用户名: 密码: 验证码:
农田土壤水分散性胶体磷的赋存形态、活化机制及阻控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤胶体以巨大的比表面积,强大的吸附性能及多样的表面官能团,在污染物赋存形态、迁移转化等生物地球化学循环过程中起到重要作用。胶体易化磷素运移已成为农业面源磷污染的重要发生形式,土壤胶体磷在土-水界面的活化是胶体易化磷素运移的前提。本研究以土壤胶体磷为核心,以东苕溪流域为例调查了典型河段水体磷素粒径分布特征及东苕溪代表性流域(漕桥溪小流域)不同土地利用类型农田土壤胶体磷的流失潜能及其与土体土壤不同活性磷组分的关系;在此基础上筛选当地典型的菜地和稻田土壤深入表征土壤胶体磷及土体土壤磷分子形态,阐明了土壤胶体磷及土体土壤磷分子形态的差异;同时结合浙江省农田土壤酸化的实际环境问题,进一步探究pH变化对土壤胶体磷流失潜能的影响机制;最后还探讨了聚丙烯酰胺(PAM)对土壤胶体磷流失潜能的阻控效果。本研究可丰富当前在农田土壤磷赋存形态、流失机制及阻控技术方面的研究成果,具体结果如下:
     1)东苕溪典型河段水体磷素粒径组成以颗粒态磷为主(0.020-0.492mg L-),真溶解态磷次之(0.034-0.109mg L-1),胶体磷含量最少(0-0.025mg L-I),颗粒态磷是东苕溪向太湖输送的主要磷形态;从东苕溪上游到下游,颗粒态总磷和颗粒态钼蓝反应磷(MRP)含量激增,真溶解态总磷及真溶解态MRP下降,而胶体磷及胶体MRP含量在全流域保持相对稳定;MRP在胶体上的分配系数随胶体浓度升高而降低,表现出胶体的颗粒浓度效应;以上大流域尺度的研究结果符合“胶体泵”理论,推测在磷素从真溶解态向大颗粒态运移的动态过程中,胶体作为中间介质可能起到维稳缓冲作用,其在水体磷素粒径分布中的作用不容忽视。
     2)在漕桥溪小流域不同土地利用类型农田(稻田、茶园、菜地、苗木和竹林)中,胶体磷的流失潜能以菜地和竹林土壤最大,稻田和苗木次之,茶园最小;除茶园土壤外,胶体磷均是总磷(<1μm)流失的主要形态(55.1-80.9%),流失风险不容忽视。供试不同利用类型农田中土壤胶体磷均以MRP为主(59.6-96.8%);供试土壤磷库中不同活性磷组分的分布特征各异,所有供试土壤中均以中等活性的氢氧化钠提取态磷为主(41-53%),稻田、菜地、竹林土壤中第二大磷组分为活性的水提取态磷及碳酸氢钠提取态磷,而茶园及苗木土壤中第二大磷组分为非活性的盐酸提取态磷和残留磷;土壤胶体MRP的流失潜能分别与土壤水提取态磷、碳酸氢钠提取态无机磷、氢氧化钠提取态总磷三种组分含量极显著正相关,与氢氧化钠提取态无机磷和盐酸提取态磷组分的含量显著正相关,而胶体钼蓝非反应磷(MUP)的流失潜能与土壤不同磷组分含量之间无显著相关性。
     3)选择漕桥溪小流域典型的稻田和菜地土壤,以X射线吸收近边结构(XANES)及磷-31核磁共振(P-NMR)光谱技术深入表征土壤胶体磷及土体土壤磷的分子形态,结果表明铁氧化物结合态磷是两种供试土壤胶体磷(61.1-70.4%)和土体土壤磷(64.6-65.3%)的主要形态,揭示了土壤胶体MRP的流失潜能与土壤氢氧化钠提取态无机磷组分含量显著正相关的内在原因;与土体土壤相比,羟基磷灰石在两种供试土壤胶体中的比例显著升高,活性钙磷比例下降,并且稻田土壤胶体中铝氧化物结合态磷较土体土壤中升高,而正磷酸二酯与正磷酸单酯比值降低,表明土壤胶体较土体土壤更易富集稳定性高的磷形态。
     4)供试菜地和稻田土壤在pH~3.0时胶体磷释放量均最低,而高pH(~7.0)可显著促发土壤胶体及胶体磷流失,同时伴随胶体zeta电位的逐渐降低,说明静电斥力增加促进了土壤胶体及胶体磷的活化;菜地和稻田土壤中胶体MRP流失潜能98.8%和99.3%的变异性均可由胶体总有机碳的流失潜能加以预测,表明胶体MRP很可能以有机质-金属-磷酸盐(OM-M-MRP)的三元复合物存在;进一步结合磷的K边XANES结果,推测供试土壤胶体MRP在pH~5.0时很可能通过外配层络合作用形成有机质-钙-磷酸盐(OM-Ca-MRP);并在pH调控下发生形态转化,在pH~7.0时主要以铁氧化物结合态磷和羟基磷灰石赋存。
     5)PAM可显著抑制供试菜地和稻田土壤胶体及胶体磷的流失潜能,0.1%的PAM为阻控菜地土壤胶体及胶体总磷流失的最佳剂量;而PAM对稻田土壤胶体及胶体总磷流失潜能的抑制效果随PAM施用量增大而增强,0.2%的PAM可分别抑制75.0%和88.1%的土壤胶体和胶体总磷流失。PAM对土壤胶体MRP流失的阻控效果与其对胶体总磷的阻控效果呈相似规律。而PAM施用对真溶解态磷无明显抑制效果,还可能促进真溶解态磷的流失潜能,其影响与供试土壤土地利用类型和PAM的施用量有关。
Soil colloids, with their large specific surface area, high absorption capacity, and abundant surface functional groups, play a vital role in biogeochemical cycles (eg. speciation, transport and transformation) of contaminants. Colloid-facilitated phosphorus (P) transport has been a key mechanism of agricultural non-point source pollution of P, with the premise of colloidal P (Pcoll) mobilization at soil-water interfaces. This study targeting soil Pcoll, investigated size distribution of aquatic P in typical sections of East Tiao River, and Pcoll release potential in soils cultivated with rice (RS), tea (TS), vegetables (VS), nursery stock (NSS), and bamboo (BS) located in representative basin (Caoqiaoxi Basin) of East Tiao River, along with the relationship between Pcoll release potential and P fractions in studied soils. Then locally typical VS and RS samples were selected to further characterize P speciation in soil colloids and bulk soils at the molecular level, and differences of P species in soil colloids and bulk soils were discussed. Considering the studied area is significantly impacted by soil acidification, the release potential of soil Pcoll under different pH conditions and involved mechanism were explored. Finally, efficiency of polyacrylamide (PAM) in controlling release potential of Pcoll was researched. This work should enrich current development on speciation, release mechanism and control of soil P. Detailed results are shown below.
