用户名: 密码: 验证码:
载体诱导沉淀结晶法软化水及脱氟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载体诱导沉淀结晶技术的特点是在沉淀反应体系中人为地加入大量合适的诱晶载体粒子,使沉淀反应加速,并使沉淀物随诱晶载体粒子一起沉降,从而使化学沉淀工艺时间大大缩短。文献表明,该技术在国内研究报道很少,国外研究主要关心去除对象的脱除情况,而缺少理论研究。为此,本文较系统地研究了石英砂诱导CaCO_3沉淀反应动力学、热力学及其诱导机理,石英砂诱导沉淀结晶软化水,石英砂诱导CaF_2沉淀结晶脱氟及其诱导机理。
     在搅拌反应器中研究了沉淀剂Na_2CO_3加入量、石英砂粒子加入量、搅拌强度、温度对石英砂诱导CaCO_3沉淀反应的影响。通过测定反应过程中的Ca~(2+)浓度、pH值,并根据相关平衡关系计算相应的CO_3~(2-)浓度。首次得到石英砂诱导CaCO_3沉淀反应动力学方程:r=k′ S[Ca~(2+)][CO_3~2]+b;石英砂粒子浓度约250g/L时、无石英砂粒子时,CaCO_3沉淀反应活化能分别为14.07KJ/mol、31.74KJ/mol。说明石英砂在反应动力学上诱导CaCO_3沉淀反应。
     在搅拌反应器中研究了有无石英砂粒子时CaCO_3沉淀反应的诱导时间、启动过饱和度和剩余过饱和度。通过测定沉淀剂Na2CO_3加入后体系中Ca~(2+)浓度的变化确定诱导时间。根据诱导时间与沉淀剂加入量的线性拟合方程得到诱导时间为零时的沉淀剂加入量即反应启动需要的沉淀剂加入量。沉淀体系中Ca~(2+)浓度稳定时认为沉淀反应结束。分别测定上述两种情况下体系中的相关参数,计算得到CaCO_3沉淀反应的启动过饱和度和剩余过饱和度。在25℃时,与无石英砂粒子时相比,浓度约100g/L的石英砂粒子使CaCO_3沉淀反应的诱导时间缩短5-6min;浓度约100g/L的石英砂粒子使启动过饱和指数从1.6降到1.44;浓度约74g/L、250g/L的石英砂粒子分别使剩余过饱和指数从0.421降到0.398、0.371。说明石英砂在反应热力学上诱导CaCO_3沉淀反应;石英砂粒子浓度越大,反应结束时体系越稳定。
     通过电泳、红外光谱测定和化学分析研究了诱导沉淀反应中石英砂粒子的表面荷电特性、表面特征基团及对Ca~(2+)、F~-的吸附情况。发现石英砂粒子的表面特征基团为羟基;石英砂粒子对Ca~(2+)、F~-有吸附作用,且随体系pH值增大,对Ca~(2+)的吸附能力增强;在石英砂诱导CaCO_3沉淀反应中,石英砂粒子表面荷负电;在石英砂诱导CaF_2沉淀反应中,石英砂粒子表面荷正电。结合表面络合吸附模式及沉淀体系的酸碱性,得出在石英砂诱导CaCO_3、CaF_2沉淀反应中,石
    
    西安建筑科技大学博士学位论文
    英砂粒子的主要表面荷电形式分别为:二XO一、二XOCa+,进而提出石英砂粒子表面的双电层
    结构分别为:{2m〔二xo一〕·(m一x)C尹}2x-xG尹、{m〔三x0Ca+〕·(m一x)F一}
    x+xF一。由上述双电层结构可见,表面双电层中至少含有一种沉淀物的构成离子时固体粒子才能
    诱导沉淀反应。
     通过对比搅拌悬浮态和流化态石英砂体系中软化、脱氟稳定需要的水力停留时间和出水浊
    度,分析了石英砂粒子悬浮方式对软化速度、脱氟速度和软化沉淀物、脱氟沉淀物在石英砂上
    粘附的影响。搅拌悬浮态石英砂粒子浓度为8%(V/V);流化态石英砂粒子浓度为52.7%(vN)。
    在搅拌悬浮态石英砂体系中软化水时,软化稳定需要的水力停留时间为10rllixl,且反应结束时
    体系浊度增加很大;在流化态石英砂体系中软化水时,软化稳定需要的水力停留时间为:簇
    0.47 Ilnin,且进出水蚀度不变;在搅拌悬浮态石英砂体系中脱氟时,脱氟稳定需要的水力停留
    时间为4min,且反应结束时体系浊度增加很大;在流化态石英砂体系中脱氟时,脱氟稳定需要
    的水力停留时间为:簇0.377n血,且进出水浊度不变。说明在流化态石英砂体系中的软化速度、
    脱氟速度较大,且软化沉淀物、脱氟沉淀物均粘附在流化态石英砂粒子上;流化床反应器比搅
    拌反应器更适于石英砂诱导沉淀结晶软化水及脱氟。
     在流化态石英砂诱导沉淀结晶软化水连续试验中,连续试验时间为40h,进水参数为:
