降,甲醇渗透率过高,价格昂贵,难以满足PEMFC产业化应用要求。因此,人们转而寄希望于研制性能优良的非氟芳香族聚合物质子交换膜。
     本论文针对芳香族聚合物质子交换膜存在的两个主要问题,即在离子容量高时其耐氧化性不足和溶胀率较高,结合我课题组有关耐氧化性及耐溶胀的质子交换膜工作,设计并制备了一系列三苯基氧膦磺酸质子交换膜,同时较为全面地研究了其结构与性能的关系。对比研究了磺化聚芳醚三苯基氧膦基和磺化聚芳硫醚三苯基氧膦基质子交换膜的耐氧化性能,结果表明后者耐氧化性能比前者高得多,并阐述了机理;将二氮杂萘酮基团引入到产物中,制备了低溶胀率的三苯基氧膦基质子交换膜;将耐氧化性和耐溶胀性的基团引入到产物中,制备了耐氧化、低溶胀的三苯基氧膦基质子交换膜。具体内容如下:
     通过Grignard反应合成了二(4-氟苯基)苯基氧膦(BFPPO)单体,并将其磺化,合成了二(4-卤苯基)-3-磺酸钠苯基氧膦(sBFPPO)单体。
     将BFPPO与sBFPPO分别与多种二羟基或二巯基单体,如对苯二酚(HQ)、双酚A (Bis A)、4,4’-二苯酚(BP)、双酚F(Bis F)、1,5’-二羟基萘(NA)、4, 4’-二羟基二苯硫醚(DB)和4,4’-二巯基二苯硫醚(TB),直接共聚制备了一系列磺化聚芳(硫)醚三苯基氧膦,侧重考察了二羟基和二巯基单体结构单元对产物的耐氧化性能的影响。结果表明含双酚A和萘结构的产物,耐氧化性能最差。前者结构中含有α氢,C-H键键能较低,耐氧化性差;而后者结构中的萘环的芳香性比苯环差,耐氧化性能低;含HQ、BP、Bis F和DB单体单元结构的产物耐氧化性能较好。含DB和TB单体单元结构的产物分别为磺化聚芳醚三苯基氧膦和磺化聚芳硫醚三苯基氧膦。从结构上看,后者可以看成是前者的醚基团被硫醚基团取代后的“产物”,其耐氧化性能比前者好得多,这是因为后者的硫醚基团在Fenton试剂中被氧化成为砜或亚砜基团,而砜或亚砜基是钝化基团,钝化了与之相连的苯环,阻碍了降解反应(加成反应)。与磺化聚芳硫醚砜(酮)类似,磺化聚芳硫醚三苯基氧膦与磺化聚芳醚三苯基氧膦相比,前者耐氧化性能要好得多。
     以BFPPO、sBFPPO和4,4’-二巯基二苯硫醚为单体,通过改变BFPPO/sBFPPO的配比,合成了一系列不同磺化度的磺化聚芳硫醚三苯基氧膦,考察了IEC对产物性能的影响。结果表明,随着IEC的增加,产物热失重5%的温度(Td5)降低,而其分子量、玻璃化转变温度、吸水率、溶胀率以及质子传导率都增大。磺化度达90%和100%时,聚合物膜在70 oC就出现溶胀突变;磺化度为80%时,聚合物膜在80 oC出现溶胀突变,显著丧失力学强度。磺化度为70%的产物在90 oC也没出现溶胀,但其导电率偏低,为0.041 S/cm。磺化聚芳硫醚三苯基氧膦耐氧化性能虽好,但溶胀率仍然较高。
     通过将4-(4-羟基苯基)-2,3-二氮杂萘酮与二(4-氟苯)苯基氧膦和磺化二(4-氟苯)苯基氧膦单体共聚,制备了一系列磺化聚二氮杂萘酮醚三苯基氧膦。将二氮杂萘酮结构单元引入到产物结构中,形成强烈的分子间氢键,降低溶胀率。磺化聚二氮杂萘酮醚三苯基氧膦具有较低的溶胀率,并且其它性能良好。磺化度达100%时,其IEC为1.69 meq/g,在80oC下的溶胀率仅为19.5%,接近于Nafion 117的溶胀率(20%),而导电率达到0.19 S/cm,几乎为Nafion 117导电率的两倍。而前述IEC为1.60 meq/g的磺化聚芳硫醚三苯基氧膦在80oC下的溶胀率为70.1%,已经出现溶胀突变,显著丧失力学强度,其耐溶胀性能比磺化聚二氮杂萘酮醚三苯基氧膦差得多。与磺化聚二氮杂萘酮醚砜(酮)类似,磺化聚二氮杂萘酮醚三苯基氧膦具有很好的耐溶胀性能。
     结合上述硫醚基团的耐氧化性能和二氮杂萘酮基团的耐溶胀性能,设计并合成了既含硫醚又含二氮杂萘酮的二(4-苯基-2,3-二氮杂萘酮)硫醚单体,将其与磺化二(4-氟苯)苯基氧膦直接缩聚制备了磺化聚双二氮杂萘酮硫醚三苯基氧膦。作为对比,还合成了二(4-苯基-2,3-二氮杂萘酮)醚单体并制备了磺化聚双二氮杂萘酮醚三苯基氧膦。对比研究了其与磺化聚双二氮杂萘酮硫醚三苯基氧膦膜的耐氧化性能差异,并证实了后者具有更好的耐氧化性能。
     磺化聚双二氮杂萘酮硫醚三苯基氧膦与磺化聚双二氮杂萘酮醚三苯基氧膦的溶胀率在50oC以下随温度升高缓慢增加,此后略有降低,但基本平稳。两者溶胀性能好,形状稳定性高,80oC下的溶胀率很小,分别为6.6%和9.8%,这是由于其分子中都存在二氮杂萘酮结构单元,它与磺酸基上的氢原子之间形成了较强烈的氢键交联的缘故。与预期结果一致,磺化聚双二氮杂萘酮硫醚三苯基氧膦与磺化聚双二氮杂萘酮醚三苯基氧膦相比,前者耐氧化性能要好得多,这是由于前者硫醚基团在过氧化氢作用下氧化成了砜基,钝化了相连苯环的缘故。从分子设计着手,通过共聚将二氮杂萘酮单元和硫醚基团同时引入到产物中而制备的磺化聚双二氮杂萘酮硫醚三苯基氧膦既具有良好的耐氧化性能,又具有良好的溶胀性能,这为制备耐氧化又耐溶胀的质子交换膜材料提供了新思路。磺化聚双二氮杂萘酮硫醚三苯基氧膦与磺化聚双二氮杂萘酮醚三苯基氧膦的IEC分别为1.21和1.23 meq/g,质子导电率偏低,在80oC时分别为2.4×10-3 S/cm和7.0×10-3 S/cm,这一不足可通过提高IEC的方法改进。
     针对磺化聚芳硫醚三苯基氧膦具有良好的耐氧化性而耐溶胀性能不足的缺点,将二(4-氟苯)苯基氧膦、磺化二(4-氟苯)苯基氧膦和二巯基单体与2,2’-二(2-(4-氟苯基)苯并噁唑基)六氟丙烷共聚制备了含噁唑基团的磺化聚芳硫醚三苯基氧膦,将噁唑基团引入到产物结构中,从而与磺酸基形成氢键交联,减小溶胀。类似地,采用直接缩聚法制备了含腈基的磺化聚芳硫醚三苯基氧膦,将腈基引入到产物结构中,形成强烈的分子间相互作用,减小溶胀。
     含苯并噁唑基团的磺化聚芳硫醚三苯基氧膦的综合性能良好。IEC为1.68 meq/g的样品热失重5%的温度为391oC,玻璃化转变温度为277oC。80oC下的溶胀率和质子导电率分别为12.5%和0.13 S/cm。耐氧化性能良好,在50℃的Fenton试剂(3% H2O2 containing 2 ppm FeSO4)中开裂和完全溶解的时间分别为240和602分钟。
     含腈基的磺化聚芳硫醚三苯基氧膦的综合性能优良。IEC为1.56 meq/g的样品热失重5%的温度为374oC,玻璃化转变温度为241oC。80oC下的溶胀率和质子导电率分别为11.2%和0.13 S/cm。耐氧化性能良好,在60oC的Fenton试剂(3% H2O2 containing 2 ppm FeSO4)中开裂和完全溶解的时间分别为255和730分钟。
     TEM和AFM结果表明磺化聚合物膜具有亲水/疏水的微观相分离结构,它随着IEC的增加而变得更显著。IEC较高时,亲水相聚集增大,甚至形成连通性很好的质子传递通道,导电率因而较高,溶胀率也相对较大;但含二氮杂萘酮、苯并噁唑基团或腈基的磺化聚合物分子中存在强烈的分子间相互作用力,在IEC较高时溶胀率仍然较低。
     此外,上述三苯基氧膦磺酸质子交换膜结构中的氧磷基团具有良好的高温保湿能力和对无机纳米离子较强的吸附能力,可望在高温PEM和无机掺杂复合PEM领域中应用。
Proton exchange membrane (PEM) is one of the key components of proton exchange membrane fuel cells (PEMFC). At present, Nafion is the state-of-the-art PEM. However, it shows some drawbacks such as low conductivity at high temperatures or low humidity, high methanol permeability, and expensive cost, which impede its broad applications. Therefore, great efforts have been made to develop non-fluorinated aromatic polymer PEM with excellent overall properties.
