用户名: 密码: 验证码:
大豆苗期耐低磷性状评价和低磷胁迫的分子机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长和新陈代谢所需一种最重要大量元素之一,同时也是核酸、磷脂、ATP、酶、辅酶的一种关键性成分。磷(植物主要吸收磷酸盐形式的磷)缺乏是限制植物生长的第二位的大量元素,其在土壤中以复杂的、难溶的、无机和有机形式存在,不能被植物直接吸收。植物的正常生长和产量依赖于可利用性Pi (Inorganic Phosphate,磷酸盐),然而在很多自然和农业生态系统中植物经常会出现有效和可溶性磷极度缺乏的情况。为了适应磷缺乏,植物已进化获得精巧的调控机制来保持体内磷的动态平衡,包括侧根和根毛的发育、根系构型改变(例如蛋白样和胡萝卜状根的形成)、从根系分泌磷酸酶和有机酸、高低亲和性磷酸盐转运体(phosphate transporter, PT)的诱导。同时很多植物与菌根真菌形成共生关系以便获得更多的Pi。在植物中存在着很多的适应性机制以减轻或应对磷缺乏。这些机制的实现是通过几百个基因表达谱的变化来实现的。这-些感知Pi状态和调整适应机制的调节基因组成网络现在逐渐清晰。目前已鉴定的该网络组成包括转录因子、SPX (Sygl, Pho81,XPRl)亚家族蛋白、非编码RNA和蛋白修饰物(包括参与SUMO化、磷酸化、去磷酸化以及蛋白运输的各种蛋白)。
     本研究克隆了PT、PHR (phosphate starvation response)、SPX和Gm4等相关基因;并利用生物信息学方法研究了GmPT1和GmPT2蛋白结构;采用绿色荧光蛋白融合PT来研究GmPT1和GmPT2的亚细胞定位;在酵母突变体中研究GmPT1和GmPT2功能和生化特征;采用Real-time RT-PCR研究GmPT1合GmPT2表达模式;利用酵母单杂交的方法研究GmPHR1和GmSPX1的互作;同时,利用主成分分析和隶属函数对20种大豆基因型进行了耐低磷性状的评价。通过研究获得以下研究结果:
     1.根据主成分和隶属函数分析,评价供试大豆基因型耐低磷性状强弱顺序。供试基因型耐低磷由强到弱的顺序为:赶泰、五河齐黄豆、7650、湘豆4号、先进2号、苏88M-21、Peking、高作选1号、科丰一号、新沂小黑豆、南农1138-2、94-156、87-23、菏84-5、波高、RN-9.通山薄皮甲、皖82-178、湘秋豆2号、垫江早黄豆。
     2.克隆得到两个PT基因分别在大豆染色体Gm10(41,391,168~41,393,008)和Gm20(42,980,124~42,981,928)上,分别命名为GmPT1(登录号:HQ392508)、GmPT2(登录号:HQ392509)。GmPT1含有1841个碱基其开放阅读框编码536个氨基酸(分子量为58730.46Da)。GmPT2含有1802个碱基其开放阅读框编码536个氨基酸(分子量为58627.29Da)。GmPT1和GmPT2的开放阅读框都是从第23-1633bp,在核苷酸序列上有88.7%一致性,在氨基酸序列上有97.9%的一致性。GmPT1和GmPT2氨基酸序列与拟南芥、番茄、马铃薯和蒺藜苜蓿有着很高相似性。GmPT1和GmPT2与来自真菌的PT——菌根真菌(GvPT)以及酿酒酵母(PHO84)有着很高的一致性。GmPT1氨基酸序列与GvPT (登录号:Q00908)、PHO84(登录号:P25297)分别有76%、61%一致性;GmPT2氨基酸序列与GvPT(登录号:Q00908)、PHO84(登录号:P25297)分别有76%、63%一致性。GmPT1和GmPT2(?)勺疏水性分析表明这两个转运体均有12个跨膜区域(TM, transmembrane),这是PT的共同特征,与PT的亲和性无关。GmPT1和GmPT2(?)勺生物信息学预测结果表明这两个蛋白的二级结构含有12个跨膜区域,在TM6和TM7间存在一个大亲水环。
     3.利用Tbpred预测服务器来预测GmPT1和GmPT2亚细胞定位,其预测结果为GmPT1和GmPT2是整合性膜蛋白。为了验证GmPT1和GmPT2亚细胞定位,将绿色荧光蛋白(GFP)融合到GmPT1或GmPT2的ORF的3’端。在以GmPT1/GFP或GmPT2/GFP进行转化的细胞可以观察到细胞周围有着清晰的荧光信号,转化空载的细胞则可以观察到整个细胞充满荧光信号。GmPT1/GFP和GmPT2/GFP融合蛋白定位在细胞的周边,表明这两个蛋白定位在细胞膜。这个结果与早期生化研究一致,这些数据表明GmPT1和GmPT2定位在细胞膜。
     4.利用抑制剂来验证Pi运输的pH依赖性。Pi运输活性在pH值4-7范围内进行研究,其活性在不同的pH值下表现出差异——当pH值为4时其活性达到最高并随着pH值升高其活性下降。为了研究质子驱动力对Pi运输活性的影响,本实验使用解偶联剂——2,4-二硝基苯酚(DNP)和羰基羟基氰氯苯腙(CCCP),这些解偶联剂可以破坏细胞膜内外的质子梯度。DNP在浓度为100gM时Pi吸收率相比较无抑制剂的对照减至79%(GmPT1)和82%(GmPT2)。CCCP在浓度为100μM时Pi吸收率相比较无抑制剂的对照减至77%(GmPT1)和80%(GmPT2)。钒酸盐——一种P-类型H+-ATPase(?)(?)制剂——在浓度为100μM时Pi吸收率相比较无抑制剂的对照减至82%(GmPT1)和83%(GmPT2)。这些结果表明其吸收率相比较对照明显地降低了。这些结果证实了GmPT1和GmPT2(?)(?)Pi/H+共转运依赖于细胞膜内外的pH梯度,其pH梯度的维持正是质膜上的H+-ATPase的作用。竞争实验表明不同的阳离子不会降低Pi吸收速率,表明GmPT1和GmPT2对Pi吸收的高度特异性。含有GmPT1和GmPT2的菌株在毫摩尔浓度(mM)的Pi浓度下其吸收率与含空载的菌株相似。在32Pi吸收实验中,其吸收过程中的前5min吸收速率是线性的,利用Lineweaver-Burk图可以计算GmPT1和GmPT2的Km,得到GmPT1和GmPT2的Km分别为6.65mM和6.63mM。因此,GmPT1和GmPT2是低亲和PT并且依赖于质膜内外的质子梯度。