    Ca2+1.货刘mo比、总硬度2.36nuno比、碱度248mmo比、s时一1 .29nnno比、PH7.sl、浊度3井
    度。在连续试验过程中,出水浊度、软化稳定需要的水力停留时间分别为2一5度、(0.471 mill;
    在出水中caZ+浓度刚稳定时,出水中caZ十浓度和总硬度分别为:0.43 nunoVL、0.86~OFL:
    在连续试验5h后,出水中c之浓度和总硬度分别为0. lllYUno比、0.55n加幻比;显微图像显示,
    沉淀物容易粘附在石英砂粒子表面粗糙之处;%.46%(侧w)的沉淀物为C翻C伪.说明流化态
    石英砂诱导沉淀结晶能够连续稳定地软化水:搜盖CaC伍的石英砂粒子对C副C伪沉淀反应的
    诱导能力大于石英砂粒子本身的诱导自幼;在软化水中使用表面粗糙的石英砂粒子利于沉淀物
    的粘附。
     在流化态石英砂诱导沉淀结晶脱氟中,对Fee79.sm泌、蚀度为1度的酉己水,脱氟稳定需要
    的水力停留时间为:簇0.377min;出水浊度为l度;出水中F一浓度可达4.33m叭,该浓度达到
    了污水综合排放标准(。B名卯8-88)10In叭的要求.说明石英砂诱导沉淀结晶可用于工业废水
    脱氟。
The features of carrier induction crystallization are that a large amount of the grains of suitable carrier are added in precipitation reaction system, the grains speed reaction up, precipitates sedimentate with the grains and the time of precipitation process is shorten.Its researches have been absent in China, mainly focused on application fields and its theory researches have been absent overseas. This paper has studied the reaction kinetics and thermodynamics of silica induction CaCO3 precipitation reaction and its induction mechanism, water softening with silica induction crystallization, fluoride removal with silica induction CaF2 crystallization and its induction mechanism.
    The effects of Na2C03 quantity, the quantity of silica grains, stirred speed, temperature on silica induction CaCO3 precipitation reaction have been studied in stirred reactor. The concentrations of Ca2+ and pH were measured during reaction and the corresponding CO32- concentrations were calculated. The kinetics equation of silica induction CaCO3 precipitation reaction could be described as r=-k' S[Ca2+][CO32-]+b; its activation energies were 14.07KJ/mol and 31.74KJ/mol respectively when the concentration of silica grains was about 250g/L and there were no silica grains. The results demonstrate that silica induces CaCO3 precipitation reaction in the reaction kinetics.