     The objective of this dissertation aims at the shortcomings of aromatic polymer proton exchange membranes, i.e., the poor oxidative stability and high swelling at high ion exchange capacity (IEC). A series of triphenyl phosphine oxide-containing PEM were designed and prepared according to our previous studies related to the oxidative stability and swelling of PEM. At the same time, the relationship between the structure and the properties was investigated in detail. The comparison studies of oxidative stability between sulfonated poly(arylene ether phosphine oxide)s and sulfonated poly(arylene thioether phosphine oxide)s demonstrated that the latter showed much better resistance to oxidation, and the reason was expounded; The triphenyl phosphine oxide-containing PEM with low swelling was prepared by incorporation of phthalazinone units; Finally, the triphenyl phosphine oxide based PEM, with low swelling as well as high oxidative stability, was synthesized by introduction of functional groups. The detailed content is narrated as follows.
     Bis(4-fluorophenyl)phenyl phosphine oxide (BFPPO) was synthesized by Grignard reaction, and sulfonated bis(4-fluorophenyl)phenyl phosphine oxide (sBFPPO) was prepared by sulfonation of BFPPO.
     A series of sulfonated poly(arylene thioether/ether phosphine oxide)s was prepared by direct polycondensation of sBFPPO and BFPPO with the diphenol-type or dimercapto-type monomers such as hydroquinone (HQ), bisphenol-A (Bis A), 4,4’-biphenol (BP), 4,4’-(Hexafluoroisopropylidene)diphenol (6F), 1,5-dihydroxynaphthalene (NA), 4,4’-dihydroxybiphenyl (DB), and 4,4’-thiobisbenzenethiol (TB), respectively. The structural effect of the diphenol-type or dimercapto-type monomers on the properties of the products was investigated. Sulfonated poly(arylene ether phosphine oxide)s derived from Bis A and NA show the worst oxidative stability among the products because the former possess theα-H with low bond strength and the latter have naphthalene rings with low energy of conjugation. In contrast, sulfonated poly(arylene ether phosphine oxide)s derived from HQ, BP, Bis F, and DB indicate better oxidation stability than the products from Bis A and NA. The structure of sulfonated poly(arylene ether phosphine oxide)s from DB is similar to that of sulfonated poly(arylene thioether phosphine oxide)s (sPATPO) from TB. The latter could be regarded as the“product”of the former provided that the ether unit of the former was replaced by the thioether unit. The studies illustrated that the latter exhibited much better oxidative stability than the former. This is due to the fact that the thioether unit of the former was oxidized into the sulfone or sulfoxide unit in Fenton reagent, which inactivated the adjacent benzene rings and thus retarded the degradation reaction (addition reaction). Similar to sulfonated poly(arylene thioether sulfone/ketone)s, sulfonated poly(arylene thioether phosphine oxide)s denote better oxidative stability than sulfonated poly(arylene ether phosphine oxide)s.
     A series of sulfonated poly(arylene thioether phosphine oxide)s (sPATPO) with various degrees of sulfonation was prepared by polycondensation of 4,4’-thiobisbenzenethiol with the mixture of sBFPPO and BFPPO at different ratios. The effect of IEC on the properties of the products was studied. The investigations demonstrated that the Td5 of the products decreased with increasing IEC and that the molecular weight, Tg, water uptake and swelling as well as proton conductivity of the products enhanced with the increase of IEC. The membranes with the sulfonation degrees of 90% and 100% show an abrupt swelling at 70 oC while the membrane with the sulfonation degrees of 80% indicates a sharp swelling at 80 oC, losing most of the mechanical strength. The membrane with a sulfonation degree of 70% exhibits no abrupt swelling even at 90 oC but a low conductivity of 0.041 S/cm. Therefore, sulfonated poly(arylene thioether phosphine oxide)s with high IEC denote excellent oxidative stability but high swelling.
     A series of sulfonated poly(phthalazinone ether phosphine oxide)s (sPPEPO) were prepared via polycondensation of 4-(4-hydroxyphenyl) phthalazinone with sBFPPO and BFPPO. The incorporation of phthalazinone units into the backbone leads to forming the powerful intermolecular H-bonds, decreasing the swelling of the products. sPPEPO show low swelling as well as other excellent properties. sPPEPO with a sulfonation degree of 100% exhibit a IEC of 1.69 meq/g and a swelling of 19.5% at 80oC, which are close to that (20%) of Nafion 117. Moreover, sPPEPO indicates a conductivity of 0.19 S/cm at 80oC, two times higher than that of Nafion 117. On the contrary, sulfonated poly(arylene thioether phosphine oxide)s, with a IEC of 1.60 meq/g, even denote a swelling of 70.1% at 80oC and thus lose most of the mechanical strength. Thus sPPEPO shows much lower swelling than sPATPO.
     In order to combine the excellent oxidative stability of thioether units and the dimensional stability of phthalainone units, bis(4-phenyl-2,3-phthalinone)thioether with both the thioether group and the phthalainone group was designed and synthesized, and sulfonated poly(diphthalazinone thioether phosphine oxide)s (sPDTPO) were prepared by direct polycondensation of bis(4-phenyl-2,3-phthalinone) -thioether and sBFPPO. For comparison, bis(4-phenyl-2,3-phthalinone)ether and sulfonated poly(diphthalazinone ether phosphine oxide)s (sPDEPO) were also prepared. The difference of the oxidative stability between sPDEPO and sPDTPO was studied, the results demonstrated that the latter show better oxidation stability than the former.
