用户名: 密码: 验证码:
LAP晶体能量相关特性及金属硫氰酸盐晶体性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学科的交叉和融合大大推动了科学的发展,为世界科学家探索未知的奥秘和发现潜在的应用不断注入强大的活力,使新的研究领域不断出现。
     氨基酸分子是组成生物体蛋白质的基本结构单元,同时氨基酸盐晶体也是一类具有特色的新型非线性光学材料。L-精氨酸磷酸盐(LAP)晶体是山东大学创造性地运用分子工程和晶体结构的理论在国际上首创与研制的一种性能全面优异的生物氨基酸盐非线性光学晶体,并受到了国内外同行高度重视和认同。LAP晶体得到了国内外科学家的广泛研究,诸多独特的性能和特点相继被发现。日本科学家研究表明在激光波长为1053nm、脉冲宽度为1ns时,LAP晶体的激光损伤阈值可达到63GW/cm2,其氘化后的晶体(DLAP)损伤阈值更是高达87GW/cm2。1997年日本科学家发现了LAP和DLAP晶体优异的受激布里渊散射(SBS)性能,它们具有较低的SBS阈值和较高的SBS增益系数,作为SBS介质在相位共轭镜等方面具有重要的应用价值。同时磷酸精氨酸(PA)是无脊椎动物体内能量存储和传输的介质。
     LAP晶体独特的性能和特点引起了科学家们浓厚的兴趣,国内外都曾开展了一些研究工作,但一直没有找到这些独特性能和特点产生的本征原因及它们之间的关联。本论文首先通过分析生物体内能量存储和传递物质PA与LAP晶体的共性与差异,寻找精氨酸与磷酸之间的相互作用及精氨酸分子构象变化的规律,探索LAP晶体在各种能量(光、热、磁场等)作用下的性能及其与能量存储之间的关联。并在此基础上合成和制备新型功能晶体并对其性能进行研究。主要内容包括:
     1.通过分析生物体能量存储过程中PA的特性及LAP晶体能量作用下的独特的性能,探讨PA与LAP晶体的共性与差异。
     生物能量存储和传递过程中,生物体内的磷酸原物质发挥了重要的作用,如PA和磷酸肌酸(PC)。它们都具有高能的磷酸胍键,能够存储和传递大量的生物能量。同时精氨酸分子还具有构象易变和多样性的特点。LAP晶体是由天然碱性氨基酸之一的L-精氨酸分子和无机酸磷酸分子有序排列组成。在不同的结晶态下L-精氨酸分子的构象和空间结构不同。虽然PA在生物体中和LAP晶体所处的环境不同,但两者具有相同的结构基元及能量作用下的相关性能。
     2.探索研究LAP晶体在光能、热能及磁场作用下的性能。
     (1)通过光谱学和激光损伤实验研究LAP晶体在寻常光与强激光作用下的性能。在强激光作用下LAP晶体表现出极高的损伤阈值,损伤区域的结构变化很小,LAP晶体可以在结构变化很小的前提下抵御很高的激光能量。
     (2)通过热学性能、变温X射线及高温单晶衍射研究在热能作用下LAP晶体的性能。变温X射线衍射研究发现:温度升高至90℃过程中有8条新的衍射峰出现,而当温度降到室温时,新的衍射峰会慢慢消失至恢复到原样。高温单晶衍射发现在热能影响下L-精氨酸的构象由弯曲状逐渐向伸展状转变。
     (3)用核磁共振实验研究LAP晶体在磁场作用下的性能。发现LAP晶体在结晶态具有超长的纵向弛豫时间(1HTl为184s)。溶液核磁共振实验表明,随着磷酸量的增多,L-精氨酸由伸展状的高能态构象转化为折叠状的稳定态构象。
     (4)利用基于密度泛函理论(DFT)的第一性原理计算方法研究了LAP晶体特异性能产生的根源。从电荷密度得出LAP晶体中L-精氨酸与磷酸形成了强烈的类似共价键的相互作用,这种强烈的相互作用可能是LAP晶体独特性能产生的根源。超极化率计算结果表明LAP晶体的非线性光学响应是L-精氨酸离子内的电荷跃迁转移跟磷酸根与L-精氨酸离子间的电荷跃迁转移共同作用产生的。
     3.设计、合成和生长新型的胍基磷酸化合物晶体,并对其光电性能进行研究。
     PC是有脊椎动物体内能量存储和传输的介质,它跟PA具有相似的胍基和磷酸基团,通过高能的磷酸胍键进行能量存储和传递。为了系统研究LAP晶体独特性能与能量存储之间的关联,探索研究了一系列具有肌酸和相同胍基磷酸基团的晶体,并对其中的磷酸胍(G2HP)晶体进行了详细的研究。
     通过溶液降温法生长出了最大尺寸为55x28x27mm3的G2HP单晶。利用单晶衍射解析了其晶体结构。晶体结构是两个独立的胍基基团、一个独立的磷酸根基团及一个结晶水,通过氢键相互作用连接而成。
     系统研究了G2HP晶体热学、激光损伤、光学和压电性能。G2HP晶体具有较大的比热和较小的热膨胀各项异性。晶体的热传导性能随着温度的升高而逐渐降低且具有很高的抗激光损伤阈值。该晶体具有较宽的透过波段,紫外截止波长为212nm,相对LAP晶体向紫外移动了8nm。晶体属于光学正单轴晶且具有适当的双折射。通过设计不同的晶体切型,对G2HP晶体介电、弹性和压电的各个系数进行了测量。结果表明晶体具有较好的压电性能,压电系数d14和d36的测量值分别为10.00和4.01pC/N。并结合第一性原理计算对其结构功能关系进行了研究。
     4.金属硫氰酸盐晶体生长、光电性能及机理研究。
     金属硫氰酸盐晶体是本课题组在双重基元结构模型理论下探索的一类性能优异的光电功能晶体材料。这类配合物型材料将无机晶体中畸变多面体同有机晶体的共轭体系电荷转移有机地结合起来,使其兼备有机跟无机晶体材料的诸多优点。对此类材料的研究主要集中在其优异的非线性光学性能,对其他的物理性能(如压电性能)及组成、结构与性能之间的关系的研究都比较少,本论文对其中性能优异的MMTC、CMTD、MMTD晶体的生长、形貌、光学和压电性能及光电性能产生机理等做了系统的研究。
     (1) MMTC晶体的生长与性能研究。
     利用显微结晶方法探索MMTC晶体最佳生长条件。该晶体生长过程中存在开裂、包裹体和螺位错等缺陷。系统地研究了MMTC晶体的光学性能和压电性能。MMTC晶体具有较宽的透过波段且能够实现位相匹配,其粉末倍频效率与KTP晶体相当。设计不同的晶体切型对MMTC晶体的介电和压电系数进行了测量。结果表明该晶体具有优异的压电性能,最大的压电应变常数d15=22.7pC/N。利用第一性原理分析了其光电性能的起源。MMTC非线性光学响应是由-N=C=S-和畸变的多面体相互作用叠加的结果。晶体的强压电效应主要是由体系中的畸变多面体导致晶体内部的正负电荷不平衡而产生的。
     (2) CMTD及MMTD晶体的生长与性能研究。
     用两种方法对CMTD及MMTD晶体原料进行了合成。用降温法生长出了大尺寸晶体,并对其生长形貌进行了研究。由于DMSO的引入使得两个晶体比ABTC晶体更加容易生长。两个晶体结构十分相近,都属于层状结构,主要由畸变的HgS4四面体和CdN4O2或者MnN4O2八面体由-S=C=N-连接而成。系统地对两个晶体的线性及非线性光学性能进行了研究。用V棱镜法测定了CTMD和MMTD晶体的折射率色散方程,并对其位相匹配轨迹进行了计算。两个晶体都属于光学负双轴,都可以实现第1类和II类位相匹配。非线性光学性能测试结果表明它们具有比CMTC及MMTC晶体更加优异的非线性光学性能,其粉末倍频效率都约为KTP晶体的1.2倍。设计了不同的晶体切型,测试了CMTD晶体的压电性能。CMTD晶体具有优异的压电性能,其具有较大压电应变常数436=20.40pC/N。配体的加入,使得结构的畸变更大,有效增强了其光电性能。
Crossover and amalgamation of subjects have greatly promoted the development of science, which injects strong vitality to scientists to explore unknown mysteries and discover potential applications and makes a large number of novel research fields appear constantly.