     5.播种7d后的大豆幼苗的根系、茎和叶片组织用于研究GmPT1和GmPT2的表达。在低磷胁迫的48h之内,幼苗的根系、茎和叶片中GmPT1和GmPT2的表达量都是升高的。48h高磷处理后,将幼苗进行低磷胁迫,3h后其幼苗的根系、茎和叶片中GmPT1和GmPT2的表达量也是上调的。用Hoagland营养液浇灌的幼苗移栽到高磷溶液后,其幼苗的GmPT1和GmPT2的表达量只有轻微的改变。48h低磷处理的幼苗移栽到高磷溶液3h后,其根系、茎和叶片中的GmPT1和GmPT2的表达量降低。然而,GmPT1和GmPT2基因的表达水平并没有受到磷浓度影响而显著地改变(其相对倍数变化是很小的)并且这种变化趋势是复杂的,这表明GmPT1和GmPT2是轻微诱导表达。
     6.酵母单杂交结果说明GmPHR1与GmSPX1的启动子存在着互作,这表明GmPHR1是通过顺式元件来和GmSPX1互作,因此GmPHR1可能是大豆Pi信号途径中的关键性调节子。
Phosphorus is one of the most important macronutrients required for plant growth and metabolism, and is the key component of nucleic acids, phospholipids and ATP as well as several enzymes and coenzymes. Phosphorus (in the form of phos-phate) deficiency is the second most frequently limiting macronutrient for plant growth mainly because it exists in the soil in complex, insoluble, inorganic and or-ganic forms that cannot be acquired directly by the plant. It is well established that normal plant growth and productivity are dependent on the availability of inorganic phosphate (Pi). However, in many natural and agricultural ecosystems, plants often face conditions in which availability and mobility of phosphate are at lower extremi-ties. To cope with phosphate limitation, plants have evolved tightly controlled mecha-nisms to maintain phosphate homeostasis, which include the development of lateral roots and root hairs, as well as more dramatic root structures such as proteoid and dauciform roots, the secretion from roots of phosphatases and organic acids, and the induction of high-affinity and some low-affinity Pi transporters (phosphate transporter, PT). Many plants also establish symbiotic associations with mycorrhizal fungi that aid Pi acquisition. A variety of adaptive strategies have evolved in plants that alleviate or help them cope with Pi deficiency. The implementation of these strategies requires changes in the expression profiles of hundreds of genes. The extent and complexity of the network of regulatory genes necessary to sense Pi status and regulate the deploy-ment of these adaptive strategies is now being revealed. The network components identified so far include transcription factors, SPX sub-family proteins, non-coding RNAs and protein modifiers, including proteins involved in SUMOylation, phos-phorylation, dephosphorylation and protein translocation.