     In typical sections of the East Tiao River, results indicated particulate P (0.020-0.492mg L-1) was dominant followed by the truly dissolved P (0.034-0.109mg L-1), while Pcoii (0-0.025mg L-1) was quantitatively the lowest in the whole river. From upstream to downstream, particulate total P (TP) and molybdate reactive P (MRP) increased sharply, along with the decrease of truly dissolved TP and MRP. However, colloidal TP (TPcoll) and colloidal MRP (MRPcoll) remained at a relatively stable level in the whole river. The partition coefficient of MRP in colloidal phase declined as colloidal particles increased, which indicated the particle concentration effect. These observations, in this large-scale field investigation, fitted the "colloidal pumping" hypothesis. It may be concluded that colloids act as the intermediate and buffer in the dynamically balanced transfer of P from truly dissolved phase to large particulate phase, having a significant role in size distribution of aquatic P.
     Release potential of Pcoll was highest in VS and BS, followed by RS and NSS, and was lowest in TS. Colloidal P was the major species of the released P (<1μm), ranging from55.1%to80.9%, for all soil samples under various land use except for TS. Colloidal P mainly consisted of MRP (59.6-96.8%) in all studied soils. P fractions with various labilities in soil samples distributed differently. For all samples, the majority of P was found in the moderately labile fraction (NaOH-P,41-53%). The second largest pool for RS, VS and BS was the labile P fraction (NaHCO3-P and H2O-P), but for TS and NSS it was the nonlabile fraction (HC1-P and residual P). Release potential of MRPcoll presented a highly significant correlation with concentration of H2O-P, NaHCO3-P;, and NaOH-Pt, and a significant correlation with NaOH-Pj and HCl-P, while colloidal MUP did not show correlation with any soil P fractions.
     Taken RS and VS as examples, molecular speciation of P in soil colloids and bulk soils were further identified by synchrotron-based P K-edge X-ray near edge structure (XANES) and solution P-31nuclear magnetic resonance (P-NMR) spectroscopy. Results showed that P was mainly presented as iron-associated P (Fe-P) in both studied soil colloids (61.1-70.4%) and bulk soils (64.6-65.3%), which explained the significant correlation between release potential of MRPcoll with concentration of soil NaOH-Pj. Increased proportion of hydroxyapatite (HAP) and decreased percentage of soluble calcium-associated P occured in soil colloids as compared to bulk soils. The RS colloids have higher percentage of aluminum-associated P as well as lower ratio of orthophosphate diesters to orthophosphate monoesters than the bulk soil. This indicated stable P species accumulate in soil colloids as compared to bulk soils.
     The release potential of Pcoll was rather low at pH~3.0for both VS and RS, while high pH (-7.0) significantly enhanced the release of soil colloids and Pcoll, accompanied with the gradual decrease of zeta potential of colloids, which implied the increased interparticle electrostatic repulsion contributed to the release of soil colloids and Pcoll. Colloidal TOC accounted for98.8%and99.3%of the variation of MRPcoll in VS and RS respectively, which allowed for the hypothesis that MRPcoll was probably presented as organic matter (OM)-metal (M)-phosphate complex. The XANES results strongly suggested that MRPcoll occurred as OM-calcium-MRP at pH-5.0, and transformed to Fe-P and HAP at pH~7.0.
     Application of PAM significantly reduced the release potential of colloids and Pcoll in studied VS and RS.0.1%PAM treatment was recommoned to reduce release of colloids and Pcoll in VS. Contrastly, the controlling effect of PAM on the release potential of colloids and Pcoll in RS increased with higher PAM application rate, and0.2%PAM treatment reduced75.0%of colloid release and88.1%of Pcoll release respectively. The controlling effect of PAM on MRPcon showed similar characteristics with that on Pcoll. No significant inhibition but a possible facilitation effect of PAM on truly dissolved P were shown, which related to land use of studied soils and application rate of PAM.
引文
Addiscott, T., D. Thomas.2000. Tillage, mineralization and leaching:phosphate. Soil and Tillage Research.53:255-273.
    Ajiboye, B., O.O. Akinremi, Y. Hu, A. Jurgensen.2008. XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Science Society of America Journal.72:1256-1262.
    Ajiboye, B., O.O. Akinremi, A. Jurgensen.2007. Experimental validation of quantitative XANES analysis for phosphorus speciation. Soil Science Society of America Journal.71:1288-1291.
    Anjos, J.T., D.L. Rowell.1987. The effect of lime on phosphorus adsorption and barley growth in three acid soils. Plant and Soil.103:75-82.
    Baalousha, M., J.R. Lead.2007. Size fractionation and characterization of natural aquatic colloids and nanoparticles. Science of the Total Environment.386: 93-102.
    Backhus, D.A., P.M. Gschwend.1990. Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environmental Science & Technology.24:1214-1223.
    Barton, D., M. Schnitzer.1963. A new experimental approach to the humic acid problem.
    Beauchemin, S., D. Hesterberg, J. Chou, M. Beauchemin, R.R. Simard, D.E. Sayers. 2003. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. Journal of Environmental Quality.32:1809-1819.
    Beauchemin, S., R.R. Simard, D. Cluis.1998. Forms and concentration of phosphorus in drainage water of twenty-seven tile-drained soils. Journal of Environmental Quality.27:721-728.
    Benoit, G.1995. Evidence of the particle concentration effect for lead and other metals in Fresh waters based on ultraclean technique analyses. Geochimica Et Cosmochimica Acta.59:2677-2687.
    Benoit, G., T.F. Rozan.1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica Et Cosmochimica Acta.63:113-127.
    Bostrom, B., G. Persson, B. Broberg.1988. Bioavailability of different phosphorus forms in fresh water systems. Hydrobiologia.170:133-155.
    Brandes, J.A., E. Ingall, D. Paterson.2007. Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Marine Chemistry.103:250-265.
    Bravin, M.N., A.L. Marti, M. Clairotte, P. Hinsinger.2009. Rhizosphere alkalisation-a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant and Soil.318:257-268.
    Brown, T.C., D. Brown, D. Binkley.1993. Laws and programs for controlling nonpoint source pollution in forest areas. Journal of the American Water Resources Association.29:1-13.
    Buesseler, K.O., D.I. Kaplan, M. Dai, S. Pike.2009. Source-dependent and source-independent controls on plutonium oxidation state and colloid associations in groundwater. Environmental Science & Technology.43: 1322-1328.
    Cade-Menun, B.J.2005a. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta. 66:359-371.
    Cade-Menun, B.J.2005b. Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples. Organic phosphorus in the environment.21-44.
    Cade-Menun, B.J., C.M. Preston.1996. A comparison of soil extraction procedures for P-31 NMR spectroscopy. Soil Science.161:770-785.
    Celi, L., M. Presta, F. Ajmore-Marsan, E. Barberis.2001. Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Science Society of America Journal.65:753-760.