     Amino acids are the basic structural units of biological proteins. Meanwhile, the amino acid salt derivate crystals are also a kind of distinctive nonlinear optical (NLO) materials. L-aringine phosphate monohyarate (abbreviated as LAP) was firstly discovered by Shandong University using molecular engineering and crystal structure theory as an excellent biological amino acid salt NLO crystal and obtained a great deal of authorizations. Extensive researches have been carried out to investigate LAP crystal and many unique properties and characteristics of the crystal were found. Research results achieved by Japanese scientists indicated that laser-induced damage threshold of LAP crystal is63GW/cm2with wavelength of1053nm and pulse-width at1ns. Furthermore, the deuterated analogue (DLAP) crystal possesses extremely high threshold of87GW/cm2. In1997, Japanese scientists discovered excellent stimulated brillouin scattering (SBS) performance of LAP and DLAP crystals. They have many important applications as a phase conjugate mirror because of low SBS thresholds and high SBS gain coefficients. Meanwhile, phosphate arginine (abbreviated as PA) works as the medium carrier for bioenergy transport and storage in invertebrates.
     The unique properties of LAP crystal have attracted much attention of the worldwide scientists. Many investigations have been carried out on this issue. However, it has not obtained the credit reason and correlation for the performance. For exploring the specific performance of LAP under energy interaction (light, heat, magnetic field) and the relation to energy storage, the interactions between arginine and phosphate, and the rule for the changes in molecular conformation of arginine are sought through analyzing the structural similarities and differences between PA as the bioenergy transport carrier and LAP crystal in the dissertation. Meanwhile, a series of novel functional crystals are prepared and characterized. The main contents are as follows:
     1. The structural similarities and differences between PA as the bioenergy transport carrier and LAP crystal were analyzed and summarized.
     Phosphagens such as PA and phosphocreatine (PC), play an important role during bioenergy storage and transfer. They all possess high-energy phosphate guanidine bonds which can store and transmit a large amount of bioenergy. Meanwhile, the arginine molecules have conformational variability and diversity. LAP crystal is orderly composed of L-arginine molecules and inorganic phosphate molecules. In different crystalline states, the molecule conformation and spatial structure of L-arginine are different. Although the environment of PA in the organism and LAP in crystalline state are very different, there are many similarities between them, such as the same structural units and energy related properties.
     2. The specific performances of LAP under energy interaction (light, heat, magnetic field) were explored.
     (1) The spectroscopy and laser-induced damage threshold measurements were carried out to investigate the specific performance of LAP under light. The crystal exhibits an extremely high laser-induced damage threshold and small structural changes occur in damage area. LAP crystal can resist high laser energy with small structural changes.
     (2) The thermal behaviors, including thermal properties, temperature dependence X-ray diffraction (XRD) and high temperature single-crystal XRD were investigated to study the specific performance under heat interaction. The G2HP crystal possesses relatively large specific heat and strong anisotropic thermal expansions. There is a reversible specific phase transition as the temperature changed. The conformation of arginine changes from a folded state to an extended one with the increasing of temperature.
     (3) The nuclear magnetic resonance (NMR) spectra were performed to explore the specific performance and change in conformation of LAP under magnetic field interaction. The saturation recovery experiments have shown that the crystal has a long proton spin-lattice relaxation time (Ti), which may be caused by the strong interaction between guanidine and phosphate groups in the crystal. The solution NMR experiments showed that, with the increase of the phosphoric acid, L-arginine changed from a stretching high-energy conformation to a folded stable conformation.
     (4) The first-principle calculations based on density functional theory (DFT) were carried out to explore the origin for the specific performance of LAP. From the electric charge density, it was found that there is a strong arginine-phosphate electrostatic interaction which possesses a "covalent-like" stability. The hyperpolarizability results showed that the intramolecular charge transfer of L-aringine and the intermolecular charge transfer between L-arginine and phosphate are all responsible for the NLO response of LAP crystal.
     3. Novel guanidine phosphate compound crystals were designed, synthesized and grown, and the performance was also carried out.
     PC, which has the same guanidine and phosphate groups as PA, plays an important role during bioenergy storage and transfer in vertebrate. In order to investigate the correlation between the unique properties of LAP crystal and energy storge, several novel creatine and guanidine phosphate compounds were developed, and detailed researches were carried out for diguanidinium phosphate monohydrate (G2HP) crystal.
     Bulk single crystals of G2HP with dimensions up to55x28x27mm3have been grown by solution growth method. In the structure, there are two separate guanidyl groups and one phosphate group, which are connected by hydrogen bonds.