     In this study, we cloned a number of related genes, such as PTs, PHRs (phos-phate starvation response), SPXs (Syg1, Pho81, XPR1) and Gm4s; studyed on struc-ture of GmPTl and GmPT2with bioinformatics; analysed subcellular localization of GmPT1and GmPT2with green fluorescent protein fused to the two PTs; studied on functional and biochemical analysis of GmPT1and GmPT2in yeast mutant; analysed expression pattern of GmPT1and GmPT2with Real-time RT-PCR; studied on the interaction of GmPHR1and GmSPX1; At the same times, we used the principal com-ponents and membership function analysis to evaluate low phosphate tolerance of20soybean genotypes. The results are as follows:
     1. We used the principal components and membership function analysis to evaluate low phosphate tolerance of soybean genotypes. The tolerance (from strong-est to weakest) as follows:Gantai, Wuheqihuangdou,7650, Xiangdou No.4, Xianjin No.2, Su88M-21, Peking, Gaozuoxuan No.1,Kefeng No.1, Xinyixiaoheidou, Nannong1138-2,94-156,87-23, He84-5, Bogao, RN-9, Tongshanbopijia, Wan82-178, Xiangqiudou No.2, Dianjiangzaohuangdou.
     2. We identified two P; transporter genes in soybean located on chromosomes Gm10(41,391,168-41,393,008) and Gm20(42,980,124-42,981,928). These genes are designated GmPT1(accession number HQ392508) and GmPT2(accessionnum-ber HQ392509), respectively. GmPT1is1841-bp long and contains an open reading frame encoding a536amino acid polypeptide (molecular mass58730.46Da). GmPT2is1802-bp long and contains an open reading frame encoding a536amino acid polypeptide (molecular mass58627.29Da). Interestingly, the open reading frame in both genes spans base pairs23-1633. These genes are88.7%similar in nu-cleotide sequence and97.9%similar in amino acid sequence. The two polypeptides share the greater degree of similarity with the characterized PT from Arabidopsis, tomato, potato and barrel clover (Medicago truncatula). GmPT1and GmPT2have a very high degree of identity with fungal PT from the mycorrhizal fungus Glomus versiforme (GvPT) and the budding yeast Saccharomyces cerevisiae (PHO84). GmPT1shows76%and61%and Gm?T2shows76%and63%amino acid sequence identity with GvPT (accession number Q00908) and PHO84(accession number P25297), respectively. Hydropathy plots of the deduced polypeptides suggest that GmPT1and GmPT2consist of12membrane-spanning regions, a feature shared by PTs, irrespective of the level of affinity. Computational modeling of the encoded proteins predicted a conserved secondary structure containing12transmembrane (TM) domains with a large hydrophilic loop between TM6and TM7.
     3. The TBpred Prediction Server was used for searches that yielded unambi-guous results with positive scores for the integral membrane protein. To verify the subcellular locations of GmPT1and GmPT2, a green fluorescent protein (GFP)-tagged gene was fused to the3'end of the open reading frame of the GmPT1or GmPT2genes. A clear GFP signal was observed at the periphery of onion epi-dermal cells bombarded with the GmPTl/GFP or GmPT2/GFP construction, whe-reas the signal was seen throughout cells expressing free GFP. Localization of the GmPTl/GFP and GmPT2/GFP fusion proteins to the periphery of the cells indicated that the two proteins are targeted to the plasma membrane. This is consistent with the results of earlier biochemical studies and together these data suggest that the GmPT1and GmPT2proteins are located in the plasma membrane.