     The swelling of sPDTPO and sPDEPO increases with increasing temperature at the temperatures lower than 50 oC, then decreases slightly and remains steady. They show a low swelling of 6.6% and 9.8%, respectively. This is due to the fact that the phthalainone groups and sulfonic acid groups form the powerful intermolecular H-bonds. As expected, sPDTPO exhibit better oxidative stability than sPDEPO because the thioether unit was oxidized into the sulfone unit, which inactivates the adjacent benzene rings. From the viewpoint of molecular design, the thioether group and phthalainone group were introduced into the main chain of sPDTPO, endowing them with excellent oxidative stability and low swelling. This provides an idea for preparation of PEM with oxidative stability as well as low swelling. sPDTPO and sPDEPO have a IEC of 1.21 and 1.23 meq/g, while they indicate a conductivity of 2.4×10-3 and 7.0×10-3 S/cm, respectively. The low conductivity of sPDTPO could be improved by increasing IEC in the future work.
     In order to decrease the swelling of the family of sPATPO and still remain their oxidative stability, sPATPO containing benzoxazole groups (sPATPO-bo) were prepared by polycondensation of 2,2’-bis(2-(4-fulorophenyl)benzoxazole) -hexafuloropropane and sBFPPO with the dimercapto-type monomers . The benzoxazole unit was incorporated into the backbone of the products by polycondensation in order to produce the intermolecular H-bonds between the benzoxazole and sulfonic acid group, which made the products possess low swelling. Similarly, sPATPO containing nitrile groups (sPATPO-cn) were prepared by polycondensation of 2,6-difluorobenzonitrile and sBFPPO with 4,4’-thiobisbenzenethiol. The nitrile group was attached onto the main chain of the products, leading to form the powerful intermolecular interaction in the products and provide the products with low swelling.
     sPATPO-bo have excellent overall properties. sPATPO-bo with a IEC of 1.68 meq/g shows a T5d of 399 oC, a Tg of 277 oC, while it indicates a swelling of 12.5% and a conductivity of 0.13 S/cm at 80oC. Moreover, its membrane exhibits excellent oxidative stability, which starts to break into pieces after immersing in Fenton reagent for 240 min and completely dissolved after immersing in Fenton reagent for 602 min.
     sPATPO-cn exhibit excellent overall properties. sPATPO-cn with a IEC of 1.56 meq/g exhibits a T5d of 374 oC, a Tg of 241 oC and a swelling of 11.2% as well as a conductivity of 0.13 S/cm at 80oC. Besides, its membrane indicates excellent oxidative stability, which starts to break into pieces after immersing in Fenton reagent for 255 min and completely dissolved after immersing in Fenton reagent for 730 min.
     The results of TEM and AFM demonstrated that the above PEM show a nanophase separation morphology, which is composed of the hydrophilic and hydrophobic domains. The nanophase separation becomes more and more obvious with increasing IEC. The hydrophilic domains aggregate to form large domains and even to produce well connected proton channels as the IEC rises, often leading to high conductivity but high swelling. However, for the above-mentioned PEM containing phthalainone groups, benzoxazole groups, or nitrile groups, the swelling is still low at high IEC due to the powerful intermolecular interaction.
     Besides, the triphenyl phosphine oxide-containing PEM show excellent water retention at high temperatures and strong adhesion with inorganic particles, suggesting a good prospect in high temperature PEM and inorganic doped PEM.
引文
1衣宝廉,燃料电池——高效、环境友好的发电方式,北京,化学工业出版社, 2001
    2黄镇江,燃料电池及其应用,北京,电子工业出版社, 2005, 1-6
    3毛宗强,燃料电池,北京,化学工业出版社, 2005, 1-3
    4黄镇江,燃料电池及其应用,北京,电子工业出版社, 2005, 9-10
    5 Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 2000, 25, 1463-1502
    6王晓丽,质子交换膜燃料电池膜电极结构研究,博士学位论文,大连,中国科学院大连化学物理研究所,2006
    7 Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; et al. Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 2004, 104, 4587-4612
    8 Masanobu, W.; Omourtag, A. V.; Supramaniam, S. Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica.Acta. 1995, 40(3), 335-344
    9 Srinivasan, S.; Manko, D. J.; Koch, H.; et al. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, Journal of Power Sources, 1990, 29, 367-387
    10刘晨光,用于质子交换膜的磺化聚醚醚酮的合成和性能研究,博士学位论文,吉林,吉林大学, 2005
    11 Bai, Z. W.; Durstock, M. F.; Dang, T. D. Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells, J. Membr. Sci. 2006, 281, 508-516
    12卢婷利,燃料电池质子交换膜的研究,硕士学位论文,西安,西北工业大学, 2001
    13 Prater, K. The renaissance of the solid polymer fuel cell, Journal of Power Sources, 1990, 29,239-250
    14 Harrison, W. L. Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: candidates for proton exchange membrane fuel cells, Dissertation, Virginia, Virginia polytechnic institute and state university, 2002
    15 Savadogo, O. Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications, Journal of Power Sources, 2004, 127, 135-161
    16 Bahar, B.; Hobson, A. R.; Kolde, J. A.; et al. Ultra-thin integral composite membrane. US P 5 547 551, 1996
    17 Ma, Z. Q.; Cheng, P.; Zhao, T. S. A palladium-alloy deposited Nafion membrane for direct methanol fuel cells, J. Membr. Sci. 2003, 215, 327-336
    18 Yang, C.; Srinivasan, S.; Bocarsly, A. B.; et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes, J. Membr. Sci. 2004, 237, 145-161
    19 Costamagna, P.; Yang, C.; Bocarsly, A. B.; et al. Nafion? 115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃, Electrochimica Acta, 2002,47, 1023-1033
    20 Yang, C.; Srinivasan, S.; Arico, A. S. Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochemical and Solid-State Letters, 2001, 4, A31-A34
    21 Park, K. T.; Jung, U. H.; Choi, D. W.; et al. ZrO2-SiO2/Nafion? composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity, Journal of Power Sources, 2008, 177, 247-253
    22 Yen, C. Y.; Lee, C. H.; Lin, Y. F. Sol-gel derived sulfonated-silica/Nafion? composite membrane for direct methanol fuel cell, Journal of Power Sources, 2007, 173, 36-44
    23 Yu, J.; Pan, M.; Yuan, R. Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell, Journal of Wuhan University of Technology, Materials Science Edition, 2007, 22, 478-481
    24 Malhotra, S.; Datta, R. Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, Journal of the Electrochemical society, 1997, 144, L23-L26
    25 Xu, H.; Wu, M.; Liu, Y. Durability of Nafion?-Teflon?- phosphotungstic acid composite membranes in PEM fuel cells at 100°C and 25% RH , ECS Transaction, 2006, 3, 561-568
    26 Ramani, V.; Kunz, H. R.; Fenton, J. M. Effect of particle size reduction on the conductivity of Nafion?/phosphotungstic acid composite membranes, J. Membr. Sci. 2005, 266, 110-114
    27 Li, X.; Roberts, E. P. L.; Homes, S. M. Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells, Solid State Ionics, 2007, 178, 1248-1255
    28 Chen, Z.; Holmberg, B.; Li, W. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell, Chemistry of Materials, 2006, 18, 5669-5675
    29 Tricoli, V.; Nannetti, F. Zeolite-Nafion composites as ion conducting membrane materials, Electrochimica Acta, 2003, 48, 2625-2633
    30 Tazi, B.; Savadogo, O. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion, silicotungstic acid and thiophene, Electrochimica Acta, 2000, 45, 4239-4339