    Chen, D., A. Zheng, M. Chen.2010. Study of colloidal phosphorus variation in estuary with salinity. Acta Oceanologica Sinica.29:17-25.
    Chen, Y., M. Yu, J. Xu, X. Chen, J. Shi.2009. Differentiation of eight tea(Camellia sinensis) cultivars in China by elemental fingerprint of their leaves. Journal of the Science of Food and Agriculture.89:2350-2355.
    Christl, I.2012. Ionic strength-and pH-dependence of calcium binding by terrestrial humic acids. Environmental Chemistry.9:89-96.
    Condron, L., B. Turner, B. Cade-Menun, J. Sims, A. Sharpley.2005. Chemistry and dynamics of soil organic phosphorus. Phosphorus:agriculture and the environment.87-121.
    Cross, A.F., W.H. Schlesinger.1995. A literature review and evaluation of the Hedley fractionation-Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma.64:197-214.
    Curl, R.L., G.A. Keoleian.1984. Implicit-adsorbate model for apparent anomalies with organic adsorption on natural adsorbents. Environmental Science & Technology.18:916-922.
    D'Arcy, B., A. Frost.2001. The role of best management practices in alleviating water quality problems associated with diffuse pollution. Science of the Total Environment.265:359-367.
    Dalal, R.1977. Soil organic phosphorus. Advances in Agronomy.29:83-117.
    de Jonge, L.W., P. Moldrup, G.H. Rubaek, K. Schelde, J. Djurhuus.2004. Particle leaching and particle-facilitated transport of phosphorus at field scale. Vadose Zone Journal.3:462-470.
    Dolfing, J., W. Chardon, J. Japenga.1999. Association between colloidal iron, aluminum, phosphorus, and humic acids. Soil Science.164:171-179.
    Doolette, A.L., R.J. Smernik.2011. Soil organic phosphorus speciation using spectroscopic techniques. Phosphorus in Action:Biological Processes in Soil Phosphorus Cycling.3-36.
    Doolette, A.L., R.J. Smernik, W.J. Dougherty.2009. Spiking improved solution 31phosphorus nuclear magnetic resonance identification of soil phosphorus compounds. Soil Science Society of America Journal.73:919-927.
    Doolette, A.L., R.J. Smernik, W.J. Dougherty.2010. Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution 31P NMR study. European Journal of Soil Science.61:563-575.
    Dou, Z., C. Ramberg, J. Toth, Y. Wang, A. Sharpley, S.E. Boyd, C. Chen, D. Williams, Z. Xu.2009. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. Soil Science Society of America Journal.73:93-101.
    Ekholm, P., J. Lehtoranta.2012. Does control of soil erosion inhibit aquatic eutrophication? Journal of Environmental Management.93:140-146.
    Elimelech, M., J.N. Ryan, P. Huang, J. Bollag, N. Senesi.2001. The role of mineral colloids in the facilitated transport of contaminants in saturated porous media. Interactions between soil particles and microorganisms:impact on the terrestrial ecosystem.495-548.
    Entry, J.A., R. Sojka, M. Watwood, C. Ross.2002. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Environmental Pollution.120:191-200.
    Fan, C.X., L. Zhang, T.C. Qu.2001. Lake sediment resuspension and caused phosphate release-a simulation study. Journal of Environmental Sciences.13: 406-410.
    Fang, T.H.2000. Partitioning and behaviour of different forms of phosphorus in the Tanshui Estuary and one of its tributaries, northern Taiwan. Estuarine Coastal and Shelf Science.50:689-701.
    Filella, M., C. Deville, V. Chanudet, D. Vignati.2006. Variability of the colloidal molybdate reactive phosphorous concentrations in freshwaters. Water Research.40:3185-3192.
    Flanagan, D., N. Canady.2006. Use of polyacrylamide in simulated land application of lagoon effluent. Part Ⅱ. Nutrient loss. Transactions of The ASAE.49: 1371-1381.
    Foy, R.H., R. Rosell.1991. Fractionation of phosphorus and nitrogen loadings from a northern-Ireland fish farm. Aquaculture.96:31-42.
    Franke, R., J. Hormes.1995. The P K-edge near absorption spectra of phosphates. Physica B.216:85-95.
    Frossard, E., M. Brossard, M.J. Hedley, A. Metherell.1995. Reactions controlling the cycling of P in soils. Scope-Scientific Committee on Problems of the Environment International Council of Scientific Unions.54:107-138.
    Gamier, J., J. Nemery, G. Billen, S. Thery.2005. Nutrient dynamics and control of eutrophication in the Marne River system:modelling the role of exchangeable phosphorus. Journal of Hydrology.304:397-412.
    Garrad, P.N., R.D. Hey.1987. Boat traffic, sediment resuspension and turbidity in a Broadland river. Journal of Hydrology.95:289-297.
    Gerke, J.1992. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH-evidence for humic-Fe-(Al-) phosphate complexes. Communications in Soil Science & Plant Analysis.23:601-612.
    Giles, C., B. Cade-Menun, J. Hill.2011. The inositol phosphates in soils and manures: Abundance, cycling, and measurement. Canadian Journal of Soil Science.91: 397-416.
    Gimbert, L.J., P.M. Haygarth, R. Beckett, P.J. Worsfold.2005. Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using sedimentation field-flow fractionation. Environmental Science & Technology.39:1731-1735.
    Griffin, R.A., J.J. Jurinak.1974. Kinetics of phosphate interaction with calcite. Soil Science Society of America Journal.38:75-79.
    Grolimund, D., M. Borkovec.2006. Release of colloidal particles in natural porous media by monovalent and divalent cations. Journal of contaminant hydrology. 87:155-175.
    Gschwend, P.M., D.A. Backhus, J.K. MacFarlane, A. Page.1990. Mobilization of colloids in groundwater due to infiltration of water at a coal ash disposal site. Journal of contaminant hydrology.6:307-320.
    Gueguen, C., J. Dominik.2003. Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river:the Upper Vistula River (Poland). Applied Geochemistry.18:457-470.
    Guggenberger, G., L. Haumaier, W. Zech, R. Thomas.1996. Assessing the organic phosphorus status of an Oxisol under tropical pastures following native savanna using 31P NMR spectroscopy. Biology and Fertility of Soils.23: 332-339.
    Guo, J.H., X.J. Liu, Y. Zhang, J.L. Shen, W.X. Han, W.F. Zhang, P. Christie, K.W.T. Goulding, P.M. Vitousek, F.S. Zhang.2010. Significant acidification in major Chinese croplands. Science.327:1008-1010.
    Guo, L., P.H. Santschi.2006. Ultrafiltration and its applications to sampling and characterization of aquatic colloids. Pages. In Guo, L., P.H. Santschi, Eds. Ultrafiltration and its applications to sampling and characterization of aquatic colloids. Environmental Colloids and Particles. Hoboken, John Wiley.