    The induction times, start-up supersaturations and residual supersaturations of CaCO3 precipitation reaction have been studied in stirred reactor when there were and there were no silica grains. The induction times were determined by the transformation of the concentrations of Ca2+after precipitation agent Na2CO3 were added in reaction system. The precipitation agent quantities when induction times
    were zero, which were the precipitation agent quantities when precipitation reactions started were
    obtained by the linear fitting equations of induction times and precipitation agent quantities. When the concentrations of Ca2+ were stable precipitation reactions had ended. The relevant parameters of the two situations above were measured and the start-up supersaturations and residual supersaturations were calculated. At 25℃, comparing with no silica grains, silica that the concentration of its grains was about 100g/L shortened induction times 5-6min; when the concentration of silica grains was about
    
    
    
    100g/L the start-up supersaturations was decreased from 1.6 to 1.44, when the concentrations of silica grains were about 74g/L and 250g/L the residual supersaturations were decreased from 0.421 to 0.398 and 0.371 respectively. The results demonstrate that silica induces CaCO3 precipitation reaction in the reaction thermodynamics; higher the concentration of silica grains, more stable the system when reaction has ended.
    The peculiarities of the surface charge of silica grains, the characteristic function group on the surface of silica grains, the absorption of Ca2+ F- on the surfaces of silica grains have been studied by electrophoresis, IR and chemical analysis. The characteristic function group on the surfaces of silica grains was hydroxyl; silica grains absorbed Ca2+ F~, and increasing pH, the quantities of Ca2+ which were absorbed on silica grains increased; in silica induction CaCO3 precipitation reaction, the silica grains had negative surface charges; in silica induction CaF2 precipitation reaction, the silica grains had positive surface charges. According to the surface complexation models, the alkalinities of precipitation systems and the tests results, the main surface charge forms of silica grains were =Xo- and = XOCa+ respectively in silica induction CaCO3and CaF2 precipitation reaction, and the forms of surface electric double layer of silica grains were (2m (=XO-) (m-x) Ca2+} 2x- xCa2+ and {m ( = XOCa+) (m-x) F-)x+x F-respectively. According to the the forms of the surface electric double layer above, when there is one ion at least in their surface electric double layer which is one of the ions of precipitates, carrier grains induce precipitation reac
引文
(1) 化工北科全书(8),化学工业出版社,531-559,1994
    (2) 张纲,王静康,熊晖:沉淀结晶过程中的添加晶种技术,化学世界No.6,326-328,2002
    (3) 陆杰,王静康:反应结晶沉淀研究进展,化学工程Vol.27,No.4,24-27,1999
    (4) 张希衡 主编:水污染控制工程,冶金工业出版社,170-178,2002