     4. We used uptake studies with inhibitors to confirm the pH dependence of Pi transport. Pi transport activity was assessed at pH values in the range4-7. Differ-ences were detected in the activity profiles but the uptake rate was maximal at pH4and increased as the pH was reduced from7to4in each case. To investigate this in-fluence of a proton motive force on Pi transport activity, the uncouplers2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which destroy proton gradients across membranes, were applied. DNP at a concen-tration of100μM reduced the Pi uptake rate to79%(GmPT1) and82%(GmPT2) compared with100%uptake in the inhibitor-free control. The rate of uptake was re-duced to77%(GmPT1) and80%(GmPT2) by100μM CCCP and, to82%(GmPT1) and83%(GmPT2) by100μM Vanadate, an inhibitor of P-type H+-ATPases. The transporter rate was decreased significantly compared to that in the control. These results confirmed the hypothesis that Pi/H+cotransport via GmPT1and GmPT2de-pends on the pH gradient across the cell membrane that is maintained by the en-dogenous plasma membrane H+-ATPases. Moreover, competition studies showed that different anions did not reduce the Pi uptake rate, demonstrating the high degree of specificity of GmPT1and GmPT2for Pi. Strains carrying the GmPTl or GmPT2cDNA generally uptake Pi at rates similar to those of the vector controls at millimo-lar concentrations of Pi. In uptake experiments with radioactive Pi, the rate of trans-port was linear with time during the first5min of uptake under the conditions ap-plied. In three parallel experiments, the Lineweaver-Burk diagram, calculated using reciprocal uptake velocities at5min after addition of32Pi, indicated that Pi uptake facilitated by GmPT1and GmPT2followed Michaelis-Menten kinetics with an ap-parent Km valueof6.65mM and6.63mM, respectively. Thus, GmPTl and GmPT2are low-affinity Pi transporters that are dependent on the proton gradient across the plasma membrane.
     5. Root, stem and leaf tissues of7-day-old soybean seedlings were used to examine the expression of GmPT1and GmPT2. Expression of the two PT was en-hanced in both root and shoot during the first48h of Pi starvation. The expression of GmPTl and GmPT2in seedling tissues was increased during the3h after the Pi-sufficient treated seedlings were transferred to a P; deficient solution at48h com-pared to the expression measured in Pi-sufficient plants. The transcript levels of GmPT1and GmPT2were little changed in plants that were grown in half-strength nutrient solution for7days and then transferred to a Pi-sufficient solution. A de-crease in the transcript abundance of GmPT1and GmPT2in the leaf, stem and root of hydroponically grown soybean seedlings was apparent within3h of Pi deprivation. In conclusion, the expression level of GmPT1and GmPT2was not altered markedly and the change tendencies were complicated irrespective of how the seedlings were treated. Therefore, the soybean PTs GmPT1and GmPT2were slightly induced by P; deficiency.
     6. Interaction of GmPHRl with the promoter of GmSPXl was indicated by yeast one hybridization. The result indicated that GmPHR1can physically interact with GmSPXl through the cis-element, and this may be a key regulator in the Pi-signaling pathway in soybean.
引文
1. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009). "Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation." Plant journal 57(5):798-809.
    2. Al-Ghazi Y, Muller B, Pinloche S, Tranbarger T, Nacry P, Rossignol M, Tardieu F, Doumas P (2003). "Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling." Plant, Cell & Environment 26(7): 1053-1066.
    3. Allen E, Xie Z, Gustafson AM, Carrington JC (2005). "microRNA-directed phasing during trans-acting siRNA biogenesis in plants." Cell 121(2):207-221.
    4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). "Basic local alignment search tool." Journal of Molecular Biology 215(3):403-410.
    5. Ames, B. N. (1966). "Assay of inorganic phosphate, total phosphate and phosphatase." Methods in enzymology 8:115-118.
    6. Amtmann A, Hammond JP, Armengaud P, White PJ (2005). "Nutrient sensing and signalling in plants:potassium and phosphorus." Advances in Botanical Research 43:209-257.
    7. Atchley WR, Terhalle W, Dress A (1999). "Positional dependence, cliques, and predictive motifs in the bHLH protein domain." Journal of molecular evolution 48(5):501-516.
    8. Auesukaree C, Homma T, Kaneko Y, Harashima S (2003). "Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae." Biochemical and Biophysical Research Communications 306(4): 843-850.