     Thermal properties, laser-induced damage threshold, optical behaviors and piezoelectric properties of G2HP crystal were detailed investigated. The G2HP crystal possesses relatively large specific heat and weak anisotropic thermal expansion. The thermal conductivities are descending as the temperature increases. The crystal also possesses an excellent resistance to laser radiation with a high threshold. G2HP crystal presents a broad transmission range with an ultraviolet transparency cutoff at212nm which shows8nm hypsochromic shift compared with that of LAP crystal. The refractive index measurements show that G2HP is an optically positive uniaxial crystal with suitable birefringence. The complete set of dielectric, elastic and piezoelectric constants of G2HP have been measured through designing different crystal cuts. The results showed that the crystal also has fine piezoelectric properties of d14=10.00,d36=4.01pC/N. Furthermore, the structure-property relationships are discussed on the basis of crystal structure combined with first-principle calculations.
     4. Crystal growth, photoelectric properties and mechanisms of metallic thiocyanate crystals were studied.
     Metallic thiocyanate crystals, which were developed under the guidance of the double radical structure model theory by our group, are excellent photoelectric functional crystalline materials. Such materials combine the inorganic distorted polyhedra with asymmetric conjugate organic molecules, which can take both the advantages of organic and inorganic crystal materials. The investigations for these materials are mainly focus on their excellent nonlinear properties. Apart from these studies, the physical properties (such as piezoelectric properties) and the composition-structure-property relationships of these materials have not been carried out to date. Three of them including MMTC, CMTD and MMTD crystals are systemically investigated in the dissertation based on the bulk crystal growth, morphologies, optical properties, piezoelectric properties and mechanisms.
     (1) Growth and performance of MMTC crystal
     The growth habit of MMTC crystal was investigated by means of micro-crystallization method. Bluk crystals of MMTC were grown by the following conditions:pH value ranging from1.5to2.5and NH4Cl concentration ranging from10%to15%. Several kinds of defects including cracks, inclusions and screw dislocation have been found during the crystal growth.
     The optical and piezoelectric properties of MMTC crystal were detailed investigated. MMTC crystal is a phase matchable NLO material with wide optical transmission range and the SHG efficiency is nearly the same as that of KTP crystal. The complete set of dielectric and piezoelectric constants of MMTC have been measured through design different crystal cuts. The results showed that the crystal possesses excellent piezoelectric properties with the largest piezoelectric constants d15=22.7pC/N. The origin of the photoelectric properties was analyzed using first-principle calculations. The SHG response of MMTC mainly stems from the synergistic effect-N=C=S-ligands and distorted polyhedra. In addition, these distortions destroy the superposition of the positive and negative charge centers in the cell, which leads to the very large piezoelectric effect.
     (2) Growth and performance of CMTD and MMTD crystals
     Two methods were used to prepare the raw material of CMTD and MMTD in aqueous solutions. A higher purity and yield of crystalline powder was obtained using the two-step reaction compared with the one-step one, but the procedure is somewhat complicated. Bulk single crystals were obtained by the temperature-lowering method and the growth morphologies were also investigated. The introduction of DMSO improved the growth of the two crystals than that of ABTC crystals. The crystal structures of the two crystals are very similarity, which belong to orthorhombic system, P212121space group. The compounds exhibit a neutral layered structure consisting of an asymmetric HgS4tetrahedron and CdN4O2or MnN4O2octahedron which are connected by-S=C=N-ligands.
     The optical and piezoelectric properties of the two crystals were detailed investigated. Refractive indices of CMTD and MMTD were measured by the V-prism method. On the basis of the Sellmeier equations, the phase-matching angles (0,9) for SHG of1064nm were calculated. The results indicated that the two crystals are optically negative biaxial and Type Ⅰ and Type Ⅱ phase-matchable within limits. The NLO property-measurements indicate that the two crystal exhibits stronger SHG effects than CMTC and MMTC, and both of which are1.2times as high as that of KTiOPO4. The piezoelectric properties of CMTD have been measured through designing different crystal cuts. The crystal possesses excellent piezoelectric properties with the largest piezoelectric constants d36=20.40pC/N, and the electromechanical coupling coefficient k36can reach34.06%. The origin of the photoelectric properties was investigated using first-principle calculations. The introduction of ligands increases the structure distortion and effectively enhances the photoelectric properties of the crystals.
引文
[1]S.R. Speed, J. Baldwin, R.J. Wong, R.M.G. Wells, Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport, Comp. Biochem. Physiol. B:Biochem. Mol. Biol.,128 (2001)435-444.
    [2]J. Baldwin, A. Gupta, X. Iglesias, Scaling of anaerobic energy metabolism during tail flipping behaviour in the freshwater crayfish, Cherax destructor, Mar. Freshwater Res.,50 (1999) 183-187.
    [3]S.P. Bessman, C.L. Carpenter, The creatine-creatine phosphate energy shuttle, Annu. Rev. Biochem 54 (1985) 831-862.
    [4]H. Langer, I. Lues, M.E. Rivera, Arginine phosphate in compound eyes, Journal of comparative physiology,107(1976) 179-184.
    [5]王镜岩,朱圣庚,徐长法,生物化学,高等教育出版社,2002.
    [6]D. Xu, M.H. Jiang, Z.K. Tan, A new phase matchable nonlinear optical crystal L-arginine phosphate monohydrate (LAP), Acta Chim. Sinica 1(1983) 230-233.
    [7]S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, D. Eimerl, A. Zalkin, Synthesis and characterization of chemical analogs of L-arginine phosphate, J. Cryst. Growth 85 (1987) 252-255.
    [8]D. Isakov, E. de Matos Gomes, M.S. Belsley, V.H. Rodrigues, M.M. Ramalho Costa, Synthesis, structure and non-linear optical properties of 1-argininium perrhenate crystal, CrystEngComm,14 (2012) 3767-3771.
    [9]S.R. Domingos, P.S. Silva, W.J. Buma, M.H. Garcia, N.C. Lopes, J.A. Paixao, M.R. Silva, S. Woutersen, Amplification of the linear and nonlinear optical response of a chiral molecular crystal, J. Chem. Phys.,136 (2012) 134501.
    [10]X.J. Liu, Z.Y. Wang, X.Q. Wang, GH. Zhang, S.X. Xu, A.D. Duan, S.J. Zhang, Z.H. Sun, D. Xu, Morphology and physical properties of L-arginine triffuoroacetate crystals, Crystal Growth & Design,8 (2008) 2270-2274.
    [11]Z.H. Sun, GH. Zhang, X.Q. Wang, Z.L. Gao, X.F. Cheng, S.J. Zhang, D. Xu, Growth, Morphology, Thermal, Spectral, Linear, and Nonlinear Optical Properties of L-Arginine Bis(trifluoroacetate) Crystal, Crystal Growth & Design,9 (2009) 3251-3259.