    (5) Samuel D Faust, Osman M Aly: Chemistry of Water Treatment, Butterworth Publishers, 397-451, 1983
    (6) E.B.哈姆斯基 著,古涛,叶铁林 译:化学工业中的结晶,化学工业出版社,1984
    (7) 董宏光,丁杰,沈自求:用晶种抑制沉积垢试验研究,化学工程Vol.27,No.6,16-19,1999
    (8) 李化民,苏显举,马文铁,王恩长,刘芬芝:油田含油污水处理,石油工业出版社,1992
    (9) 金熙,项成林,齐冬子:工业水处理技术问答及常用数据,化学工业出版社,684-771,1997
    (10) 许保玖:给水处理理论,中国建筑工业出版社,2000
    (11) 王方:电去离子软化,工业水处理,Vol.19,No.2,8-9,44,1999
    (12) A Graveland, J C van Dijk, P J Moel, J H C M Oomen: Developments in water softening by means of pellet reactors, Journal AWWA, Vol. 75, No. 12, 619-625, 1983
    (13) Willard D Harms Jr, R Brace Robinson: Softenong by fluidized bed crystallizers, J. Environ. Eng., Vol.118, No.4, 513-529, 1992
    (14) Verdoes Dirk, Henemaaijer Jan Hendrik: Method and appliance for removing at least one constituent from a solution, PCT Int. Appl., WO 94 11309(C1.C02F1/52)
    (15) 周本省:工业水处理技术,化学工业出版社,26-29,1997
    (16) J C Kruithof, H M M Koppers: Experiences with groundwater treatment and disposal of the eliminated substances in the Netherlands, Aquq, Vol. 38, 207-216, 1989
    (17) Comelis van der Veen: Central water softening without waste material, Water Supply, Vol.6, 161-178, 1988
    (18) M van Ammers, J C van Dijk, A Graveland, P A N M Nuhn: State of the art of pellet softening in the Netherlands, Water Supply, Vol. 4, 223-235, 1986
    (19) 华东建筑设计院 主编:给水排水设计手册(4),工业给水处理,中国建筑工业出版社,44-71,1986
    (20) 林宗虎,李瑞阳,汪军,袁益超:锅炉用水、清垢及除灰,化学工业出版社,39-52,2001
    
    
    (21) Comelis van der Veen, Anthonie Graveland: Central softening by crystallization in a fluized-bed process, Journal AWWA, Vol. 80, No.6, 51-58, 1988
    (22) J C van Dijk, D A Wilms: Water treatment without waste material-fundamentals and state of the art of pellet softening, Aqua, Vol.40, No.5, 263-280, 1991
    (23) Peter Piekema, Andreas Giesen: Phosphate recovery by the crystallization process, http:/www.nhm.ac.uk/mineralogy/phos/Nordwijkerhout/piekema.pd
    (24) Andreas Giesen: Crystallization process enables environmental friendly phosphate removal at low costs, http:/www.nhm.ac.uk/mineralogy/phos/crystalct.htm.
    (25) P Piekema, A Giesen: Phosphate recovery by the crystallization process: experience and developments, Second international conference on Recovery of Phosphate from sewage and animal wastes, Holland, 12th and 13th march 2001
    (26) Shimabukuro Kimio: Fluidized bed erystallizalion reactor, JP, 2001058102
    (27) Alison Lewis, Karen Peteren, Stella Lacour: Copper removal from mine drainage using a pellet reactor, http:/www.aidie.it/ISIC 15/isicwebpapers/278%20Lewis.pdf.
    (28) Laboratory for environmental technology: drinking water treatment, http:/www.Kuleuven.ac.be/cit/let/waterres.htm.
    (29) D Wilms, K Vercaemst, J C Van Duk: Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor, Wat. Res., Vol. 36, No.2, 235-239, 1992
    (30) Emerging technologies X, http:/www.awwarf.com/et-x/france/fr2.pdf