    9. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006). "pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene." Plant Physiology 141(3):1000-1011.
    10. Axtell MJ, Snyder JA, Bartell DP (2007). "Common functions for diverse small RNAs of land plants." Plant Cell 19(6):1750-1769.
    11. Baker DE, Jarrell AE, Marshall LE, Thomas WI (1970). "Phosphorus uptake from soils by corn hybrids selected for high and low phosphorus accumulation." Agronomy Journal 62(1): 103-106.
    12. Baldwin JC, Karthikeyan AS, Cao A, Raghothama KG (2008). "Biochemical and molecular analysis of LePS2;1:a phosphate starvation induced protein phosphatase gene from tomato." Planta 228(2):273-280.
    13. Baldwin JC, Karthikeyan AS, Raghothama KG (2001). "LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato." Plant Physiology 125(2):728-737.
    14. Barabote RD, Tamang DG, Abeywardena SN, Fallah NS, Fu JY, Lio JK, Mirhosseini P, Pezeshk R, Podell S, Salampessy ML, Thever MD, Saier MH, Jr. (2006). "Extra domains in secondary transport carriers and channel proteins." Biochimica et Biophysica Acta 1758(10): 1557-1579.
    15. Bari R, Datt Pant B, Stitt M, Scheible WR (2006). "PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants." Plant Physiology 141(3):988-999.
    16. Bariola PA, Howard CJ, Taylor CB, Verburg MT, Jaglan VD, Green PJ (1994). "The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation." Plant Journal 6(5):673-685.
    17. Bartel B, Bartel DP (2003). "MicroRNAs:at the root of plant development?" Plant Physiology 132(2):709-717.
    18. Bartel, D. P. (2004). "MicroRNAs:genomics, biogenesis, mechanism, and function." Cell 116(2):281-297.
    19. Bates, T. and J. Lynch (1996). "Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability." Plant, Cell & Environment 19(5):529-538.
    20. Bayle, V., J. F. Arrighi, et al. (2011). "Arabidopsis thaliana High-Affinity Phosphate Transporters Exhibit Multiple Levels of Posttranslational Regulation." Plant Cell 23(4): 1523-1535.
    21. Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005). "The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis." Development 132(2):291-298.
    22. Bieleski, R. (1973). "Phosphate pools, phosphate transport, and phosphate availability." Annual Review of Plant Physiology 24(1):225-252.
    23. Borch K, Bouma T, Lynch J, Brown K (1999). "Ethylene:a regulator of root architectural responses to soil phosphorus availability." Plant, Cell & Environment 22(4):425-431.
    24. Brenner WG, Romanov GA, K llmer I, Brkle L, Schmlling T (2005). "Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades." Plant Journal 44(2):314-333.
    25. Bucher M, Rausch C, Daram P (2001). "Molecular and biochemical mechanisms of phosphorus uptake into plants." Journal of Plant Nutrition and Soil Science 164(2):209-217.
    26. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008). "Identification and characterization of small RNAs from the phloem of Brassica napus." Plant journal:for cell and molecular biology 56(5):739-749.
    27. Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991). "The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter." Molecular and Cellular Biology.11(6):3229-3238.
    28. Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996). "Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae." Current Genetics 29(4):344-351.
    29. Burleigh SH, Cavagnaro T, Jakobsen I (2002). "Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition." Journal of experimental botany 53(374):1593-1601.
    30. Burleigh, S. H., M. J. Harrison (1997). "A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition." Plant molecular biology 34(2): 199-208.
    31. Burleigh, S. H., M. J. Harrison (1999). "The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots." Plant Physiology 119(1):241-248.
    32. Burleigh, S. M., M. J. Harrison (1998). "Characterization of the Mt4 gene from Medicago truncatula." Gene 216(1):47-53.
    33. Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010). "A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis." PLoS Genetics 6(9): e1001102.
    34. Cakmak, I. (2002). "Plant nutrition research:Priorities to meet human needs for food in sustainable ways." Plant and Soil 247(1):3-24.
    35. Cakmak, I., H. Marschner (1986). "Mechanism of phosphorus induced zinc deficiency in cotton:I. Zinc deficiency enhanced uptake rate of phosphorus." Physiologia Plantarum 68(3): 483-490.