    [12]G.H. Sun, G.H. Zhang, Z.H. Sun, X.Q. Wang, D. Xu, Growth, crystal structure and characterization of a nonlinear optical crystal:Deuterated 1-arginine trifluoroacetate, Mater. Chem. Phys.,127 (2011) 265-270.
    [13]R. Ittyachan, P. Sagayaraj, Growth and characterization of a new nonlinear optical 1-histidine diphosphate single crystal, J. Cryst. Growth 249 (2003) 553-556.
    [14]T.L. Chen, Z.H. Sun, C. Song, Y. Ge, J.H. Luo, W. Lin, M.C. Hong, Bulk Crystal Growth and Optical and Thermal Properties of the Nonlinear Optical Crystall-Histidinium-4-nitrophenolate 4-Nitrophenol (LHPP), Crystal Growth & Design,12 (2012) 2673-2678.
    [15]L.N. Wang, X.Q. Wang, GH. Zhang, X.T. Liu, Z.H. Sun, GH. Sun, L. Wang, W.T. Yu, D. Xu, Single crystal growth, crystal structure and characterization of a novel crystal:1-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP), J. Cryst. Growth 327 (2011) 133-139.
    [16]X. Liu, X. Wang, X. Yin, S. Liu, W. He, L. Zhu, G Zhang, D. Xu, Bulk growth and physical properties of diguanidinium phosphate monohydrate (G2HP) as a multi-functional crystal, CrystEngComm,16 (2014) 930-938.
    [17]L. Wang, GH. Zhang, X.T. Liu, L.N. Wang, X.Q. Wang, L.Y. Zhu, D. Xu, A novel 1-arginine salt nonlinear optical crystal:1-arginine p-nitrobenzoate monohydrate (LANB), J. Mol. Struct.,1058 (2014) 155-162.
    [18]D.H. Auston, A.A. Ballman, P. Bhattacharya, GJ. Bjorklund, C. Bowden, R.W. Boyd, P.S. Brody, R. Burnham, R.L. Byer, G. Carter, D. Chemla, M. Dagenais, G Dohler, U. Efron, D. Eimerl, R.S. Feigelson, J. Feinberg, B.J. Feldman, A.F. Garito, E.M. Garmire, H.M. Gibbs, A.M. Glass, L.S. Goldberg, R.L. Gunshor, T.K. Gustafson, R.W. Hellwarth, A.E. Kaplan, PL. Kelley, F.J. Leonberger, R.S. Lytel, A. Majerfeld, N. Menyuk, G.R. Meredith, R.R. Neurgaonkar, N.G Peyghambarian, P. Prasad, G Rakuljic, Y.R. Shen, P.W. Smith, J. Stamatoff, G. Stegeman, G. Stillman, C.L. Tang, H. Temkin, M. Thakur, GC. Valley, P.A. Wolff, C. Woods, Research on nonlinear optical materials:an assessment, Appl. Opt.,26 (1987) 211-211.
    [19]D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, G Kennedy, Deuterated L-arginine phosphate:a new efficient nonlinear crystal, IEEE J. Quantum Electron.,25 (1989) 179-193.
    [20]A. Yokotani, T. Sasaki, K. Yoshida, S. Nakai, Extremely high damage threshold of a new nonlinear crystal L-arginine phosphate and its deuterium compound, Appl. Phys. Lett.,55 (1989) 2692-2693.
    [21]C.E. Barker, D. Eimerl, S.P. Velsko, Temperature-insensitive phase matching for second-harmonic generation in deuterated I-arginine phosphate, J. Opt. Soc. Am. B,8 (1991) 2481-2492.
    [22]G. Robertson, M.H. Dunn, Excimer pumped deuterated L-arginine phosphate optical parametric oscillator, Appl. Phys. Lett.,62 (1993) 3405-3407.
    [23]H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, K. Yoshida, High-energy operation of a stimulated Brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal, Appl. Opt.,36 (1997) 7783-7787.
    [24]M. Yoshimura, Y. Mori, T. Sasaki, H. Yoshida, M. Nakatsuka, Efficient stimulated Brillouin scattering in the organic crystal deuterated L-arginine phosphate monohydrate, J. Opt. Soc. Am. B,15 (1998) 446-450.
    [25]X. Liu, L. Wang, L. Wang, G Zhang, X. Wang, D. Xu, Investigation on Relationship Between Energy Storage and Special Performance of L-arginine Phosphate Monohydrate (LAP) Crystal, International Journal of Material Science, 4 (2014).
    [26]K. Aoki, K. Nagano, Y. Iitaka, The crystal structure of 1-arginine phosphate monohydrate, Acta Crystallographica Section B,27 (1971) 11-23.
    [27]J. Becker, A. Bernhardt, ISO 11254:an international standard for the determination of the laser-induced damage threshold, in:Laser-Induced Damage in Optical Materials:1993, International Society for Optics and Photonics,1994, pp.703-713.
    [28]张克从,张乐潓,晶生长科学与技术,科学出版社,1997.
    [29]杨兆荷,杨忠森,用差示扫描量热法测量LAP晶体的比热,人工晶体学报,(1989)160-164.
    [30]D. Eimerl, J. Marion, E.K. Graham, H.A. McKinstry, S. Haussuhl, Elastic constants and thermal fracture of AgGaSe2 and dLAP, Quantum Electronics, IEEE Journal of,27 (1991) 142-145.
    [31]V.G. Dmitriev, GG. Gurzadyan, D.N. Nicogosyan, Handbook of Nonlinear Optical Crystals, Springer-Verlag, New York,1999.
    [32]D. Eimerl, The potential for efficient frequency conversion at high average power using solid state nonlinear optical materials, LLNL Report UCID,20565 (1985)92-95.
    [33]G. Dhanaraj, M.R. Srinivasan, H.L. Bhat, H.S. Jayanna, S.V. Subramanyam, Thermal and electrical properties of the novel organic nonlinear crystal L-arginine phosphate monohydrate, J. Appl. Phys.,72 (1992) 3464-3467.
    [34]GC. Bhar, A.K. Chaudhary, P. Kumbhakar, Study of laser induced damage threshold and effect of inclusions in some nonlinear crystals, Appl. Surf. Sci.,161 (2000) 155-162.
    [35]R. Chiao, C. Townes, B. Stoicheff, Stimulated Brillouin scattering and coherent generation of intense hypersonic waves, Phys. Rev. Lett.,12 (1964) 592.
    [36]R.Y. Chiao, E. Garmire, C. Townes, Self-trapping of optical beams, Phys. Rev. Lett.,13(1964)479.
    [37]H. Yoshida, M. Nakatsuka, Advanced Stimulated Brillouin Scattering for Phase Conjugate Mirror Using LAP, DLAP Crystals and Silica Glass, John Wiley & Sons, Inc.,2005.