    (31) Van Dijk Johannis Comelis: A process for chemical softening of water with the crystallization method in a grain reactor, EP, 0355886
    (32) 齐金生,孟宪级,白丽萍:诱垢载体沉积式除垢技术的研究,工业水处理 Vol.18,No.1,12-13,25,1998
    (33) J T M Sluys, D Verdoes, J H Hanemaaijer: Water treatment in a Membrane-Assisted Crystallizer(MAC), Desalination, Vol. 104, No. 1-2, 135-139, 1996
    (34) 周平,黄汝常,李永辉,韦光明:去除废水中重金属离子的新工艺,中国给水排水 Vol.14,No.4,17-20,1998
    (35) Zhou P, Huang J-C, S Wei: Heavy meatal removal from wastewater in fluidized reactor, War. Res., Vol.33, No.8, 1918-1924, 1999
    (36) J Paul Chen, H Yu: Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor, J. Environ. Sci. Health, VoI.A35, No.6, 817-835, 2000
    (37) Jassen Comelis Willen: Process for the removal of metals in particular heavy metals from waste water, EP, 0279964
    
    
    (38) Jassen Comelis W: Process for removing of heavy metals from water in particular heavy from waste water, US, 4764284
    (39) J C van Dijk, H Bmakensiek: Phosphate removal by crystallization in a fluidized bed, Water Science and Technology, Vol.17, No.2/3, 133-142, 1985
    (40) Trentelman Christiaan C M, Van Dijk Johannis C, Comen Johannes H C M: Process for chemical reduction of the phosphate content of water, US, 4389317
    (41) P Battistoni, P Pavan, F Cechi: Stmvite crystallization, a feasible and realiable way to fix phosphorus in anaerobic supernatants, War. Res., Vol. 34, No. 11, 3033-3041, 2000
    (42) P Battistoni, P Pavan, F Cechi, J Mata-Alvares: Phosphate removal in real anaerobic supernatants: modelling and perfomance of a fluidized bed reactor, War. Sci. Tech., Vol.38, No.1, 275-283, 1998
    (43) P Battistoni, R Boccadoro, F Cechi: Stmvite crytallization insludge dewatering supernatant using air stripping, the new full-scale plant at Treviso sewage works, Second international conference on Recovery of Phosphate from sewage and animal wastes, Holland, 12th and 13th march 2001
    (44) Y Ueno, M Fujii: 3 years operating experience selling recovered struvite from full-scale plant, Second international conference on Recovery of Phosphate from sewage and animal wastes, Holland, 12th and 13th march 2001
    (45) E V Munch, K Barr: Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams, Wat. Res., Vol.35, No.1, 151-159, 2001
    (46) Y Mitani, Y Sakai, F Mishina, S Ishiduka: Struvite recovery from wastewater having low phosphate concentration, Second international conference on Recovery of Phosphate from sewage and animal wastes, Holland, 12th and 13th mareh2001
    (47) K N Ohlinger, T M Young, E D Schroeder: Postdigestion struvite precipitation using a fluidized bed reactor, Journal of Environmental Engineering, August 1999
    (48) K moriyama, T Kojima, Y Minawa, S Matsumoto, K Nakamachi: Development of artificial seed crystal for crystallization of calcium phosphate, Second international conference on Recovery of Phosphate from sewage and animal wastes, Holland, 12th and 13th March 2001