    Haygarth, P.M., A.N. Sharpley.2000. Terminology for phosphorus transfer. Journal of Environmental Quality.29:10-15.
    Haygarth, P.M., M.S. Warwick, W.A. House.1997. Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution. Water Research.31:439-448.
    He, Z., D.C. Olk, B.J. Cade-Menun.2011. Forms and lability of phosphorus in humic acid fractions of Hord Silt Loam soil. Soil Science Society of America Journal. 75:1712-1722.
    Heathwaite, L., P. Haygarth, R. Matthews, N. Preedy, P. Butler.2005. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. Journal of Environmental Quality.34:287-298.
    Hedley, M.J., J.W.B. Stewart.1982. Method to measure microbial phosphate in soils. Soil Biology & Biochemistry.14:377-385.
    Henderson, R., N. Kabengi, N. Mantripragada, M. Cabrera, S. Hassan, A. Thompson. 2012. Anoxia-induced release of colloid and nanoparticle-bound phosphorus in grassland soils. Environmental Science & Technology.46:11727-11734.
    Hens, M., R. Merckx.2001. Functional characterization of colloidal phosphorus species in the soil solution of sandy soils. Environmental Science & Technology.35:493-500.
    Hens, M., R. Merckx.2002. The role of colloidal particles in the speciation and analysis of "dissolved" phosphorus. Water Research.36:1483-1492.
    Hesterberg, D., W.Q. Zhou, K.J. Hutchison, S. Beauchemin, D.E. Sayers.1999. XAFS study of adsorbed and mineral forms of phosphate. Journal of Synchrotron Radiation.6:636-638.
    Honeyman, B.D., P.H. Santschi.1989. A Brownian-pumping model for oceanic trace-metal scavenging:Evidence from Th-isotopes. Journal of Marine Research.47:951-992.
    Honeyman, B.D., P.H. Santschi.1991. Coupling adsorption and particle aggregation-Laboratory studies of colloidal pumping using Fe-59-labeled hematite. Environmental Science & Technology.25:1739-1747.
    Hudson, J.J., W.D. Taylor, D.W. Schindler.2000. Phosphate concentrations in lakes. Nature.406:54-56.
    Hunger, S., J.T. Sims, D.L. Sparks.2005. How accurate is the assessment of phosphorus pools in poultry litter by sequential extraction? Journal of Environmental Quality.34:382-389.
    Huo, S.L., F.Y. Zan, B.D. Xi, Q.Q. Li, J.T. Zhang.2011. Phosphorus fractionation in different trophic sediments of lakes from different regions, China. Journal of Environmental Monitoring.13:1088-1095.
    Ilg, K., P. Dominik, M. Kaupenjohann, J. Siemens.2008. Phosphorus-induced mobilization of colloids:model systems and soils. European Journal of Soil Science.59:233-246.
    Ilg, K., J. Siemens, M. Kaupenjohann.2005. Colloidal and dissolved phosphorus in sandy soils as affected by phosphorus saturation. Journal of Environmental Quality.34:926-935.
    Islam, A., B. Ahmed.1973. Distribution of inositol phosphates, phospholipids, and nucleic acids and mineralization of inositol phosphates in some Bangladesh soils. Journal of Soil Science.24:193-198.
    Ivanoff, D., K. Reddy, S. Robinson.1998. Chemical fractionation of organic phosphorus in selected Histosolsl. Soil Science.163:36-45.
    Jiang, T., L.L. Teng, S.Q. Wei, L.L. Deng, Z.B. Luo, Y.R Chen, D.C. Flanagan.2010. Application of polyacrylamide to reduce phosphorus losses from a Chinese purple soil:A laboratory and field investigation. Journal of Environmental Management.91:1437-1445.
    Kaplan, D.I., P.M. Bertsch, D.C. Adriano, W.P. Miller.1993. Soil-borne mobile colloids as influenced by water flow and organic carbon. Environmental Science & Technology.27:1193-1200.
    Kaplan, D.I., M.E. Sumner, P.M. Bertsch, D.C. Adriano.1996. Chemical conditions conducive to the release of mobile colloids from ultisol profiles. Soil Science Society of America Journal.60:269-274.
    Khare, N., J.D. Martin, D. Hesterberg.2007. Phosphate bonding configuration on ferrihydrite based on molecular orbital calculations and XANES fingerprinting. Geochimica Et Cosmochimica Acta.71:4405-4415.
    Kizewski, F., Y.T. Liu, A. Morris, D. Hesterberg.2011. Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. Journal of Environmental Quality.40:751-766.
    Kizewski, F.R., P. Boyle, D. Hesterberg, J.D. Martin.2010. Mixed anion (phosphate/oxalate) bonding to iron (Ⅲ) materials. Journal of the American Chemical Society.132:2301-2308.
    Kjaergaard, C., L.W. De Jonge, P. Moldrup, P. Schjonning.2004. Water-dispersible colloids effects of measurement method, clay content, initial soil matric potential, and wetting rate. Vadose Zone Journal.3:403-412.
    Klitzke, S., F. Lang, M. Kaupenjohann.2008. Increasing pH releases colloidal lead in a highly contaminated forest soil. European Journal of Soil Science.59: 265-273.
    Kogel-Knabner, I., W. Amelung, Z.H. Cao, S. Fiedler, P. Frenzel, R. Jahn, K. Kalbitz, A. Kolbl, M. Schloter.2010. Biogeochemistry of paddy soils. Geoderma.157: 1-14.
    Koopmans, G., W. Chardon, R. McDowell.2007. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications. Journal of Environmental Quality.36:305-315.
    Kreller, D.I., G. Gibson, W. Novak, G.W. Van Loon, J.H. Horton.2003. Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Colloids and Surfaces A:Physicochemical and Engineering Aspects.212:249-264.
    Kretzschmar, R., M. Borkovec, D. Grolimund, M. Elimelech.1999. Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, Vol 66.66:121-193.
    Kretzschmar, R., H. Sticher.1997. Transport of humic-coated iron oxide colloids in a sandy soil:Influence of Ca+ and trace metals. Environmental Science & Technology.31:3497-3504.
    Kronvang, B., P. Grassboll, S. Larsen, L. Svendsen, H. Andersen.1996. Diffuse nutrient losses in Denmark. Water Science and Technology.33:81-88.
    Kruse, J., P. Leinweber.2008. Phosphorus in sequentially extracted fen peat soils:A K-edge X-ray absorption near-edge structure (XANES) spectroscopy study. Journal of Plant Nutrition and Soil Science.171:613-620.
    Kruse, J., P. Leinweber, K.U. Eckhardt, F. Godlinski, Y.F. Hu, L. Zuin.2009. Phosphorus L2,3-edge XANES:Overview of reference compounds. Journal of Synchrotron Radiation.16:247-259.