    [38]H. Yoshida, M. Nakatsuka, High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials, in:Lasers and Electro-Optics,2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on,2005, pp.1166-1167.
    [39]A. Brignon, S. Richard, A. Gusarov, F. Berghmans, M. Georges, T. Thibert, Y. Lien, Assessment of space radiation effects on solid-state Brillouin phase conjugate mirrors, Appl. Opt.,46 (2007) 5329-5335.
    [40]T. Sonehara, Y. Konno, H. Kaminaga, S. Saikan, S. Ohno, Frequency-modulated stimulated Brillouin spectroscopy in crystals, J. Opt. Soc. Am. B,24 (2007) 1193-1198.
    [41]H. Guang S, Chapter 4 Stimulated Scattering Effects of Intense Coherent Light, in:E. Wolf (Ed.) Progress in Optics, Elsevier,2009, pp.201-292.
    [42]W. Hasi, X. Guo, X. Li, X. Geng, Z. Lu, D. Lin, W. He, R. Fan, A new method to improve the loading capacity of stimulated Brillouin scattering phase-conjugating mirror, Applied Physics B:Lasers and Optics,100 (2010) 577-580.
    [43]Z. Haoping, T. Xiao, Z. Mingzhuo, S. Zhongsu, X. Dong, J. Minghua, Brillouin Scattering Study on the single crystals of 1-arginine phosphate (LAP), Zeitschrift fur Physik B Condensed Matter,69 (1987) 289-293.
    [44]肖涛,王维娜,海洋无脊椎动物体内能量物质——磷酸精氨酸的研究进展,海洋湖沼通报,(2006)96-103.
    [45]S. Gudbjarnason, P. Mathes, K. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle, Journal of molecular and cellular cardiology,1 (1970) 325-339.
    [46]W. Lamprecht, P. Stein, F. Heinz, H. Weisser, Creatine phosphate, Methods of enzymatic analysis,4 (1974) 1777-1781.
    [47]Z.G. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials:Synthesis, Properties and Applications, CRC, Boca Raton, FL, USA, 2008.
    [48]K.M. Ok, E.O. Chi, P.S. Halasyamani, Bulk characterization methods for non-centrosymmetric materials:second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev.,35 (2006) 710-717.
    [49]T. Hang, W. Zhang, H.Y. Ye, R.G Xiong, Metal-organic complex ferroelectrics, Chem. Soc. Rev.,40 (2011) 3577-3598.
    [50]C. Wang, T. Zhang, W.B. Lin, Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics, Chem. Rev.,112 (2012) 1084-1104.
    [51]D.W. Fu, H.L. Cai, Y.M. Liu, Q. Ye, W. Zhang, Y. Zhang, X.Y. Chen, G. Giovannetti, M. Capone, J.Y. Li, R.G Xiong, Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal, Science,339 (2013) 425-428.
    [52]Z. Sun, T. Chen, J. Luo, M. Hong, Bis(imidazolium) L-Tartrate:A Hydrogen-Bonded Displacive-Type Molecular Ferroelectric Material, Angew. Chem. Int. Ed.,51 (2012) 3871-3876.
    [53]W.G. Zhang, P.S. Halasyamani, Z.L. Gao, S.P. Wang, J. Wang, X.T. Tao, Anisotropic Thermal Properties of the Nonlinear Optical and Polar Oxide Material Na2TeW2O9, Crystal Growth & Design,11 (2011) 3636-3641.
    [54]J.J. Zhang, Z.H. Zhang, W.G Zhang, Q.X. Zheng, Y.X. Sun, C.Q. Zhang, X.T. Tao, Polymorphism of BaTeMo2O9:A New Polar Polymorph and the Phase Transformation, Chem. Mater.,23 (2011) 3752-3761.
    [55]H.P. Wu, S.L. Pan, K.R. Poeppelmeier, H.Y. Li, D.Z. Jia, Z.H. Chen, X.Y. Fan, Y. Yang, J.M. Rondinelli, H.S. Luo, K3B6O10Cl:A New Structure Analogous to Perovskite with a Large Second Harmonic Generation Response and Deep UV Absorption Edge, J. Am. Chem. Soc.,133 (2011) 7786-7790.
    [56]C.F. Sun, C.L. Hu, X. Xu, B.P. Yang, J.G Mao, Explorations of New Second-Order Nonlinear Optical Materials in the Potassium Vanadyl Iodate System, J. Am. Chem. Soc.,133 (2011) 5561-5572.
    [57]P.J. Kim, M. Jazbinsek, O.P. Kwon, Selective Growth of Highly Efficient Electrooptic Stilbazolium Crystals by Sequential Crystal Growth in Different Solvents, Crystal Growth & Design,11 (2011) 3060-3064.
    [58]P.J. Kim, J.H. Jeong, M. Jazbinsek, S.B. Choi, I.H. Baek, J.T. Kim, F. Rotermund, H. Yun, Y.S. Lee, P. Gunter, O.P. Kwon, Highly Efficient Organic THz Generator Pumped at Near-Infrared:Quinolinium Single Crystals, Adv. Funct. Mater.,22 (2012) 200-209.
    [59]T. Chen, Z. Sun, J.-P. Niu, Q.-G. Zhai, C. Jin, S. Wang, L. Li, Y. Wang, J. Luo, M. Hong, Optical properties, micro-crystallization and etching studies of an organic/inorganic hybrid nonlinear optical crystal:41-Ethyl-3-methyl imidazolium tribromoplumbate (EMITB), J. Cryst. Growth 325 (2011) 55-59.
    [60]许东,蒋民华,陶绪堂,邵宗书,双重基元结构模型与金属有机络合物高效倍频晶体的研究, J. Synth. Cryst.,16 (1987) 1-8.
    [61]许东,陶绪堂,袁多荣,蒋民华,络合物型倍频基元的探讨,人工晶体,(1988)258.
    [62]M.H. Jiang, Q. Fang, Organic and Semiorganic Nonlinear Optical Materials, Adv. Mater.,11(1999)1147-1151.
    [63]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, Crystal growth and characterization of the organometallic nonlinear optical crystal:manganese mercury thiocyanate (MMTC), Mater. Res. Bull.,36 (2001) 879-887.
    [64]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, X. Yin, G.H. Zhang, S.X. Xu, G.W. Lu, C.F. Song, S.Y. Guo, J.R. Liu, G.Y. Zhou, D. Wang, Z.H. Yang, X. Zhao, Q. Ren, J.Q. Zhao, W.L. Liu, Crystal growth and physical properties of UV nonlinear optical crystal zinc cadmium thiocyanate, ZnCd(SCN)4, Chem. Phys. Lett.,346 (2001) 393-406.