    31 Hele, M.; Viswanathan, B.; Murthy, S. S. Synthesis and characterization of composite membranes based onα-zirconium phosphate and silicotungstic acid, Applied Catalyst A: General, 2007, 321, 71-78
    32 Tian, H.; Savadogo, O. Silicotungstic acid Nafion composite membrane for proton-exchange membrane fuel cell operation at high temperature, Journal of New Materials for Electrochemical System, 2006, 9, 61-71
    33 Hodgdon, R. B.; Enos. J. F.; Aiken. E. J. Sulfonated polymers of alpha, beta-trifluoro- stryene, with applications to structures and cells. US P 3 341 366, 1967
    34 Charles, S.; Alfred, E. S.; Robert. D. L. Substitued trifluorostyrene compositions, US P 5 602 185, 1997
    35于景荣,邢丹敏,刘富强等,燃料电池用质子交换膜的研究进展,电化学, 2001, 7, 385-395
    36 Hietala, S.; Skou, E.; Sundholm, F. Gas permeation properties of radiation grafted and sulfonated poly-(vinylidene fluoride) membranes, Polymer, 1999, 40, 5567-5573
    37 Hietala, S.; Koel, M.; Skou, E.; et al. Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride), Journal of Materials Chemistry, 1998, 8, 1127-1132
    38 Lehtinen, T.; Sundholm, F.; Holmberg, S.; et al. Electrochemical characterization of PVDF-based proton conducting membranes for fuel cell, Electrochimica Acta, 1998, 43, 1881-1890
    39 Huang, H. S.; Chen, C. Y.; Lo, S. C.; et al. Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM, Applied Surface Science, 2006, 253, 2685-2689
    40 Mokrini, A.; Huneault, M. A.; Gerard, P. Partially fluorinated proton exchange membranes based on PVDF-SEBS blends compatibilized with methylmethacrylate block copolymers, J. Membr. Sci. 2006, 283, 74-83
    41 Boysen, D. A.; Chisholm, C. R. I.; Haile, S. M.; et al. Polymer solid acid composite membranes for fuel-cell applications, Journal of the Electrochemical Society, 2000, 147, 3610-3613
    42 Shen, Y.; Qiu, X.; Shen, J.; et al. PVDF-g-PSSA and Al2O3 composite proton exchange membranes, Journal of Power Sources, 2006, 161, 54-60
    43 Shen, J.; Xi, J.; Zhu, W.; et al. A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells, Journal of Power Sources, 2006, 159, 894-899
    44 Miyatake, K.; Hay, A. Synthesis and properties of poly (arylene ether)s bearing sulfonic acid groups on pendant phenyl rings, Journal of Polymer Science, Part A: Polymer Chemistry, 2001, 39, 3211-3217
    45 Adams, B.; Holms, E. Absorptive properties of synthetic resins, J. Soc. Chem. Ind., 1935, 54, 1T-6T
    46 D’Alelio, G. Process for removing cations from liquid media, US P 2 340 110, 1944
    47 D’Alelio, G. Ion-exchange resins containing quaternary ammonium hydroxide groups, US P 2 697 079, 1954
    48 Ehremberg, S. G.; Serpico, J. M.; Wnek, G. E.; et al. Fuel cell incorporating novel ion-conducting membrane, US P 5 468 574, 1995
    49 Wnek, G. E.; Rider, J. N.; Serpico, J. M. et al. New hydrocarbon proton exchange membranes based on sulfonted styrene-ethlene/butylenes-stylene triblock coplymers. Proc. of the first Int. Symp. on Proton Cond. membr. Fuel Cell. 1997, 95-23: 247-251
    50 Liu, B.; Robertson, G. P.; Kim, D. S. Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes, Macromolecules, 2007, 40, 1934-1944
    51 Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J. Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: Synthesis and physical properties of a novel polyelectrolyte, Macromolecules, 2005, 38, 5010-5016
    52 Alberti, G.; Casciola, M.; Massinelli, L.; et al. Polymeric proton conducting membranes for medium temperature fuel cells (110–160℃), J. Membr. Sci. 2001, 185, 73-81
    53 Xing, P. X.; Robertson, G. P.; Guiver, M. D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 2004, 229, 95-106
    54 Wang, F.; Chen, T. L.; Xu, J. P. Sodium sulfonate-functionalized poly(ether ether ketone)s, Macro. Chem. Phys., 1998, 199, 1421-1426
    55 Wang, F.; Li, J. K.; Chen, T. L. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics, Polymer, 1999, 40, 795-799
    56 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials, Journal ofPolymer Science, Part A: Polymer Chemistry, 2003, 41, 2731-2742
    57 Roberson, L. M.; Matzner, M. Flame retardant polyarylate compositions, US P 4 380 598, 1983
    58 Ueda, M.; Toyota, H.; Ochi, T.; et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups, Journal of Polymer Science, Part A: Polymer Chemistry, 1993, 31, 853-858
    59 Quentin, J. P. Sulfonated poly(aryl ether sulfone)s, US P 3 709 841, 1973
    60 Xing, D.; Kerres, J. Improved performance of sulfonated polyarylene ethers fro proton exchange membrane fuel cells, Polym. Adv. Technol. 2006, 17, 591-597
    61 Ueda, M.; Toyota, H.; Ochi, T.; et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups, Journal of Polymer Science, Part A: Polymer Chemistry, 1993, 31, 853-85
    62 Lee, J.; Marvel, C. S. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines, Journal of Polymer Science, Part A: Polymer Chemistry, 1984, 22, 295-301
    63 Wang, F.; Chen, T.; Xu, J. Sodium sulfonate-functionalized poly(ether ether ketone)s,Macromol. Chem. Phys. 1998, 199, 1421-1426
    64 Wang, F.; Chen, T.; Xu, J. Synthesis of poly(ether ether ketone) containing sodium sulfone groups as gas dehumidification membrane material, Macromol. Rapid Commun. 1998, 19, 135-137
    65 Wang, F.; Li, J.; Chen, T.; et al. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics, Polymer, 1999, 40, 795-799
    66 Liu, S.; Wang, F.; Chen, T. Synthesis of poly(ether ether ketone)s with high content of sodium sulfonate groups as gas dehumidification membrane materials, Macromol. Rapid Commun. 2001, 22, 579-582
    67肖谷雨,燃料电池用新型非氟质子交换膜材料的制备与表征,博士学位论文,上海,上海交通大学,2002
    68 Lee, J. K.; Kerrres, J. Synthesis and characterization of sulfonated poly (arylene thioether)s and their blends with polybenzimidazole for proton exchange membrane, J. Membr. Sci. 2007, 294, 75-83
    69 Genies, C.; Mercier, R.; Sillion, B.; et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium, Polymer, 2001, 42, 5097-5105
    70 Genies, C.; Mercier, R.; Sillion, B.; et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer, 2001, 42, 359-373
    71 Vallejo, E.; Pourcelly, G.; Gavach, C.; et al. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane, J. Membr. Sci. 1999, 160, 127-137
    72 Fang, J. H.; Guo, X. X.; Harada, S. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4¢-Diaminodiphenyl Ether-2,2¢-disulfonic Acid, Macromolecules, 2002, 35, 9022-9028
    73 Yin, Y.; Fang, J. H.; Cui, Y. F. Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2′,4′-diaminophenoxy)propane sulfonic acid,Polymer, 2003, 44, 4509-4518
    74 Zhang, Y.; Lilf, M.; Savinell, R. F.; et al. Molecular design of polyimides toward high proton conducting materials, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 2000, 41, 1561-1562
    75 Zhang, Y.; Lilf, M.; Savinell, R. F.; et al. Molecular design considerations in the synthesis of high conductivity PEMs for fuel cells, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 1999, 40, 480-481
    76 Xiao, G.; Sun, G.; Yan, D.; et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43, 5335-5339
    77 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    78 Roziere, J.; Jones, D. J.; Marrony, M.; et al. On the doping of sulfonated polybenzimidazole with strong bases, Solid State Ionics, 2001, 145, 61-68