    Kruse, J., W. Negassa, N. Appathurai, L. Zuin, P. Leinweber.2010. Phosphorus speciation in sequentially extracted agro-industrial by-products:Evidence from X-ray absorption near edge structure spectroscopy. Journal of Environmental Quality.39:2179-2184.
    Lentz, R., R. Sojka, J. Foerster.1996. Estimating polyacrylamide concentration in irrigation water. Journal of Environment Quality.25:1015-1024.
    Liang, T., H. Wang, H.T. Kung, C.S. Zhang.2004. Agriculture land-use effects on nutrient losses in West Tiaoxi watershed, China. Journal of the American Water Resources Association.40:1499-1510.
    Lindsay, W.L., P.L.G. Vlek, S.H. Chien.1989. Phosphate minerals. In:J.B. Dixon and S.B. Weed, editors. Minerals in soil environments. Soil Science Society of America Inc, USA. p.1089-1130.
    Lombi, E., K.G. Scheckel, R.D. Armstrong, S. Forrester, J.N. Cutler, D. Paterson. 2006. Speciation and distribution of phosphorus in a fertilized soil:A synchrotron-based investigation. Soil Science Society of America Journal.70: 2038-2048.
    McBride, M.B.1997. A critique of diffuse double layer models applied to colloid and surface chemistry. Clays and Clay minerals 45:598-608.
    MacDonald, GK., E.M. Bennett, P.A. Potter, N. Ramankutty.2011. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America.108: 3086-3091.
    Mahieu, N., D. Olk, E. Randall.2000. Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soils by 31P-NMR. European Journal of Soil Science.51:391-402.
    Mahieu, N., D. Olk, E. Randall.2000. Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soils by 31P-NMR. European Journal of Soil Science.51:391-402.
    Mahieu, N., D. Olk, E. Randall.2002. Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. Journal of Environmental Quality.31:421-430.
    Mainstone, C.P., W. Parr.2002. Phosphorus in rivers-ecology and management. Science of the Total Environment.282:25-47.
    Majed, N., Y. Li, A.Z. Gu.2012. Advances in techniques for phosphorus analysis in biological sources. Current Opinion in Biotechnology.
    Makarov, M.I., G. Guggenberger, W. Zech, H.G. Alt.1996. Organic phosphorus species in humic acids of mountain soils along a toposequence in the Northern Caucasus. Zeitschrift fur Pflanzenernahrung und Bodenkunde.159:467-470.
    Mayer, T.D., W.M. Jarrell.1995. Assessing colloidal forms of phosphorus and iron in the Tualatin-River Basin. Journal of Environmental Quality.24:1117-1124.
    Mccarthy, J.F., J.M. Zachara.1989. Subsurface transport of contaminants-Mobile colloids in the subsurface environment may alter the transport of contaminants. Environmental Science & Technology.23:496-502.
    McDowell, R., B. Cade-Menun, I. Stewart.2007. Organic phosphorus speciation and pedogenesis:analysis by solution 31P nuclear magnetic resonance spectroscopy. European Journal of Soil Science.58:1348-1357.
    McDowell, R.W., A.N. Sharpley.2001. Soil phosphorus fractions in solution: Influence of fertiliser and manure, filtration and method of determination. Chemosphere.45:737-748.
    McGechan, M.2002. SW-Soil and Water:Effects of timing of slurry spreading on leaching of soluble and particulate inorganic phosphorus explored using the MACRO model. Biosystems Engineering.83:237-252.
    McGechan, M., D. Lewis.2002. SW-soil and water:Sorption of phosphorus by soil, part 1:Principles, equations and models. Biosystems Engineering.82:1-24.
    McLaughlin, M., T. McBeath, R. Smernik, S. Stacey, S. Ajiboye, C. Guppy.2011. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design:an Australian perspective. Plant and Soil. 349:69-87.
    Monbet, P., I.D. McKelvie, P.J. Worsfold.2010. Sedimentary pools of phosphorus in the eutrophic Tamar estuary (SW England). Journal of Environmental Monitoring.12:296-304.
    Murphy, J., J. Riley.1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta.27:31-36.
    Mustafa, S., M.I. Zaman, S. Khan.2006. pH Effect on phosphate sorption by crystalline MnO2. Journal of Colloid and Interface Science.301:370-375.
    Negassa, W., J. Kruse, D. Michalik, N. Appathurai, L. Zuin, P. Leinweber.2010. Phosphorus speciation in agro-industrial byproducts:Sequential fractionation, solution 31P NMR, and P K-and L2,3-edge XANES spectroscopy. Environmental Science & Technology.44:2092-2097.
    Negassa, W., P. Leinweber.2009. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. Journal of Plant Nutrition and Soil Science.172:305-325.
    Nelson, N.O., S.C. Agudelo, W. Yuan, J. Gan.2011. Nitrogen and phosphorus availability in biochar-amended soils. Soil Science.176:218.
    Newman, R., K. Tate.1980. Soil phosphorus characterisation by 31P nuclear magnetic resonance. Communications in Soil Science & Plant Analysis.11: 835-842.
    O'Halloran, I.P., B.J. Cade-Menun.2008. Total and organic phosphorus.265-291. In Soil Sampling and Methods of Analysis,2nd Edition. Canadian Society of Soil Science and CRC Press
    Ohno, T., S. Hiradate, Z. He.2011. Phosphorus solubility of agricultural soils:A surface charge and phosphorus-31 NMR speciation study. Soil Science Society of America Journal.75:1704-1711.
    Okude, N., M. Nagoshi, H. Noro, Y. Baba, H. Yamamoto, T.A. Sasaki.1999. P and S K-edge XANES of transition-metal phosphates and sulfates. Journal of Electron Spectroscopy and Related Phenomena.103:607-610.
    Pagel, H., K. Ilg, J. Siemens, M. Kaupenjohann.2008. Total phosphorus determination in colloid-containing soil solutions by enhanced persulfate digestion. Soil Science Society of America Journal.72:786-790.
    Pagliari, P.H., C.A.M. Laboski.2012. Investigation of the Inorganic and Organic Phosphorus Forms in Animal Manure. Journal of Environmental Quality,41: 901-910.
    Pautler, M.C., J.T. Sims.2000. Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils. Soil Science Society of America Journal.64:765-773.
    Petersen, A.L., A.M. Thompson, C.A. Baxter, J.M. Norman, A. Roa-Espinosa.2007. A new polyacrylamide (PAM) formulation for reducing erosion and phosphorus loss in rainfed agriculture. Transactions of The ASAE.50: 2091-2101.
    Pierzynski, G., R. McDowell, J. Sims, A. Sharpley.2005. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. Phosphorus:agriculture and the environment.53-86.
    Poirier, S.C., J.K. Whalen, A.R. Michaud.2012. Bioavailable phosphorus in fine-sized sediments transported from agricultural fields. Soil Science Society of America Journal.76:258-267.
    Prietzel, J., A. Dumig, Y. Wu, J. Zhou, W. Klysubun.2013. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochimica Et Cosmochimica Acta.