    36. Carrington, J. C., V. Ambros (2003). "Role of microRNAs in plant and animal development." Science 301(5631):336-338.
    37. Carswell C, Grant BR, Theodorou ME, Harris J, Niere JO, Plaxton WC (1996). "The Fungicide Phosphonate Disrupts the Phosphate-Starvation Response in Brassica nigra Seedlings." Plant Physiology 110(1):105-110.
    38. Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007). "A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation." Plant Cell 19(3):1123-1133.
    39. Chen DL, Delatorre CA, Bakker A, Abel S (2000). "Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana." Planta 211(1):13-22.
    40. Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007). "BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis." Biochemical Journal 405(Pt 1):191-198.
    41. Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003). "Effects of phosphate availability on the root system architecture:large-scale analysis of the natural variation between Arabidopsis accessions." Plant, Cell & Environment 26(11):1839-1850.
    42. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su C (2006). "Regulation of phosphate homeostasis by microRNA in Arabidopsis." Plant Cell 18(2):412-421.
    43. Chiou TJ, Liu H, Harrison MJ (2001). "The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface." Plant Journal 25(3):281-293.
    44. Ciereszko, I., Barbachowska A. (2000). "Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency." Journal of plant physiology 156(5/6): 640-644.
    45. Ciereszko I, Gniazdowska A, Mikulska M, Rychter A (1996). "Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency." Journal of plant physiology 149(3-4):343-348.
    46. Ciereszko I, Johansson H, Kleczkowski LA (2005). "Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis." Journal of plant physiology 162(3):343-353.
    47. Ciereszko I, Kleczkowski LA (2002). "Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis:hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal." Biochimica et biophysica acta 1579(1):43-49.
    48. Clark, R. (1974). "Differential Phosphorus Uptake by Phosphorus-Stressed Corn Inbredsl. Crop Science 14(4):505-508.
    49. Cohen A, Perzov N, Nelson H, Nelson N (1999). "A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins." Journal of Biological Chemistry 274(38):26885-26893.
    50. Colby T, Matthai A, Boeckelmann A, Stuible HP (2006). "SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis." Plant Physiology 142(1):318-332.
    51. Cordell D, Drangert JO, White S (2009). "The story of phosphorus:Global food security and food for thought." Global Environmental Change 19(2):292-305.
    52. Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998). "Functional analysis and cell-specific expression of a phosphate transporter from tomato." Planta 206(2):225-233.
    53. Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999). "Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis." Plant Cell 11(11):2153-2166.
    54. del Pozo JC, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J (1999). "A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions." Plant Journal 19(5):579-589.
    55. Deleage G, Combet C, Blanchet C, Geourjon C (2001). "ANTHEPROT:An integrated protein sequence analysis software with client/server capabilities." Computers in Biology and Medicine 31(4):259-267.
    56. Delhaize E, Randall PJ (1995). "Characterization of a Phosphate-Accumulator Mutant of Arabidopsis thaliana." Plant Physiology.107(1):207-213.
    57. Desnos, T. (2008). "Root branching responses to phosphate and nitrate." Current opinion in plant biology 11(1):82-87.
    58. Devaiah BN, Karthikeyan AS, Raghothama KG (2007a). "WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis." Plant Physiology 143(4):1789-1801.
    59. Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG (2009). "Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis." Molecular plant 2(1):43-58.
    60. Devaiah BN, Nagarajan VK, Raghothama KG (2007b). "Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6." Plant Physiology 145(1):147-159.
    61. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996). "The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root." Cell 86(3):423-433.
    62. Doerner, P. (2008). "Phosphate starvation signaling:a threesome controls systemic Pi homeostasis." Current opinion in plant biology 11(5):536-540.
    63. Dong B, Rengel Z, Delhaize E (1998). "Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana." Planta 205(2):251-256.
    64. Duan K, Yi K, Dang L, Huang H, Wu W, Wu P (2008). "Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation." Plant Journal 54(6):965-975.
    65. EI-D AMSA, SALAMA A, WAREING PF (1979). "Effects of Mineral Nutrition on Endogenous Cytokinins in Plants of Sunflower (Helianthus annuus L.)." Journal of experimental botany 30(5):971-981.
    66. Epstein E, Hagen CE (1952). "A KINETIC STUDY OF THE ABSORPTION OF ALKALI CATIONS BY BARLEY ROOTS." Plant Physiology.27(3):457-474.
    67. Epstein E, Rains DW, Elzam OE (1963). "RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS." Proceedings of the National Academy of Sciences of the United States of America 49(5):684-692.