    79 Samms, S. R.; Wasmus, S.; Savinell, R. F. Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments, J. Electrochem. Soc. 1996, 43, 1225-1232
    80 David, M.; Hans, G.; Oscar, M.; et al. Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes, Chem. Mater. 2004, 16, 604-607
    81 He, R.; Li, Q.; Jensen, J. O.; et al. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, Journal of Polymer Science, Part A: Polymer Chemistry, 2007, 45, 2989-2997
    82 Kim, J. H.; Kim, H. J.; Lim, T. H.; et al. Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer, Journal of Power Sources, 2007, 170, 275-280
    83 Kongstein, O. E.; Berning, T.; Borresen, B.; et al. Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes, Energy, 2007, 32, 418-422
    84 Qing, F. L.; Hjuler, H. A.; Bjerrum, N. J. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications, Journal of Applied Electrochemistry, 2001, 31, 773-779
    85 Powers, E. J.; Serad, G. A. High performance polymers: their origin and development, Elsevier, Amsterdam, 1986, 355
    86 Kawahara, M.; Rikukawa, M.; Sannui, K. Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole), Polymer for Advanced Technologies, 2000, 11, 544-547
    87 Gieselman, M. B.; Reynolds, J. R. Water-soluble polybenzimidazole-based polyelectrolytes, Macromolecules, 1992, 25, 4832-4834
    88 Glipa, X.; Haddad, M. E.; Jones, D. J.; et al. Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer, Solid State Ionics, 1997, 97, 323-331
    89 Qing, S. B.; Huang, W.; Yan, D. Y. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles obtained from 3,3 '-disulfonyl-4,4'-dicarboxyldiphenylsulfone, Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43, 4363-4372
    90 Einsla, B. R.; Kim, Y. L.; Tchatchoua, C.; et al. Disulfonated polybenzoxazoles for proton exchange membrane fuel cell applications, Polym. Prepr. 2003, 44, 645-646
    91 Kim, S.; Donald, A. C.; Youngkwan, L.; et al. Aromatic and rigid rod polyelectrolytes based on sulfonated poly (benzobisthiazoles), Journal of Polymer Science, Part A: Polymer Chemistry, 1996, 34, 481-492
    92 Shang, X. Y.; Shu, D.; Wang, S. J. et al. Fluorene-containing sulfonated poly(arylene ether 1,3,4-oxadiazole) as proton-exchange membrane for PEM fuel cell application, J. Membr. Sci. 2007, 291, 140-147
    93 Gomes, D.; Roeder, J.; Ponce, M. L. Characterization of partially sulfonated polyoxadiazoles and oxadiazole–triazole copolymers, J. Membr. Sci. 2007, 295, 121-129
    94 Guo, Q. H.; Pintauro, P. N.; Tang, H.; et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J. Membr. Sci. 1999, 154, 175-181
    95 Wycisk, R.; Pintauro, P. N. Sulfonated polyphosphazene ion-exchange membranes, J. Membr. Sci. 1996, 119, 155-160
    96 Tang, H.; Pintauro, P. N.; Guo, Q. Polyphosphazene Membranes. III. Solid-State Characterization and Properties of Sulfonated Poly[bis(3-methylphenoxy)phosphazene], Journal of Applied Polymer Science, 1999, 71, 387-399
    97 Hofmann, M. A.; Ambler, C. M.; Maher, A. E.; et al. Synthesis of polyphosphazenes with sulfonimide side groups, Macromolecules, 2002, 35, 6490-6493
    98 Noto, V. D.; Vitttadello, M. Two new siloxanic proton-conducting membranes Part I. Synthesis and structural characterization, Electrochimica Acta, 2005, 50, 3998-4006
    99 Liang, W. J.; Wu, C. P.; Hsu, C. Y.; Synthesis, characterization, and proton-conducting properties of organic-inorganic hybrid membranes based on polysiloxane zwitterionomer, Journal of Polymer Science, Part A: Polymer Chemistry, 2006, 44, 3444-3453
    100 Kopitzke, R. W.; Linkous, C. A.; Nelson, G. L. Sulfonation of a poly (phenylquinoxaline) film, Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36, 1197-1199
    101 Kosamala, B.; Schauer, J. Ion-exchange membranes prepared by blending sulfonated poly (2,6-dimithyl-1,4-phenylene oxide) with polybenzimidazole, Journal of Applied Polymer Science, 2002, 85, 1187-1127
    102 Kobaya, T.; Rikukawa, M.; Sanui, K.; et al. Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoly-1,4- phenlene), Solid State Ionics, 1998, 106, 219-225
    103 Vargas, R. A.; Zapata, V. H.; Matallana, E.; et al. More thermal studies on the PVOH/H3PO2/H2O solid proton conductor gels, Electrochimica Acta, 2001, 46, 1699-1702
    104 Honma, I.; Hirakawa, S.; Yamada, K.; et al. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes, Solid State Ionics, 1999, 118, 29-36
    105 Zaidi, S. M.; Mikhailenko, S. D.; Robertson, G. P.; et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 2000, 173, 17-34
    106 Hasiotis, C.; Deimeda, V.; Kontoyannis, C. New polymer electrolytes based on blends ofsulfonated polysulfones with polybenzimidazole, Electrochimica Acta, 2001, 46, 2401-2406
    107 Wu, H.; Zheng, B.; Zheng, X. H.; et al. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell, Journal of Power Sources, 2007, 173, 842-852
    108 Haufe, S.; Stimming, U. Proton conducting membranes based on electrolyte filled microporous matrices, J. Membr. Sci. 2001, 185, 95-103
    109 Bocchetta, P.; Chiavarotti, G.; Masi, R.; et al. Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures, Electrochemistry Communications, 2004, 6, 923–928
    110 Xing, D. M.; Yi, B. L.; Liu, F. Q.; et al. Characterization of Sulfonated Poly(Ether Ether Ketone)/Polytetrafluoroethylene Composite Membranes for Fuel Cell Applications, Fuel Cell, 2005, 3, 406-411
    111 Flint, S. D.; Slade, R. C. T. Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells, Solid State Ionics, 1997, 97, 299-307
    112 Zhang, L.; Mukerjee, S. Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application, Journal of the Electrochemical Society, 2006, 153, A 1062-A 1072
    113 Hübner, G.;Roduner, E. EPR investigation of HO·radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, Journal of Materials Chemistry, 1999, 9, 409- 418
    114 Li, Q. F.; He, R. H.; Jensen, J. O.; et al. Approaches and Recent Development of Polymer Electrolyte Membrane for Fuel Cells Operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    115 Roziere, J.; Joens, D. J. Non-Flurorinated Polymer Materials for Proton Exchange Membrane Fuel Cells, Annu. Rev. Mater. Res. 2003, 33, 503–555
    116 Besse, S.; Capron, P.; Diat, O.; et al. Sulfonated Polyimides for Fuel Cell Electrode Membrane Assemblies (EMA), J. New Mater. Electrochem.Syst. 2002, 5, 109-112
    117 Soczka, G. T.; Baurmeister, J.; Frank, G.; et al. Non-fluorinated polymer materials for proton exchange membrane, Patent No. 99/29763
    118 Aoki, M.; Chikashige, Y.; Miyatake, K; et al. Durability of novel sulfonated poly (arylene ether) membrane in PEFC operation, Electrochem. Commun. 2006, 8, 1412-1416
    119 Li, Q.; He, R.; Jensen, J. O.; et al. PBI-Based Polymer Membranes for High Temperature Fuel Cells-Preparation, Characterization and Fuel Cell Demonstration, Fuel Cell, 2004, 4, 147-159
    120 Qiu, Z. M.; Wu, S. Q.; Li, Z. Y.; et al. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes, Macromolecules, 2006, 39, 6425-6432
    121 Miyatake, K. J.; Zhou, H.; Watanabe, M. Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups: Synthesis, Properties, and Branching Effect, Macromolecules, 2004, 37, 4956-4960
    122 Miyatake, K.; Oyaizu, K.; Tsuchida, E.; et al. Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers, Macromolecules, 2001, 34,2065-2071
    123 Gao, Y.; Robertson, G. P.; Guvier, M. D.; et al. Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials, Macromolecules, 2004, 37, 6748-6754