    Prietzel, J., J. Thieme, K. Eusterhues, D. Eichert.2007a. Iron speciation in soils and soil aggregates by synchrotron-based X-ray microspectroscopy (XANES, μ-XANES). European Journal of Soil Science.58:1027-1041.
    Prietzel, J., J. Thieme, M. Salome, H. Knicker.2007b. Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biology and Biochemistry.39: 877-890.
    Puls, R.W., C.J. Paul, D.A. Clark.1993. Surface chemical effects on colloid stability and transport through natural porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects.73:287-300.
    Ran, Y., J.M. Fu, G.Y. Sheng, R. Beckett, B.T. Hart.2000. Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere.41:33-43.
    Reddy, K.R., R.H. Kadlec, E. Flaig, P.M. Gale.1999. Phosphorus retention in streams and wetlands:A review. Critical Reviews in Environmental Science and Technology.29:83-146.
    Redel, Y., M. Escudey, M. Alvear, J. Conrad, F. Borie.2011. Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol. Soil Use and Management.27:221-228.
    Regelink, I.C., G.F. Koopmans, C. van der Salm, L. Weng, W.H. van Riemsdijk.2013. Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field-flow fractionation. Journal of Environmental Quality.42:464-473.
    Rick, A.R., Y. Arai.2011. Role of natural nanoparticles in phosphorus transport processes in Ultisols. Soil Science Society of America Journal.75:335-347.
    Rose, J., A.M. Flank, A. Masion, J.Y. Bottero, P. Elmerich.1997. Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions.2. P K-edge EXAFS study. Langmuir.13:1827-1834.
    Rouff, A.A., S. Rabe, M. Nachtegaal, F. Vogel.2009. X-ray absorption fine structure study of the effect of protonation on disorder and multiple scattering in phosphate solutions and solids. Journal of Physical Chemistry A.113: 6895-6903.
    Roy, S.B., D.A. Dzombak.1997. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environmental Science & Technology.31:656-664.
    Ryan, J.N., M. Elimelech.1996. Colloid mobilization and transport in groundwater. Colloids and Surfaces a-Physicochemical and Engineering Aspects.107:1-56.
    Sanudo-Wilhelmya, S.A., I. Rivera-Duarteb, A.R. Flegalb.1996. Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochimica Et Cosmochimica Acta.60:4933-4944
    Sanyal, S.K., S.K. De Datta.1991. Chemistry of phosphorus transformation in soil. Pages. In Sanyal, S.K., S.K. De Datta, Eds. Chemistry of phosphorus transformation in soil. Advances in soil science. New Youk, Springer-Verlag.
    Sato, S., E.G. Neves, D. Solomon, B.Q. Liang, J. Lehmann.2009. Biogenic calcium phosphate transformation in soils over millennial time scales. Journal of Soils and Sediments.9:194-205.
    Sato, S., D. Solomon, C. Hyland, Q.M. Ketterings, J. Lehmann.2005. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science & Technology.39:7485-7491.
    Sauve, S., W. Hendershot, H.E. Allen.2000. Solid-solution partitioning of metals in contaminated soils:Dependence on pH, total metal burden, and organic matter. Environmental Science & Technology.34:1125-1131.
    Schefe, C.R., P. Kappen, L. Zuin, P.J. Pigram, C. Christensen.2009. Addition of carboxylic acids modifies phosphate sorption on soil and boehmite surfaces:A solution chemistry and XANES spectroscopy study. Journal of Colloid and Interface Science.330:51-59.
    Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng, S.E.M. Kasian.2008. Eutro phi cation of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America.105:11254-11258.
    Schoumans, O.F., W.J. Chardon.2003. Risk assessment methodologies for predicting phosphorus losses. Journal of Plant Nutrition and Soil Science.166:403-408.
    Sekula-Wood, E., C.R. Benitez-Nelson, M.A. Bennett, R. Thunell.2012. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California. Global Biogeochemical Cycles.26:GB2023.
    Sen, T.K., K.C. Khilar.2006. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Seta, A.K., A.D. Karathanasis.1996. Water dispersible colloids and factors influencing their dispersibility from soil aggregates. Geoderma.74:255-266.
    Sharpley, A.1982. Prediction of water-extractable phosphorus content of soil following a phosphorus addition. Journal of Environmental Quality.11: 166-170.
    Sharpley, A.N.1995. Soil phosphorus dynamics:Agronomic and environmental impacts. Ecological Engineering.5:261-279.
    Shinohara, R., A. Imai, N. Kawasaki, K. Komatsu, A. Kohzu, S. Miura, T. Sano, T. Satou, N. Tomioka.2012. Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake:A 31P nuclear magnetic resonance (P NMR) study. Environmental Science & Technology.46: 10572-10578.
    Shober, A.L., D.L. Hesterberg, J.T. Sims, S. Gardner.2006. Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. Journal of Environmental Quality.35:1983-1993.
    Siemens, J., K. Ilg, F. Lang, M. Kaupenjohann.2004. Adsorption controls mobilization of colloids and leaching of dissolved phosphorus. European Journal of Soil Science.55:253-263.
    Siemens, J., K. Ilg, H. Pagel, M. Kaupenjohann.2008. Is colloid-facilitated phosphorus leaching triggered by phosphorus accumulation in sandy soils? Journal of Environmental Quality.37:2100-2107.
    Slowey, A.J., S.B. Johnson, J.J. Rytuba, G.E. Brown.2005. Role of organic acids in promoting colloidal transport of mercury from mine tailings. Environmental Science & Technology.39:7869-7874.
    Sojka, R.E., D.L. Bjorneberg, J.A. Entry, R.D. Lentz, W.J. Orts.2007. Polyacrylamide in agriculture and environmental land management. Advances in Agronomy. 92:75-162.
    Sojka, R.E., R.D. Lentz.1997. Reducing furrow irrigation erosion with polyacrylamide (PAM). Journal of Production Agriculture.10:47-52.
    Stamm, C., H. Fluhler, R. Gachter, J. Leuenberger, H. Wunderli.1998. Preferential transport of phosphorus in drained grassland soils. Journal of Environmental Quality.27:515-522.
    Sui, Y.B., M.L. Thompson, C. Shang.1999. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Science Society of America Journal.63: 1174-1180.
    Swartz, C.H., P.M. Gschwend.1998. Mechanisms controlling release of colloids to groundwater in a southeastern coastal plain aquifer sand. Environmental Science & Technology.32:1779-1785.
    Tchienkoua, W. Zech.2003. Chemical and spectral characterization of soil phosphorus under three land uses from an Andic Palehumult in West Cameroon. Agriculture Ecosystems & Environment.100:193-200.
    Tiessen, H., J. Moir, M. Carter.1993. Characterization of available P by sequential extraction. Soil sampling and methods of analysis.7:5-229.
    Tiessen, H., J.W.B. Stewart, C.V. Cole.1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal.48:853-858.