    (49) CEEP(Center Européen D tudes des Polyphosphates EV): Phosphate recovery by stmvite precipitation in a stirred reactor, 2002
    (50) Environmental and Water Resource Engineering sectioin, Imperial College of Science, Technology and Medicine: phosphorus removal and recovery technologies, Selper Publications, 1997
    
    
    (51) phosphate removal & recovery from wastewaters, Phosphorus & Potassium, 213(Jnu/Feb, 1998)
    (52) Homg Ren-yang(TW), Lee Mao-sung(TW), Liao Chi-chuang(TW): Crystallization process for removing fluoride from waste water, US, 6235203
    (53) Dijkhorst Jacobus(NL): Method for the removal of fluoride from waste water, EP, 0476773, B1
    (54) Krisrel Van den Broeck, Nausika Van Hoornick, Jan Van Hoeymissen, Robert de Boer: Sustainable Treatment of HF containing Wastewater by Crystallization in a Fluidized Bed Reactor, 11th international symposium on semiconductor manufactoring, Japan, 15th and 17th October 2002
    (55) Min Yang: Precipitative removal of fluoride from electronics wastewater, Environ. Eng., Vol.127, No.10, 902-907, 2001
    (56) 王而力,王晓锋,钱凤国,刘子愉:氟化钙晶核在处理低浓度含氟废水中的应用,辽宁城乡环境保护 Vol.21,No.1,21-24,2001
    (57) 沈健:含氟废水处理设计及有关问题探讨,工业用水与废水 Vol.30,No.1,27-29,1999
    (58) 国家环保局水和废水检测分析方法编委会:水和废水分析方法,中国环境科学出版社,1994
    (59) Alan J Rubin: Chemistry of wastewater technology, Ann Arbor Science Publishers, 1-58, 1978
    (60) M M Reddy, G H Nancollas: The crystallization of calcium carbonate, Journal of Colloid Interface Science, Vol. 36, No.2, 166-172, 1971
    (61) 汤鸿霄:用水废水化学基础,中国建筑工业出版社,1979
    (62) Peter G Koutsoukos, Christos G Kontoyannis: Precipitation of calcium carbonate in aqueous solution, J.Chem.Soc., Faraday Trans.1, Vol.80, 1181-1192, 1984
    (63) 栾兆坤,汤鸿霄:尾矿砂颗粒表面特征与吸附作用的研究,Ⅰ,尾矿砂颗粒表面特征,环境化学 Vol.12,No.5,347-355,1993
    (64) 闫存仙,谭奎:含氟废水的粉煤灰吸附研究,上海环境科学Vol.16,No.7,30-33,41,1997
    (65) 汤鸿霄:环境水化学纲要,环境科学丛刊Vol.9,No.2,1-74,1988
    (66) M.A.安德森,A.J.鲁宾 主编,刘莲生,张正斌,刘国盛译:水溶液吸附化学,科学出版社,143-164,1989
    (67) A.W.亚当森 著,顾惕人 译:表面的物理化学(下),科学出版社,385-397,1985
    (68) 汤鸿霄:环境水质学的进展—颗粒物与表面络合(上),环境科学进展Vol.1,No.1,25-41,1993
    
    
    (69) 王洪涛,季峻峰,刘连文:蒙脱石降氟作用的试验研究,岩石矿物学杂志Vol.22,No.1,71-73,76,2003
    (70) 魏俊峰,吴大清:矿物—水界面的表面离子化和络合反应模式,地球科学进展Vol.15,No.1,90-96,2000
    (71) James R O, Healy T W: Adsorption ofhydrolyzable metal ions at the oxide/water interface, Ⅱ. Charge reversal of SiO_2 and TiO_2 colloids by Co(Ⅱ),La(Ⅲ), and Th(Ⅳ) as model system, J. of Colloid and Interface Sci., Vol. 40, No.1, 53-63, 1972
    (72) 魏俊峰,吴大清,彭金莲,刁桂仪:铜(Ⅱ)在高岭石表面的吸附,矿物岩石 Vol.20,No.3,19-22,2000
    (73) 魏俊峰,吴大清,刁桂仪,彭金莲:铅在高岭石表面的吸附模式,地球化学Vol.29,No.4,397—401,2000
    (74) 吴宏海,吴大清,彭金莲:溶液介质条件对重金属离子与石英表面反应的影响,地球化学 Vol.29,No.1,62-66,2000
    (75) Robertson A P, Leckie J O: Acid/base, copper binding, and Cu~(2+)/H~+ exchange properties of goethite, an experimental and modeling study, Environ. Sci. Technol., Vol.32, No. 17, 2519-2530, 1998