    124 Keeuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 2001, 185, 29-39
    125 Dai, C. A.; Liu, C. P.; Lee, Y. H.; et al. Fabrication of novel proton exchange membranes for DMFC via UV curing, Journal of Power Sources, 2008, 177, 262-272
    126 Jang, I. Y.; Kweon, O. H.; Kim, K. E.; et al. Covalently cross-linked sulfonated poly(ether ether ketone)/tungstophosphoric acid composite membranes for water electrolysis application, Journal of Power Sources, 2008, 181, 127-134
    127 Chen, J. H.; Asano, M.; Yamaki, T.; et al. Effect of Crosslinkers on the Preparation and Properties of ETFE-Based Radiation-Grafted Polymer Electrolyte Membranes, J Appl Polym Sci 2006, 100, 4565-4574
    128 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    129 Lin, J.C.; Fenton, J. M.; Kunz, H. R.; et al. Electrochem. Soc. Meeting Abstr. 2000, 2000-2, Abstract 238
    130 Buchi, F. N.; Gupta, B.; Hass, O.; et al. Performance of differently cross-linked, partially fluorinated proton exchange membranes in polymer electrolyte fuel cells, J. Electrochem. Soc. 1995, 142, 3044-3048
    131 Tsurumaki, S. Annual ReView of NEDO R&D for Fuel Cells and Hydrogen Technology, NEDO: Tokyo, 2006
    132 Shen, L. P.; Xiao, G. Y.; Yan, D. Y. et al. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s, Polymer Bulletin, 2005, 54, 57-64
    133 Li, J. H.; Yu, H. Y.; Synthesis and Characterization of Sulfonated Poly(benzoxazole ether ketone)s by Direct Copolymerization as Novel Polymers for Proton-Exchange Membranes J Polym Sci Part A: Polym Chem. 2007, 45, 2273-2286
    134 Kerres, J.; Zhang, W.; Cui, W. New Sulfonated Engineering Polymers via the Metalation Route. II. Sulfinated/Sulfonated Poly (ether sulfone) PSU Udel and Its Crosslinking, J Polym Sci A: Polym Chem 1998, 36, 1441–1448
    135 Kerres, J.; Cui, W.; Junginger, M. Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes, J. Membr. Sci. 1998, 139, 227-241
    136 Kerres, J.; Zhang, W.; Haering, T. Covalently Cross-Linked Ionomer (Blend) Membranes for Fuel Cells, J. New. Mat. Electrochem. Systems, 2004, 7, 299-309
    137 Zhang, W.; Gogel, V.; Friedrich, K. A.; et al. Novel covalently cross-linked poly(etheretherketone) ionomer membranes, Journal of Power Sources, 2006, 155, 3–12
    138 Mikhailenko, S. D.; Wang, K. P.; Kaliaguine, S.; et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), J. Membr. Sci. 2004,233, 93-99
    139 Zhong, S. L.; Cui, X. J.; Cai, H. L.; et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications, Journal of Power Sources, 2007, 164, 65-72
    140 Kerres, J. A. Development of ionomer membranes for fuel cells, J. Membr. Sci. 2001, 185, 3-27
    141 Kerres, J.; Ullrich, A.; Meier, F.; et al. Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125, 243-249
    142 Sumner, M. J.; Harrison, W. L.; Weyers, R. M.; et al. Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles, J. Membr. Sci. 2004, 239, 199-211
    143 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 2006, 47, 808-816
    144 Pang, J. H.; Zhang, H. B.; Li, X. F.; et al. Low Water Swelling and High Proton Conducting Sulfonated Poly(arylene ether) with Pendant Sulfoalkyl Groups for Proton Exchange Membranes, Macromol. Rapid Commun. 2007, 28, 2332-2338
    145 Yang, Y. S.; Shi, Z. Q.; Holdcroft, S. Synthesis of poly[arylene ether sulfone-b-vinylidene fluoride block copolymers, European Polymer Journal, 2004, 40, 531-541
    146 Yang, Y.; Holdcroft, S. Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes, Fuel Cells, 2005, 5, 171-186
    147 Yang, Y. S.; Shi, Z. Q.; Holdcroft, S. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes, Macromolecules, 2004, 37, 1678-1681
    148 Ding, J.; Chuy, C.; Holdcroft, S. Enhanced conductivity in morphologically controlled proton exchange membrane: synthesis on macromonomers by SFRP and their incorporation into graft polymers, Macromolecules, 2002, 35, 1348-1355
    149 Ding, J.; Tang, Q.; Holdcroft, S. Morphologically controlled proton-conducting membranes using graft polymers possessing block copolymer graft chains, Australian Journal of Chemistry, 2002, 55, 461-466
    1 Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 2000, 25, 1463-1502
    2 Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; et al. Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 2004, 104, 4587-4612
    3 Kerres, J. A. Development of ionomer membranes for fuel cells, J. Membr. Sci. 2001, 185, 3-27
    4 Rozière, J.; Jones, D. J. Non-fluorinated polymer materials for proton exchange membrane fuel cells, Rev Mater Res, 2003, 33, 503-555
    5 Li, Q.; He, R.; Jensen, J. O.; et al. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100℃, Chem Mater, 2003, 15, 4896-4915
    6 Savadogo, O. Emerging membranes for electrochemical systems Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications, Journal of Power Sources, 2004, 127, 135-161
    7 Chen, Y.; Meng, Y.; Wang, S.; et al. Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application, J Membr Sci, 2006, 280, 433-441
    8 Yin, Y.; Hayashi, S.; Yamada, O.; et al. Macromol Rapid Commun, Branched/Crosslinked Sulfonated Polyimide Membranes for Polymer Electrolyte Fuel Cells, 2005, 26, 696-700
    9 Liu, B.; Robertson, G. P.; Kim, D. S. Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes, Macromolecules, 2007, 40, 1934-1944
    10 Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J. Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: Synthesis and physical properties of a novel polyelectrolyte, Macromolecules, 2005, 38, 5010-5016
    11 Alberti, G.; Casciola, M.; Massinelli, L.; et al. Polymeric proton conducting membranes for medium temperature fuel cells (110–160℃), J. Membr. Sci. 2001, 185, 73-81
    12 Xing, P. X.; Robertson, G. P.; Guiver, M. D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 2004, 229, 95-106
    13 Bauer, B.; Jones, D. J.; Rozière, J. Electrochemical characterisation of sulfonated polyetherketone membranes, Journal of New Materials for Electrochemical Systems, 2000, 3, 93-98
    14 Robertson, G. P.; Mikhailenko, S. D.; Wang, K. P. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, J. Membr. Sci. 2003, 219, 113-121
    15 Wang, F.; Chen, T. L.; Xu, J. P. Sodium sulfonate-functionalized poly(ether ether ketone)s, Macro. Chem. Phys., 1998, 199, 1421-1426
    16 Wang, F.; Li, J. K.; Chen, T. L. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics, Polymer, 1999, 40, 795-799
    17 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials, Journal ofPolymer Science, Part A: Polymer Chemistry, 2003, 41, 2731-2742
    18 Bosnjakovic, A.; Schlick, S. Nafion perfluorinated membranes treated in fenton media: radical species detected by ESR spectroscopy, J. Phys. Chem. B 2004, 108, 4332–4337
    19 Curtin, D. E.; Lousenberg, R. D.; Henry, T. J.; et al. Advanced materials for improved PEMFC performance and life, J. Power Sources, 2004, 131,41–48
    20 Hübner, G.;Roduner, E. EPR investigation of HO·radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, Journal of Materials Chemistry, 1999, 9, 409- 418
    21 Büchi, F. N.; Gupta, B.; Haas, O.; et al. Study on radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells, Electrochimica Acta, 1995, 40, 345-353