    [65]GH. Zhang, D. Xu, M.K. Lu, D.R. Yuan, X.Q. Wang, F.Q. Meng, S.Y. Guo, Q. Ren, M.H. Jiang, Violet light generation by frequency doubling of GaAlAs diode laser using a metallo-organic complex crystal ZnCd(SCN)4, Opt. Laser Technol., 33 (2001) 121-124.
    [66]张光辉,许东,吕孟凯,袁多荣,王新强,孟凡青,郭世义,任诠,用ZCTC晶体倍频半导体激光的紫光输出,光学学报,(2001)305-308.
    [67]X.Q. Wang, D. Xu, X.F. Cheng, M.K. Lu, D.R. Yuan, J. Huang, G.W. Lu, H.X. Ning, X.L. Duan, Z.M. Wang, GT. Lu, S.G Li, Y. Chen, Y.Q. Zhou, Spectroscopic and thermal behavior of ZnHg(SCN)4, Mater. Res. Bull.,37 (2002) 1859-1871.
    [68]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, X.F. Cheng, S.G. Li, J. Huang, S.L. Wang, Crystal growth, spectral and thermal properties of nonlinear optical crystal: MnHg(SCN)4, J. Cryst. Growth 245 (2002) 126-133.
    [69]X. Yin, X. Wang, M. Lu, D. Xu, Measurement of Electro-Optic Coefficients of ZnCd(SCN)4 Crystal, physica status solidi (a),191 (2002) 267-271.
    [70]X.Q. Wang, D. Xu, S.G. Li, J. Huang, W. Du, Thermal decomposition study of ZnHg(SCN)4 in air, Cryst. Res. Technol.,41 (2006) 55-58.
    [71]X.T. Liu, X.Q. Wang, Z.H. Sun, X.J. Lin, GH. Zhang, D. Xu, Study on micro-crystallization, growth, optical properties and defects of a nonlinear optical crystal:MnHg(SCN)4, J. Cryst. Growth 317 (2011) 92-97.
    [72]D.R. Yuan, D. Xu, M.G. Liu, F. Qi, W.T. Yu, W.B. Hou, Y.H. Bing, S.Y. Sun, M.H. Jiang, Structure and properties of a complex crystal for laser diode frequency doubling:Cadmium mercury thiocyanate, Appl. Phys. Lett.,70 (1997) 544-546.
    [73]D.R. Yuan, Z.W. Zhong, M.G. Liu, D. Xu, Q. Fang, Y.H. Bing, S.Y. Sun, M.H. Jiang, Growth of cadmium mercury thiocyanate single crystal for laser diode frequency doubling, J. Cryst. Growth 186 (1998) 240-244.
    [74]GH. Zhang, M.G. Liu, D. Xu, D.R. Yuan, W.D. Sheng, J.Q. Yao, Blue-violet light second harmonic generation with CMTC crystals, J. Mater. Sci. Lett.,19 (2000) 1255-1257.
    [75]S.Y. Guo, D. Xu, M.K. Lv, D.R. Yuan, Z.H. Yang, GH. Zhang, S.Y. Sun, X.Q. Wang, M. Zhou, M.H. Jiang, P. Yang, W.T. Yu, A novel organometallic nonlinear optical complex crystal:Cadmium mercury thiocyanate dimethyl-sulphoxide, Prog. Cryst. Growth Charact. Mater.,40 (2000) 111-114.
    [76]周梅,郭世义,许东,一种全新的非线性光学材料金属有机配合物硫氰酸汞镉合乙二醇一甲醚(GCMTC),人工晶体学报,(2000)325-328.
    [77]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, S.Y. Guo, GH. Zhang, J.R. Liu, Crystal growth and characterization of a novel organometallic nonlinear-optical crystal:MnHg(SCN)4(C2H6OS)2, J. Cryst. Growth 224 (2001) 284-293.
    [78]X.L. Duan, D.R. Yuan, X.Q. Wang, X.F. Cheng, Z.H. Yang, S.Y. Guo, H.Q. Sun, D. Xu, M.K. Lu, Preparation and characterization of nonlinear optical crystal materials:Cadmium mercury thiocyanate and its Lewis base adducts, Cryst. Res. Technol.,37 (2002) 446-455.
    [79]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, J. Huang, X.F. Cheng, S.L. Wang, S.Y. Guo, G.H. Zhang, M. Pan, X.L. Duan, Z.H. Yang, Crystal growth and characterization of a new organometallic nonlinear-optical crystal material MnHg(SCN)4(C3H8O2), Phys. Status Solidi A191 (2002) 106-116.
    [80]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, J. Huang, X.F. Cheng, T.X. Xie, GH. Zhang, S.L. Wang, S.Y. Guo, J.R. Liu, Z.H. Yang, P. Wang, Growth and characterization of a novel UV nonlinear optical crystal: MnHg(SCN)4(H2O)2 · 2C4H9NO, J. Cryst. Growth 234 (2002) 469-479.
    [81]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, X.F. Cheng, J. Huang, S.L. Wang, W.T. Yu, H.Q. Sun, X.L. Duan, Q. Ren, H.L. Yang, Growth morphology and thermal properties of the organometailic nonlinear optical crystal: MnHg(SCN)4(C2H6OS)2, Chem. Phys. Lett.,367 (2003) 230-237.
    [82]X.Q. Wang, X.F. Cheng, S.J. Zhang, D. Xu, GH. Zhang, Z.H. Sun, F.P. Yu, X.J. Liu, W.L. Liu, C.L. Chen, Single crystal growth, structural characterization, thermal and optical properties of a novel organometailic nonlinear optical crystal: MnHg(SCN)4(C2H5NO)2, Physica B-Condensed Matter,405 (2010) 1071-1080.
    [83]X.T. Liu, X.Q. Wang, X.J. Lin, GH. Sun, GH. Zhang, D. Xu, Growth, Characterization and Theoretical Study of a Novel Organometailic Nonlinear Optical Crystal:CdHg(SCN)4(C2H5NO)2, Appl. Phys. A107 (2012) 949-957.
    [84]X. Liu, X. Wang, X. Yin, S. Zhang, L. Wang, L. Zhu, G Zhang, D. Xu, Characterization and strong piezoelectric response of an organometailic nonlinear optical crystal:CdHg(SCN)4(C2H6SO)2, J. Mater. Chem. C,2 (2014) 723-730.
    [1]江志明,超短高功率脉冲激光与物质相互作用及其应用,中国激光,23(1996)513-519.
    [2]K. Aoki, K. Nagano, Y. Iitaka, The crystal structure of 1-arginine phosphate monohydrate, Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,27 (1971) 11-23.