    (76) Davis J A, Leckie J O: Surface ionization and complexation at oxide/water interface-Ⅰ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, J. of Colloid and Interface Sci., Vol.67, No. 1, 90-107, 1978
    (77) 吴宏海,吴大清:石英矿物表面反应性的EPR谱学研究,光谱学与光谱分析Vol.20,No.3,298-301,2000
    (78) 王淀右,胡岳华:氢氧化物表面沉淀在石英砂浮选中的应用,中南矿冶学院学报Vol.21,No.3,248-252,1990
    (79) 石云良,邱冠周,胡岳华,陈淳:石英砂浮选中的表面化学反应,矿冶工程Vol.21,No.3,43-48,2001
    (80) 刘晓荣,邱冠周,胡岳华,徐毓:铜溶剂萃取界面乳化物极限聚结机理,中国有色金属学报Vol.12,No.3,582-586,2002
    (81) Kralj Damir, Vdovic Neda Source: Influence of some naturally occurring minerals on the precipitation of calcium carbonate polymorphs Water Research, Vol.34, No. 1, 179-184, 2000
    (82) 高秀山,张渡:火电厂循环冷却水处理,中国电力出版社,20-43,2002
    (83) 武汉大学 主编:分析化学,高等教育出版社,1986
    (84) 李绍芬:反应工程,化学工业出版社,170-178,1990
    
    
    (85) 傅献彩,陈瑞华:物理化学(下册),高等教育出版社,1991
    (86) J 金克普利斯 著,清华大学化工传递组 译:传递过程与单元操作,清华大学出版社,255,1985
    (87) 《水和废水监测分析方法指南》编委会:水和废水监测分析方法指南(中册),中国环境科学出版社,389-393,1990
    (88) 李广兵,方健,徐敬,李杰:水垢成垢诱导期机理研究,同济大学学报 Vol.28,No.5,555-559,2000
    (89) 林培滋,黄世煜,初惠萍:碳酸钙结垢及聚合物的影响研究,石油与天然气化工 Vol.26,No.4,232-234,239,1997
    (90) 陆杰,王静康:反应结晶过程研究研究(Ⅰ)—激光法研究结晶热力学与反应动力学,化学工业与工程Vol.16,No.1,1-4,25,1999
    (91) 王凯雄:水化学,化学工业出版社,263-288,2001
    (92) 陆杰,王静康:反应结晶过程研究(Ⅱ)—二次过程及基理分析,化学工业与工程Vol.16,No.1,58-61,1999
    (93) R.A.劳迪斯 著,刘光照 译:单晶生长,科学出版社,92-134,1979
    (94) Marchal P, David R, Klein J P, et al: Crystallization and Precipitation Engineering(Ⅰ): An Efficient Method for Solving Population Balance in Crystallization with Agglomeration, Chemical Engineering Science, Vol. 43, No. 1, 59-67, 1988
    (95) 于瑞红,刘天庆,李天香,等:固体材料性质对生物垢形成的影响,精细化工 Vol.19,No.9,512-514,2002
    (96) 卢建杭,黄克玲,刘维屏:含氟废水研究进展,化工环保Vol.19,No.6,341-345,1999
    (97) 汪大辇,徐新华,宋爽:工业废水中专项污染物处理手册,化学工业出版社,226-235,2000
    (98) Eric J Reardon: A limestone reactor for fluoride removal from wastewaters, Environ.Environ.Sci.Technol., Vol.34, No. 15, 3247-3253, 2000
    (99) Min Yang, Takayuki Hashimoto, Nobuyuki Hoshi, Haruld Myoga: Fluoride removal in a fixed bed packed with granular calcite, Wat. Res., Vol.33, No. 16, 3395-3402, 1999
    (100) 化学工业部环境保护设计技术中心站:化工环境保护设计手册,化学工业出版社,1998
    (101) 马宝明:磷肥含氟废水的处理,化工环保Vol.10,No.6,358-361,1990
    (102) 王九思,陈学民,肖举强,伏小勇:水处理化学,化学工业出版社,2002
    (103) Mooney N, A Nogueira, D Cope: Two-stage lime treatment in practice, Environ. Prog. Ⅰ, 274-280, 1982
    
    
    (104) 吴奇藩,孔庆安:半导体厂含氟废水的深度处理,环境工程 Vol.12,No.6,9-12,1994
    (105) 赵薇,张世江,张帆:高氟废水治理技术,环境保护科学 Vol.20,No.2,16-19,1994
    (106) 黄国林,邹丽霞,路达:含氟工业废水处理技术研究,污染防治技术 Vol.12,No.3,131-133,1999
    (107) 闫秀芝:CaCl_2+磷酸盐法处理含氟废水的探讨,环境保护科学 Vol.24,No.2,12-14,1998
    (108) Saha S: Treatment of Aqueous Effluent for Fluoride Removal, Water Res., Vol.27, No.8, 1347-1350, 1993
    (109) 陈甘棠:化学反应工程,化学工业出版社,1981
    (110) 北京水环境技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心:三废处理工程技术手册(废水卷),化学工业出版社,611-6211,2000
    (111) 北京市环境保护科学研究所:水污染防治手册,上海科学技术出版社,559-567,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700