    22 Mitov, S.; Vogel, B.; Roduner, E.; et al. Preparation and characterization of stable ionomers and ionomer membranes for fuel cells, Fuel Cells, 2006, 6, 413-424
    23 Zhang, L.; Mukerjee, S. Investigation of Durability Issues of Selected Nonfluorinated Proton Exchange Membranes for Fuel Cell Application, Journal of the Electrochemical Society, 2006, 153, A 1062-A 1072
    24化工部合成材料研究院抗氧剂,聚合物防老化实用手册,北京:化学工业出版社,1999
    25 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    26 Li, X. F.; Zhao, C. J.; Lu, H., et al. Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application, Polymer, 2005, 46, 5820-5827
    27 Manea, C.; Mulder, M. Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membr. Sci, 2002, 206, 443-453
    28 Zawodzinski J.; Thomas A.; Springer, T. E.; et al. Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes, Journal of the Electrochemical society, 1993, 140, 1981-1985
    29 Wang, F.; Hickner, M.; Kim, Y. S. et al. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci. 2002, 197, 231-242
    30 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    31 Miyatake, K.; Chikashige, Y.; Watanabe, M. Novel Sulfonated Poly(arylene ether): A Proton Conductive Polymer Electrolyte Designed for Fuel Cells, Macromolecules, 2003, 36, 9691-9693
    32 Li, X. F.; Liu, C. P.; Lu, H.; et al. Preparation and characterization of sulfonated poly(ether ether ketoneketone) proton exchange membranes for fuel cell application, J. Membr. Sci. 2005, 255, 149-155
    33 Miyatake, K.; Chikashige, Y.; Higuchi, E.; et al. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications, J. Am. Chem. Soc. 2007, 129, 3879-3887
    34 Hickner, M. A.; Fujimoto, C. H.; Cornelius, C. J. Transport in sulfonated poly(phenylene)s: Proton conductivity, permeability, and the state of water, Polymer, 2006, 47, 4238-4244
    35 Kim, Y. S.; Wang, F.; Hickner, M.; et al. Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membrane for fuel-cell use above 100℃, J of Polym Sci Part B: Polym Phys.2003, 41, 2816-2828
    36 Kim, Y. S.; Dong, L. M.; Hickner, M. A.; et al. Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes, Polymer, 2003, 44, 5729-5736
    37 Choi, S. W.; Ohba, S.; Brunovska, Z.; et al. Synthesis, characterization and thermal degradation of functional benzoxazine monomers and polymers containing phenylphosphine oxide, Polymer Degradation and Stability, 2006, 91, 1166-1178
    38 Shobha, H. K.; Smalley, G. R.; Sankarapandian, M.; et al. Synthesis and characterization of sulfonated poly(arylene ether)s based on functionalized triphenyl phosphine oxide for proton exchange membranes, Polym. Prepr. 2000, 41, 180-181
    39 Shen, L. P.; Xiao, G. Y.; Yan, D. Y. et al. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s, Polymer Bulletin, 2005, 54, 57-64
    40 Xiao, G. Y.; Sun, G. M.; Yan, D. Y. Synthesis and characterization of novel sulfonated poly(arylene ether ketone)s derived from 4,4’-sulfonyldiphenol, Polymer Bulletin, 2002, 48, 309-315
    41 Li, Q. F.; He, R. H.; Oluf, J.; et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    42 Xing, P. X.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application, Macromolecules, 2004, 37, 7960-7967
    43 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 2006, 47, 808-816
    44 Xing, P. X.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes, J. Polym. Sci., Part A: Polym Chem. 2004, 42, 2866-2876
    45 Shobha, H. K.; Sankarapandian, M.; Glass, T. E.; et al. Sulfonated aromatic diamines as precursors for polyimides for proton exchange membranes, Polym. Prepr. 2000, 41, 1298-1299
    46 Gu, S.; He, G. H.; Wu, X. M.; et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC), J. Membr. Sci. 2006, 281, 121–129
    47 Gil, M.; Ji, X. L.; Li, X. F.; et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications, J. Membr. Sci. 2004, 234,75-81
    48 Wang, Z.; Ni, H. Z.; Zhao, C. J. et al. Influence of the hydroquinone with different pendant groups on physical and electrochemical behaviors of directly polymerized sulfonated poly(ether ether sulfone) copolymers for proton exchange membranes, J. Membr. Sci. 2006, 285, 239-248
    49 Yang, Y. S.; Shi, Z. Q.; Holdcroft, S. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes, Macromolecules, 2004, 37, 1678-1681
    1 Xing, P. X.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application, Macromolecules, 2004, 37, 7960-7967
    2 Zhong, S. L.; Cui, X. J.; Cai, H. L. et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications, Journal of Power Sources, 2007, 164, 65-72
    3 Mikhailenko, S. D.; Wang, K. P.; Kaliaguine, S. et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2004, 233, 93–99
    4 Tang, C. M.; Zhang, W.; Kerres, J. Preparation and characterization of ionically cross-linked proton-conducting membranes, Journal of New Materials for Electrochemical Systems, 2004, 7, 287-298
    5 Kerres, J.; Zhang, W.; Ullrich, A.; et al. Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC, Desalination, 2002, 147, 173-178
    6 Kerres, J.; Ullrich, A.; Meier, F.; et al. Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125, 243-249
    7 Kerres, J.; Ullrich, A. Synthesis of novel engineering polymers containing basic side groups and their application in acid–base polymer blend membranes, Separation and Purification Technology, 2001, 22-23, 1-15
    8 Cui, W.; Eigenberger, G. Development and characterization of ion-exchange polymer blend membranes, Separation and Purification Technology, 1998, 14,145-154
    9 Kerres, J.; Wei, C. Acid-base polymer blends and their application in membrane processes, US P 6 194 474, 2001
    10 Xiao, G.; Sun, G.; Yan, D.; et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43, 5335-5339
    11 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    12 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    13 Shen, L. P.; Xiao, G. Y.; Yan, D. Y. et al. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s, Polymer Bulletin, 2005, 54, 57-64
    14 Xiao, G. Y.; Sun, G. M.; Yan, D. Y. Synthesis and characterization of novel sulfonated poly(arylene ether ketone)s derived from 4,4’-sulfonyldiphenol, Polymer Bulletin, 2002, 48, 309-315
    15 Wang, J. Y.; Liao, G. X.; Liu, C.; et al. Poly(ether imide)s derived from phthalazinone-containing dianhydrides, J Polym Sci Part A: Polym Chem 2004, 42, 6089-6097
    16 Smith, C. D.; Gungor, A.; Keister, K. M.; et al. Poly(arylene ether ketone)-Poly(arylene ether phosphine oxide) copolymer and blend compositions, Polym Prepr. 1991, 32, 93-95
    17 Xing, P. X.; Robertson, G. P.; Guiver, M. D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 2004, 229, 95-106
    18 Gu, S.; He, G. H.; Wu, X. M.; et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC), J. Membr. Sci. 2006, 281, 121–129
    19 Li, Q. F.; He, R. H.; Oluf, J.; et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    20 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 2006, 47, 808-816
    1 Zhong, S. L.; Cui, X. J.; Cai, H. L. et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications, Journal of Power Sources, 2007, 164, 65-72
    2 Mikhailenko, S. D.; Wang, K. P.; Kaliaguine, S. et al. Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), Journal of Membrane Science, 2004, 233, 93–99
    3 Tang, C. M.; Zhang, W.; Kerres, J. Preparation and characterization of ionically cross-linked proton-conducting membranes, Journal of New Materials for Electrochemical Systems, 2004, 7, 287-298