    Tipping, E., M. Ohnstad.1984. Colloid stability of iron-oxide particles from a freshwater lake. Nature.308:266-268.
    Toor, G.S., S. Hunger, J.D. Peak, J.T. Sims, D.L. Sparks.2006. Advances in the characterization of phosphorus in organic wastes:Environmental and agronomic applications. Advances in Agronomy, Vol 89.89:1-72.
    Turner, B.L.2004. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Journal of Environmental Quality.33:757-766.
    Turner, B.L.2006. Organic phosphorus in Madagascan rice soils. Geoderma.136: 279-288.
    Turner, B.L., B.J. Cade-Menun, L.M. Condron, S. Newman.2005. Extraction of soil organic phosphorus. Talanta.66:294-306.
    Turner, B.L., A.W. Cheesman, H.Y. Godage, A.M. Riley, B.V.L. Potter.2012. Determination of neo-and d-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy. Environmental Science & Technology.46: 4994.
    Turner, B.L., L.M. Condron, S.J. Richardson, D.A. Peltzer, V.J. Allison.2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems.10: 1166-1181.
    Turner, B.L., M.A. Kay, D.T. Westermann.2004. Colloidal phosphorus in surface runoff and water extracts from semiarid soils of the western United States. Journal of Environmental Quality.33:1464-1472.
    Turner, B.L., N. Mahieu, L.M. Condron.2003. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America Journal.67:497-510.
    Turner, B.L., S. Newman.2005. Phosphorus cycling in wetland soils. Journal of Environmental Quality.34:1921-1929.
    Turner, B.L., A.E. Richardson.2004. Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal.68:802-808.
    Utomo, H.D., K.A. Hunter.2010. Particle concentration effect:Adsorption of divalent metal ions on coffee grounds. Bioresource Technology.101:1482-1486.
    Uusitalo, R., E. Turtola, T. Kauppila, T. Lilja.2001. Particulate phosphorus and sediment in surface runoff and drainflow from clayey soils. Journal of Environmental Quality.30:589-595.
    Van Moorleghem, C., L. Six, F. Degryse, E. Smolders, R. Merckx.2011. Effect of organic P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry. Analytical chemistry.83: 5317-5323.
    Vincent, A.G, J. Schleucher, G Grobner, J. Vestergren, P. Persson, M. Jans son, R. Giesler.2012. Changes in organic phosphorus composition in boreal forest humus soils:the role of iron and aluminium. Biogeochemistry.108:485-499.
    Vincent, A.G, B.L. Turner, E.V.J. Tanner.2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. European Journal of Soil Science.61:48-57.
    Voice, T.C., W.J. Weber.1983. Sorption of hydrophobic compounds by sediments, soils and suspended solids.1. Theory and background. Water Research.17: 1433-1441.
    Wang, F.E., J. Yu, F.Q. Lou, Y.X. Yao, W.Z. Song.2009. Pollutant flux variations of all the rivers surrounding Taihu Lake in Zhejiang Province. Journal of Safety and Environment.9:106-109.
    Wang, H.J., X.M. Liang, P.H. Jiang, J. Wang, S.K. Wu, H.Z. Wang.2008. TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes. Freshwater Biology.53:935-944.
    Wang, K., Z. Zhang, Y. Zhu, G. Wang, D. Shi, P. Christie.2001. Surface water phosphorus dynamics in rice fields receiving fertiliser and manure phosphorus. Chemosphere.42:209-214.
    Waples, J.T., C. Benitez-Nelson, N. Savoye, M.R. Van der Loeff, M. Baskaran, O. Gustafsson.2006. An introduction to the application and future use of Th-234 in aquatic systems. Marine Chemistry.100:166-189.
    Wells, M.L., E.D. Goldberg.1991. Occurrence of small colloids in sea-water. Nature. 353:342-344.
    Weng, L., F.A. Vega, W.H. Van Riemsdijk.2011. Competitive and synergistic effects in pH dependent phosphate adsorption in soils:LCD modeling. Environmental Science & Technology.45:8420-8428.
    Wigginton, N.S., K.L. Haus, M.F. Hochella.2007. Aquatic environmental nanoparticles. Journal of Environmental Monitoring.9:1306-1316.
    USDA.1999. Soil Taxomony:A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Robert E. Krieger Publication, Florida
    Xu, C., W. Li, G. Pan.2009. Particle concentration effect on Zn(II) adsorption at water-goethite interfaces. Acta Physico-Chimica Sinica.25:1737-1742.
    Yang, J., T. Regier, J.J. Dynes, J. Wang, J. Shi, D. Peak, Y. Zhao, T. Hu, Y. Chen, J.S. Tse.2011. Soft X-ray induced photoreduction of organic Cu(II) compounds probed by X-ray absorption near-edge (XANES) spectroscopy. Analytical chemistry.83:7856-7862.
    Yang, Y.E., Z.L. He, Y.J. Lin, E.J. Phlips, J.Y. Yang, G.C. Chen, P.J. Stoffella, C.A. Powell.2008. Temporal and spatial variations of nutrients in the Ten Mile Creek of South Florida, USA and effects on phytoplankton biomass. Journal of Environmental Monitoring.10:508-516.
    Yu, C., B. Gao, R. Munoz-Carpena, Y. Tian, L. Wu, O. Perez-Ovilla.2011. A laboratory study of colloid and solute transport in surface runoff on saturated soil. Journal of Hydrology.402:159-164.
    Zhang, A., Z. Chen, G. Zhang, L. Chen, Z. Wu.2012. Soil phosphorus composition determined by P NMR spectroscopy and relative phosphatase activities influenced by land use. European Journal of Soil Biology.52:3e77.
    Zhang, A.D., C. Oldham.2001. The use of an ultrafiltration technique for measurement of orthophosphate in shallow wetlands. Science of the Total Environment.266:159-167.
    Zhang, M.K.2008. Effects of soil properties on phosphorus subsurface migration in sandy soils. Pedosphere.18:599-610.
    Zhang, M.K., Z.L. He, D.V. Calvert, P.J. Stoffella.2003. Colloidal iron oxide transport in sandy soil induced by excessive phosphorus application. Soil Science.168:617-626.
    Zhao, J., M.Q. Cui, Y.D. Zhao, Y.L. Tian, L. Zheng, K.J. Zhou, C.Y. Ma, K. Chen, J. Zhu, L.J. Sun.2007. A 1.2 to 6 keV soft X-ray beamline at Beijing Synchrotron Radiation Facility. Spectrochimica Acta Part B-Atomic Spectroscopy.62:1257-1262.
    白秀玲,周云凯,李斌,丁士明.2011.利用31p核磁共振技术优化太湖沉积物有机磷的化学提取方法.环境科学学报.31:996-1003.
    柴世伟,裴晓梅,张亚雷,李建华,赵建天.2007.农业面源污染及其控制技术研究.水土保持学报.20:192-195.