    [3]王镜岩,朱圣庚,徐长法,生物化学,高等教育出版社,2002.
    [4]D.M. Salunke, M. Vijayan, specific interactions involving guanidyl group observed in crystal structures, Int. J. Pept. Protein Res.,18 (1981) 348-351.
    [5]M.E. Morales, M.B. Santillan, E.A. Jauregui, G.M. Ciuffo, Conformational behavior of 1-arginine and NG-hydroxy-1-arginine substrates of the NO synthase, Journal of Molecular Structure:THEOCHEM,582 (2002) 119-128.
    [6]L. Xian, S. Liu, Y. Ma, G. Lu, Influence of hydrogen bonds on charge distribution and conformation of 1-arginine, Spectrochim. Acta, Part A 67 (2007) 368-371.
    [7]庞小峰,关于生物能量在生命体系中的传递研究(I),西南民族学院学报:自然科学版,23(1997)73-84.
    [8]庞小峰,关于生物能量在生命体系中的传递研究(II),西南民族学院学报:自然科学版,23(1997)183-195.
    [9]庞小峰,生物能量在生命体中传递的新理论及应用,中国基础科学,(2001)14-20.
    [10]W. Lamprecht, P. Stein, F. Heinz, H. Weisser, Creatine phosphate, Methods of enzymatic analysis,4 (1974) 1777-1781.
    [11]H. Langer, I. Lues, M.E. Rivera, Arginine phosphate in compound eyes, Journal of comparative physiology,107 (1976) 179-184.
    [12]F. Cotton, V. Day, E. Hazen, S. Larsen, Structure of methylguanidinium dihydrogen orthophosphate. Model compound for arginine-phosphate hydrogen bonding, J. Am. Chem. Soc.,95 (1973) 4834-4840.
    [13]A. Pantos, I. Tsogas, C.M. Paleos, Guanidinium group:A versatile moiety inducing transport and multicompartmentalization in complementary membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes,1778 (2008) 811-823.
    [14]周国萍,DFT理论研究磷酸与水分子间相互作用,in,贵州大学,2006.
    [15]L. Wang, G. Zhang, X. Wang, L. Wang, X. Liu, L. Jin, D. Xu, Studies on the conformational transformations of 1-arginine molecule in aqueous solution with temperature changing by circular dichroism spectroscopy and optical rotations, J. Mol. Struct.,1026 (2012) 71-77.
    [16]D. Xu, M.H. Jiang, Z.K. Tan, A new phase matchable nonlinear optical crystal L-arginine phosphate monohydrate (LAP), Acta Chim. Sinica 1(1983) 230-233.
    [17]许东,蒋民华,邵宗书,关于LAP晶体的分子基团和主要性能关系的研究,山东大学学报(自然科学版),(1986)1-8.
    [18]S. Mukerji, T. Kar, Thermal and spectroscopic studies of as-grown-arginine hydrochloride monohydrate crystals, Mater. Chem. Phys.,57 (1998) 72-76.
    [19]R. Kingsford-Adaboh, M. Grosche, B. Dittrich, P. Luger, dl-Arginine monohydrate at 100 K, Acta Crystallogr., Sect. C:Cryst. Struct. Commun.,56 (2000) 1274-1276.
    [20]D. Xu, X.Q. Wang, W.T. Yu, S.X. Xu, G.H. Zhang, Crystal structure and characterization of a novel organic nonlinear optical crystal:-arginine trifluoroacetate, J. Cryst. Growth 253 (2003) 481-487.
    [21]S. Haussuhl, H.A. Karapetyan, A.M. Petrosyan, Crystal structure and properties of L-arginine diphosphate, Zeitschrift fur Kristallographie,218 (2003) 501-506.
    [22]E. Courvoisier, P.A. Williams, G.K. Lim, C.E. Hughes, K.D. Harris, The crystal structure of L-arginine, Chem Commun (Camb),48 (2012) 2761-2763.
    [23]孙志华,L_精氨酸盐晶体激光损伤机理的探索及新晶体的制备,in:Institute of crystal materials of Shandong University, Shandong University,2010, pp.137.
    [24]T. Hahn, U. Shmueli, A.A.J.C. Wilson, E. Prince, International tables for crystallography, D. Reidel Publishing Company,2005.
    [25]M. Born, K. Huang, M. Born, M. Born, G. Physicist, G Britain, Dynamical theory of crystal lattices, Clarendon Press Oxford,1954.
    [26]J.M. Cowley, Diffraction physics, Elsevier,1995.
    [27]黄静,唐惠儒,自旋弛豫时间测定对固体代谢物分子动力学性质的研究,波谱学杂志,29(2013)605-620.
    [28]J.W. Lubach, D. Xu, B.E. Segmuller, E.J. Munson, Investigation of the effects of pharmaceutical processing upon solid-state NMR relaxation times and implications to solid-state formulation stability, J. Pharm. Sci.,96 (2007) 777-787.
    [29]S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift Fur Kristallographie, 220 (2005) 567-570.
    [30]M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation:ideas, illustrations and the CASTEP code, J. Phys.:Condens. Matter 14 (2002) 2717-2744.
    [31]J.S. Lin, A. Qteish, M.C. Payne, V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B,47 (1993) 4174.
    [32]J.P. Perdew, A. Ruzsinszky, G. Csonka, aacute, I. bor, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett.,100 (2008) 136406.
    [33]D.R. Hamann, M. Schliiter, C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett.,43(1979)1494.
    [34]M. Frisch, G Trucks, H. Schlegel, G Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, Gaussian 03, revision C.02, (2008).
    [35]J.L. Oudar, J. Zyss, Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals, Phys. Rev. A,26 (1982) 2016.
    [36]J. Zyss, J.L. Oudar, Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units, Phys. Rev. A,26 (1982) 2028.
    [37]张克从,张乐潓,晶生长科学与技术,科学出版社,1997.
    [38]J.D.H. Donnay, D. Harker, A new law of crystal morphology extending the law of Bravais, Am. Mineral,22 (1937) 446-467.
    [39]A. Bravais, Etudes Crystallographiques, Academie des Sciences, Paris,1913.
    [40]Z.H. Sun, G.H. Zhang, X.Q. Wang, Z.L. Gao, X.F. Cheng, S.J. Zhang, D. Xu, Growth, Morphology, Thermal, Spectral, Linear, and Nonlinear Optical Properties of L-Arginine Bis(trifluoroacetate) Crystal, Crystal Growth & Design,9 (2009) 3251-3259.