    4 Kerres, J.; Zhang, W.; Ullrich, A.; et al. Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC, Desalination, 2002, 147, 173-178
    5 Kerres, J.; Ullrich, A.; Meier, F.; et al. Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125, 243-249
    6 Kerres, J.; Ullrich, A. Synthesis of novel engineering polymers containing basic side groups and their application in acid–base polymer blend membranes, Separation and Purification Technology, 2001, 22-23, 1-15
    7 Cui, W.; Eigenberger, G. Development and characterization of ion-exchange polymer blend membranes, Separation and Purification Technology, 1998, 14,145-154
    8 Kerres, J.; Wei, C. Acid-base polymer blends and their application in membrane processes, US P 6 194 474, 2001
    9 Xiao, G.; Sun, G.; Yan, D.; et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43, 5335-5339 10 Hu
    18 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    19 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    20 Shen, L. P.; Xiao, G. Y.; Yan, D. Y. et al. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s, Polymer Bulletin, 2005, 54, 57-64
    21 Xiao, G. Y.; Sun, G. M.; Yan, D. Y. Synthesis and characterization of novel sulfonated poly(arylene ether ketone)s derived from 4,4’-sulfonyldiphenol, Polymer Bulletin, 2002, 48, 309-315
    22 Li, Q. F.; He, R. H.; Oluf, J.; et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    23 Shang, X. Y.; Tian, S. H.; Kong, L. H.; Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane, J. Membr. Sci. 2005, 266, 94-101
    1 Tang, C. M.; Zhang, W.; Kerres, J. Preparation and characterization of ionically cross-linked proton-conducting membranes, Journal of New Materials for Electrochemical Systems, 2004, 7, 287-298
    2 Kerres, J.; Zhang, W.; Ullrich, A.; et al. Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC, Desalination, 2002, 147, 173-178
    3 Kerres, J.; Ullrich, A.; Meier, F.; et al. Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125, 243-249
    4 Kerres, J.; Ullrich, A. Synthesis of novel engineering polymers containing basic side groups and their application in acid–base polymer blend membranes, Separation and Purification Technology, 2001, 22-23, 1-15
    5 Cui, W.; Eigenberger, G. Development and characterization of ion-exchange polymer blend membranes, Separation and Purification Technology, 1998, 14,145-154
    6 Kerres, J.; Wei, C. Acid-base polymer blends and their application in membrane processes, US P 6 194 474, 2001
    7 Li, J. H.; Yu, H. Y.; Synthesis and Characterization of Sulfonated Poly(benzoxazole ether ketone)s by Direct Copolymerization as Novel Polymers for Proton-Exchange Membranes J Polym Sci Part A: Polym Chem. 2007, 45,2273-2286
    8 Wolfe, J. F.; Arnold, F. E. Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisoxazole units in the main chain, Macromolecules, 1981, 14, 909-915
    9 Hu, X. D.; Jenkinl, S. E.; Min, B. G.; Rigid-Rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties, Macromol. Mater. Eng. 2003, 288, 823-843
    10 Lin, J. H.; Lee, Y. M. Synthesis and Characterization of Highly Soluble Poly(aryl ether ketone-benzoxazole) Copolymers with Hexafluoroisopropylidene Moieties by Direct Copolymerization, Macromol. Chem. Phys. 2006, 207, 1880-1887
    11 Hedrick, J. L.; Jonsson, H.; Carter, K. R. Poly(aryl ether)s containing pendant benzoxazole and benzothiazole units, Macromolecules, 1995, 28, 4340-4343
    12 Hilborn, J. G.; Labadie, J. W.; Hedrick, J. L. Poly(aryl ether-benzoxazoles), Macromolecules, 1990, 23,2854-2861
    13 Hedrick, J. L.; Twieg, R. Poly(aryl ether benzoxazoles), Macromolecules, 1992, 25, 2021-2025
    14 Xiao, G.; Sun, G.; Yan, D.; et al. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43, 5335-5339
    15 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    16 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    17 Xiao, G. Y.; Sun, G. M.; Yan, D. Y. Synthesis and characterization of novel sulfonatedpoly(arylene ether ketone)s derived from 4,4’-sulfonyldiphenol, Polymer Bulletin, 2002, 48, 309-315
    18 Shobha, H. K.; Sankarapandian, M.; Glass, T. E.; et al. Sulfonated aromatic diamines as precursors for polyimides for proton exchange membranes, Polym. Prepr. 2000, 41, 1298-1299
    19 Li, Q. F.; He, R. H.; Oluf, J.; et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    20 Xing, P. X.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application, Macromolecules, 2004, 37, 7960-7967
    21 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 2006, 47, 808-816
    1 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage, Polymer, 2006, 47, 808-816
    2 Kim, Y. S.; Kim, D. S.; Liu, B. J.; et al. Copoly(arylene ether nitrile)s—High-Performance Polymer Electrolytes for Direct Methanol Fuel Cells, Journal of The Electrochemical Society, 2008, 155, B21-B26
    3 Gao, Y.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials, J. Membr. Sci. 2006, 278, 26-34
    4 Sumner, M. J.; Harrison, W. L.; Weyers, R. M.; et al. Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles, J. Membr. Sci. 2004, 239, 199-211
    5 Shen, L. P.; Xiao, G. Y.; Yan, D. Y.; et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability, e-Polymers, 2005, no. 031
    6 Xiao, G.; Sun, G.; Yan, D. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromolecular Rapid Communications, 2002, 23, 488-492
    7 Shen, L. P.; Xiao, G. Y.; Yan, D. Y. et al. Comparison of the water uptake and swelling between sulfonated poly(phthalazinone ether ketone ketone)s and sulfonated poly(arylene ether ketone ketone)s, Polymer Bulletin, 2005, 54, 57-64
    8 Xiao, G. Y.; Sun, G. M.; Yan, D. Y. Synthesis and characterization of novel sulfonated poly(arylene ether ketone)s derived from 4,4’-sulfonyldiphenol, Polymer Bulletin, 2002, 48, 309-315
    9 Shobha, H. K.; Sankarapandian, M.; Glass, T. E.; et al. Sulfonated aromatic diamines as precursors for polyimides for proton exchange membranes, Polym. Prepr. 2000, 41, 1298-1299
    10 Xing, P. X.; Robertson, G. P.; Guiver, M. D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 2004, 229, 95-106
    11 Gu, S.; He, G. H.; Wu, X. M.; et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC), J. Membr. Sci. 2006, 281, 121–129
    12 Li, Q. F.; He, R. H.; Oluf, J.; et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater. 2003, 15, 4896-4915
    13 Xing, P. X.; Robertson, G. P.; Guiver, M. D.; et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application, Macromolecules, 2004, 37, 7960-7967
    14 Wang, F.; Hickner, M.; Kim, Y. S. et al. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci. 2002, 197, 231-242
    15 Kim, Y. S.; Wang, F.; Hickner, M.; et al. Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membrane forfuel-cell use above 100℃, J of Polym Sci Part B: Polym Phys.2003, 41, 2816-2828
    16 Kim, Y. S.; Dong, L. M.; Hickner, M. A.; et al. Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes, Polymer, 2003, 44, 5729-5736
    17 Li, X. F.; Zhao, C. J.; Liu, H.; et al. Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application, Polymer, 2005, 46, 5820-5827
    18 Gao, Y.; Robertson, G. P.; Guiver, M. D.; Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials, J Polym Sci Part A: Polym Chem. 2003, 41, 497-507

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700