    68. Fageria N, Wright R, Baligar V (1988). "Rice cultivar evaluation for phosphorus use efficiency." Plant and Soil 111(1):105-109.
    69. Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009). "Phosphate signaling in Arabidopsis and Oryza sativa." Plant Science 176(2):170-180.
    70. Franco-Zorrilla JM, Del Toro FJ, Godoy M, Perez-Perez J, Lopez-Vidriero I, Oliveros JC, Garcia-Casado G, Llave C, Solano R (2009). "Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations." Plant journal:for cell and molecular biology 59(5):840-850.
    71. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004). "The transcriptional control of plant responses to phosphate limitation." Journal of experimental botany 55(396):285-293.
    72. Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005). "Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3." Plant Physiology 138(2):847-857.
    73. Franco-Zorrilla JM, Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J (2002). "Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis." Plant Journal 32(3):353-360.
    74. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I. Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007). "Target mimicry provides a new mechanism for regulation of microRNA activity." Nature genetics 39(8):1033-1037.
    75. Fredeen AL, Rao IM, Terry N (1989). "Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max." Plant Physiology 89(1):225-230.
    76. Fu X, Harberd NP (2003). "Auxin promotes Arabidopsis root growth by modulating gibberellin response." Nature 421(6924):740-743.
    77. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005). "A miRNA involved in phosphate-starvation response in Arabidopsis." Current biology:CB 15(22):2038-2043.
    78. Furihata T, Suzuki M, Sakurai H (1992). "Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts." Plant and Cell Physiology 33(8):1151-1157.
    79. Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P (2005). "Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization." Proceedings of the National Academy of Sciences of the United States of America 102(22):8066-8070.
    80. Gallagher KL, Benfey PN (2009). "Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement." Plant Journal 57(5):785-797.
    81. Gessler A, Kopriva S, Rennenberg H (2004). "Regulation of nitrate uptake at the whole-tree level:interaction between nitrogen compounds, cytokinins and carbon metabolism." Tree Physiology 24(12):1313-1321.
    82. Gietz RD, Schiestl RH (2007). "High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method." Nature Protocols 2(1):31-34.
    83. Giots F, Donaton MCV, Thevelein JM (2003). "Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae." Molecular microbiology 47(4):1163-1181.
    84. Glassop D, Smith SE, Smith FW (2005). "Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots." Planta 222(4):688-698.
    85. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)." Science 296(5565):92-100.
    86. Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005). "PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis." Plant Cell 17(12):3500-3512.
    87. Gordon-Weeks R, Tong YP, Davies TGE, Leggewie G (2003). "Restricted spatial expression of a high-affinity phosphate transporter in potato roots." Journal of Cell Science 116(15): 3135-3144.
    88. Gourley C, Allan D, Russelle M (1993). "Defining phosphorus efficiency in plants." Plant and Soil 155(1):289-292.
    89. Graham PH, Vance CP (2003). "Legumes:Importance and Constraints to Greater Use." Plant Physiology.131(3):872-877.
    90. Grigston JC, Osuna D, Scheible WR, Liu C, Stitt M, Jones AM (2008). "D-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1." FEBS letters 582(25-26): 3577-3584.
    91. Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008). "Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters." New Phytologist 177(4):889-898.
    92. Hamburger D, Rezzonico E,.MacDonald-Comber Petetot J, Somerville C, Poirier Y (2002). "Identification and Characterization of the Arabidopsis PHO1 Gene Involved in Phosphate Loading to the Xylem." Plant Cell 14(4):889-902.
    93. Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003). "Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants." Plant Physiology 132(2):578-596.
    94. Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP (2009). "Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits." Journal of Experimental Botany 60(7):1953-1968.
    95. Hammoi J JP, White PJ (2008). "Sucrose transport in the phloem:integrating root responses to phosphorus starvation." Journal of experimental botany 59(1):93-109.
    96. Haran S, Logendra S, Seskar M, Bratanova M, Raskin I (2000). "Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression." Plant Physiology 124(2):615-626.
    97. Harrison MJ, Dewbre GR, Liu J (2002). "A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi." Plant Cell 14(10):2413-2429.
    98. He L, Hannon GJ (2004). "MicroRNAs:small RNAs with a big role in gene regulation." Nature reviews. Genetics 5(7):522-531.