    [41]X.J. Liu, D. Xu, M.J. Ren, GH. Zhang, X.Q. Wei, J. Wang, An Examination of the Growth Kinetics of L-Arginine Trifluoroacetate (LATF) Crystals from Induction Period and Atomic Force Microscopy Investigations, Crystal Growth & Design,10 (2010) 3442-3447.
    [42]W. Sellmeier, Zur erklarung der abnormen farbenfolge im spectrum einiger substanzen, Annalen der Physik und Chemie,219 (1871) 272-282.
    [43]肖定全,王民,晶体物理学,四川大学出版杜,1989.
    [44]IEEE Standard on Piezoelectricity ANSI/IEEE Standard 176, in, IEEE, New York, 1987.
    [45]X. Yin, D. Xu, Determination of Piezoelectric Constants of LAP Crystals, Journal of Synthetic Crystals, (1990) 177-179.
    [46]Y. Sun, S. Wang, X. Yin, Z. Gao, X. Xu, J. Ding, g. Liu, W. Liu, S. Zhu, Determination of the Electro-elastic Constants of KDP Crystal, Piezoelectrics & Acoustooptics, (2012) 574-576+580.
    [47]J. Tichy, J. Erhart, E. Kittinger, J. Privratska, Piezoelectric materials, in: Fundamentals of Piezoelectric Sensorics:Mechanical, Dielecric, and Thermodynamical Properties of Piezoelectric Materials, Springer-Verlag, NY, 2010, pp.119-186.
    [48]U.B. Ramabadran, D.E. Zelmon, G.C. Kennedy, Electro-optic, piezoelectric, and dielectric properties of zinc tris thiourea sulfate, Appl. Phys. Lett.,60 (1992) 2589-2591.
    [49]Z. Gao, X. Tin, W. Zhang, S. Wang, M. Jiang, X. Tao, Electro-optic properties of BaTeMo2O9 single crystal, Appl. Phys. Lett.,95 (2009) 151107.
    [1]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, Crystal growth and characterization of the organometallic nonlinear optical crystal:manganese mercury thiocyanate (MMTC), Mater. Res. Bull.,36 (2001) 879-887.
    [2]V.G. Dmitriev, GG. Gurzadyan, D.N. Nicogosyan, Handbook of Nonlinear Optical Crystals, Springer-Verlag, New York,1999.
    [3]S.K. Kurtz, T.T. Perry, A Powder Technique for the Evaluation of Nonlinear Optical Materials, J. Appl. Phys.,39 (1968) 3798-3813.
    [4]IEEE Standard on Piezoelectricity ANSI/IEEE Standard 176, in, IEEE, New York, 1987.
    [5]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, X. Yin, GH. Zhang, S.X. Xu, GW. Lu, C.F. Song, S.Y. Guo, J.R. Liu, G.Y. Zhou, D. Wang, Z.H. Yang, X. Zhao, Q. Ren, J.Q. Zhao, W.L. Liu, Crystal growth and physical properties of UV nonlinear optical crystal zinc cadmium thiocyanate, ZnCd(SCN)4, Chem. Phys. Lett.,346 (2001) 393-406.
    [6]J. Tichy, J. Erhart, E. Kittinger, J. Privratska, Piezoelectric materials, in: Fundamentals of Piezoelectric Sensorics:Mechanical, Dielecric, and Thermodynamical Properties of Piezoelectric Materials, Springer-Verlag, NY, 2010, pp.119-186.
    [7]Z. Gao, X. Tao, X. Yin, W. Zhang, M. Jiang, Elastic, dielectric, and piezoelectric properties of BaTeMo2O9 single crystal, Appl. Phys. Lett.,93 (2008) 252906.
    [8]J.P. Perdew, A. Ruzsinszky, G Csonka, aacute, I. bor, O.A. Vydrov, GE. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett.,100 (2008) 136406.
    [9]R.W. Godby, M. Schluter, L.J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B,37 (1988) 10159.
    [10]C.S. Wang, B.M. Klein, First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. Ⅱ. Optical properties, Phys. Rev. B,24 (1981) 3417.
    [11]D.R. Yuan,Z.W. Zhong, M.G Liu, D. Xu, Q. Fang, Y.H. Bing, S.Y Sun, M.H. Jiang, Growth of cadmium mercury thiocyanate single crystal for laser diode frequency doubling, J. Cryst. Growth 186 (1998) 240-244.
    [12]S.Y. Guo, D. Xu, M.K. Lv, D.R. Yuan, Z.H. Yang, G.H. Zhang, S.Y. Sun, X.Q. Wang, M. Zhou, M.H. Jiang, P. Yang, W.T. Yu, A novel organometallic nonlinear optical complex crystal:Cadmium mercury thiocyanate dimethyl-sulphoxide, Prog. Cryst. Growth Charact. Mater.,40 (2000) 111-114.
    [13]S.Y. Guo, D. Xu, P. Yang, W.T. Yu, M.K. Lv, D.R. Yuan, Z.H. Yang, GH. Zhang, S.Y. Sun, X.Q. Wang, M. Zhou, M.H. Jiang, A novel nonlinear optical complex crystal with an organic ligand coordinated through an O atom: Tetrathiocyanatocadmiummercury-dimethyl sulfoxide, Cryst. Res. Technol.,36 (2001) 609-614.
    [14]X.L. Duan, D.R. Yuan, X.Q. Wang, X.F. Cheng, Z.H. Yang, S.Y. Guo, H.Q. Sun, D. Xu, M.K. Lu, Preparation and characterization of nonlinear optical crystal materials:Cadmium mercury thiocyanate and its Lewis base adducts, Cryst. Res. Technol.,37 (2002) 446-455.
    [15]X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, X.F. Cheng, J. Huang, S.L. Wang, W.T. Yu, H.Q. Sun, X.L. Duan, Q. Ren, H.L. Yang, Growth morphology and thermal properties of the organometallic nonlinear optical crystal:MnHg(SCN)4(C2H6OS)2, Chem. Phys. Lett.,367 (2003) 230-237.
    [16]D. Nikogosyan, Nonlinear Optical Crystals:A Complete Survey:A Complete Survey, Springer,2006.
    [17]U.B. Ramabadran, D.E. Zelmon, G.C. Kennedy, Electro-optic, piezoelectric, and dielectric properties of zinc tris thiourea sulfate, Appl. Phys. Lett.,60 (1992) 2589-2591.
    [18]D.V. Isakov, F.P. Ferreira, J. Barbosa, J.L. Ribeiro, E. de Matos Gomes, M.S. Belsley, Piezoelectric, nonliner optical, electro-optical, and pyroelectric properties of cesium hydrogen malate hydrate crystal, Appl. Phys. Lett.,90 (2007) 073505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700