    陈洪松,邵明安.2000.非点源污染物细颗粒泥沙的絮凝-分散研究.土壤与环境.9:322-325.
    陈渠昌,雷廷武,李瑞平.2006.PAM对坡地降雨径流入渗和水力侵蚀的影响研究.水利学报.37:1290-1296.
    陈义群,董元华.2008.土壤改良剂的研究与应用进展.生态环境.17:1282-1289.
    崔海英,任树梅,刘东.2006.聚丙烯酰胺对不同土壤坡地降雨产流产沙过程的影响.中国水土保持.2:20-22.
    代才江,杨卫东,王君丽,刘春光.2009.最佳管理措施(BMPs)在流域农业非点源污染控制中的应用.农业环境与发展.26:65-67.
    单艳红,杨林章,王建国.2004.土壤磷素流失的途径、环境影响及对策.土壤.36:602-608.
    傅庆林.2002.浙江省区域农业可持续发展研究的回顾与展望.浙江农业学报.14:7-13.
    何传龙,马友华,李帆,蒋光月,周维平.2011.减量施肥对菜地土壤养分淋失及春甘蓝产量的影响.土壤通报.42:397-401.
    何萍,王家骥.1999.非点源(NPS)污染控制与管理研究的现状,困境与挑战.农业环境保护.18:234-237.
    胡宏祥,洪天求,马友华,刘坤.2007.土壤及泥沙颗粒组成与养分流失的研究.水土保持学报.21:26-29.
    胡俊栋,沈亚婷,王学军.2009.离子强度,pH对土壤胶体释放,分配沉积行为的影响.生态环境学报.18:629-637.
    胡美华,潘慧锋,赵建阳.2007.浙江省设施农业现状及避灾抗灾对策初探.浙江农业科学.5:49.
    黄满湘,周成虎,章申,汪权方.2002.农田暴雨径流侵蚀泥沙流失及其对氮磷的富集.水土保持学报.16:13-16.
    姬红利,颜蓉,李运东,方炎明,杨林章,吴永红.2011.施用土壤改良剂对磷素流失的影响研究.土壤.43:203-209.
    江韬,邓丽莉,魏世强,陈瑜鹏,卢松,刘双营.2010.聚丙烯酰胺与强化剂联用对土-水界面磷素迁移的影响.土壤学报.47:473-482.
    蒋茂贵,方芳,望志方.2009.MCR技术在农业面源污染防治中的应用.环境科学与技术.4-5.
    李建国,章明奎,周翠.2005.浙江省农业土壤酸缓冲性能的研究.浙江农业学报.17:207-211.
    梁涛,王浩,章申,张秀梅,于兴修.2003.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征.环境科学.24:35-40.
    刘瑾,杨建军,梁新强,胡永峰,施积炎,陈英旭.2011.同步辐射X射线吸收近边结构光谱技术在磷素固相形态研究中的应用.应用生态学报.22:2757-2764.
    鲁如坤.2000.土壤农业化学分析方法.中国农业出版社.
    聂泽宇,梁新强,邢波,叶玉适,钱轶超,余昱葳,边金云,顾佳涛,刘瑾,陈英旭.2012.基于氮磷比解析太湖苕溪水体营养现状及应对策略.生态学报.32:0048-0055.
    全为民,严力蛟.2002.农业面源污染对水体富营养化的影响及其防治措施.生态学报.22:291-299.
    孙小静,秦伯强,朱广伟,张战平.2007.风浪对太湖水体中胶体态营养盐和浮游植物的影响.环境科学.28:506-511.
    孙小静,张战平,朱广伟,秦伯强.2006.太湖水体中胶体磷含量初探.湖泊科学.18:231-237.
    滕玲玲,罗在波,江韬,魏世强.2008.聚丙烯酰胺对紫色土中磷素吸附特征的影响.生态环境.17:388-392.
    王道涵,梁成华.2002.农业磷素流失途径及控制方法研究进展.土壤与环境.11:183-188.
    王晓萍.1991.不同产量水平红壤茶园磷素状况的研究.中国茶叶.5:006.
    王旭东,杨雪芹.2006.聚丙烯酰胺对磷素在土壤中吸附-解析与迁移的影响.环境科学学报.26:300-305.
    王永壮,陈欣,史奕.2013.农田土壤中磷素有效性及影响因素.应用生态学报.24:260268.
    吴永红,胡正义,杨林章.2011.农业面源污染控制工程的“减源-拦截-修复”(3R)理论与实践.农业工程学报.27:1-6.
    夏海江,杜尧东,孟维忠.2000.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验.水土保持学报.14:14-17.
    熊毅.1979.土壤胶体的组成及复合.土壤通报.5:1-8.
    徐彭寿,潘国强.2009.同步辐射应用基础.中国科学技术大学出版社.
    严玉鹏,万彪,刘凡,谭文峰,刘名茗,冯雄汉.2012.环境中植酸的分布,形态及界面反应行为.应用与环境生物学报.18:494-501.
    晏维金,章申,唐以剑.2000.模拟降雨条件下沉积物对磷的富集机理.环境科学学报.20:332-337.
    杨林章,吴永红.2010.农业面源污染控制工程战略:“减源-拦截-修复,,(3R)理论与实践.中国水环境污染控制与生态修复技术高级研讨会.
    杨雪芹,胡田田,王旭东,王芳.2006.聚丙烯酰胺对磷素在土壤中吸附-解吸的影响.水土保持学报.20:87-90.
    员学锋,汪有科,吴普特,冯浩.2005.聚丙烯酰胺减少土壤养分的淋溶损失研究.农业环境科学学报.24:929-934.
    张林,吴宁,吴彦,罗鹏,刘琳,陈文年,胡红宇.2009.土壤磷素形态及其分级方法研究进展.应用生态学报.20:1775-1782.
    张涛,李永夫,姜培坤,周国模,秦华,刘娟.2012.雷竹林集约经营过程中土壤磷库的变化特征研究.中国农学通报.28:38-43.
    张维理,武淑霞,冀宏杰,Kolbe, H.2004a.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学.37:
    张维理,徐爱国,冀宏杰.Kolbe, H.2004b.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析.中国农业科学.37:1026-1033.
    张永兰,于群英.2008.长期施肥对潮菜地土壤磷素积累和无机磷组分含量的影响.中国农业科学.24:1843-1851.
    章明奎,王丽平.2007.旱耕地土壤磷垂直迁移机理的研究.农业环境科学学报.26:282-285.
    章明奎,周翠,方利平.2006.蔬菜地土壤磷饱和度及其对磷释放和水质的影响.植物营养与肥料学报.12:544-548.
    赵少华,宇万太,张璐,沈善敏,马强.2004.土壤有机磷研究进展.应用生态学报.15:2189-2194.
    朱兆良,孙波,杨林章,张林秀.2005.我国农业面源污染的控制政策和措施.科技导报.23:47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700