    99. Hermans C, Hammond JP, White PJ, Verbruggen N (2006). "How do plants respond to nutrient shortage by biomass allocation?" Trends in plant science 11(12):610-617.
    100. Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007). "Phosphorus stress in common bean:root transcript and metabolic responses." Plant Physiology 144(2):752-767.
    101. Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC (2006). "Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants." Biochimie 88(11):1767-1771.
    102. Horgan J, Wareing P (1980). "Cytokinins and the growth responses of seedlings of Betula pendula Roth, and Acer pseudoplatanus L. to nitrogen and phosphorus deficiency." Journal of experimental botany 31(2):525-532.
    103. Hou X, Wu P, Jiao F, Jia Q, Chen H, Yu J, Song X, Yi K (2005). "Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones." Plant, Cell & Environment 28(3):353-364.
    104. Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009). "Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing." Plant Physiology 151(4):2120-2132.
    105. Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000). "Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots." Plant Physiology 124(1):415-422.
    106. Huang CY, Shirley N, Genc Y, Shi B, Langridge P (2011). "Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and non-coding RNA, IPS1 in barley." Plant Physiology.156(3):1217-1229.
    107. Hurlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM (2009). "The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Reports 10(9):1003-1008.
    108. Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007). "Genetic and genomic approaches to develop rice germplasm for problem soils." Plant Molecular Biology 65(4):547-570.
    109. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007). "Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis." Plant Physiology 144(1):232-247.
    110. Jain A, Poling MD, Smith AP, Nagarajan VK, Lahner B, Meagher RB, Raghothama KG (2009). "Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients." Plant Physiology 150(2):1033-1049.
    111. Jeschke WD, Kirkby EA, Peuke AD, Pate JS, Hartung W (1997). "Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.)." Journal of Experimental Botany 48(1):75-91.
    112. Jia H, Ren H, Gu M, Zhao J, Sun S, Chen J, Wu P, Xu G (2011). "Phosphate transporter gene, OsPht1;8, is involved in phosphate homeostasis in rice." Plant Physiology.156(3): 1164-1175.
    113. Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007). "Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis" Plant Physiology 145(4):1460-1470.
    114. Jones-Rhoades MW, Bartel DP (2004). "Computational identification of plant microRNAs and their targets, including a stress-induced miRNA." Molecular Cell 14(6):787-799.
    115. Jones-Rhoades MW, Bartel DP, Bartel B (2006). "MicroRNAs and their regulatory roles in plants." Annual Review of Plant Biology 57:19-53.
    116. Kang X, Ni M (2006). "Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling." Plant Cell 18(4):921-934.
    117. Karandashov V, Bucher M (2005). "Symbiotic phosphate transport in arbuscular mycorrhizas." Trends in Plant Science 10(1):22-29.
    118. Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007). "Phosphate starvation responses are mediated by sugar signaling in Arabidopsis." Planta 225(4):907-918.
    119. Karthikeyan AS, Varadarajan DK, Mukatira UT, D'Urzo MP, Damsz B, Raghothama KG (2002). "Regulated expression of Arabidopsis phosphate transporters." Plant Physiology 130(1):221-233.
    120. Knappe S, Flugge UI, Fischer K (2003). "Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site." Plant Physiology 131(3): 1178-1190.
    121. Koch KE, Ying Z, Wu Y, Avigne WT (2000). "Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism." Journal of experimental botany 51:417-427.
    122. Kyte J, Doolittle RF (1982). "A simple method for displaying the hydropathic character of a protein." Journal of Molecular Biology 157(1):105-132.
    123. Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calder6n L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002). "Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system." Plant Physiology 129(1):244-256.
    124. Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005). "An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation." Plant Physiology 137(2):681-691.
    125. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006). "Root structure and functioning for efficient acquisition of phosphorus:matching morphological and physiological traits." Annals of botany 98(4):693-713.
    126. Leggewie G, Willmitzer L, Riesmeier JW (1997). "Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant:Identification of phosphate transporters from higher plants." Plant Cell 9(3):381-392.
    127. Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011). "Genetic and Genomic Evidence That Sucrose Is a Global Regulator of Plant Responses to Phosphate Starvation in Arabidopsis." Plant Physiology 156(3):1116-1130.
    128. Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F, Gojon A (2003). "Regulation of root ion transporters by photosynthesis:functional importance and relation with hexokinase." Plant cell 15(9):2218-2232.
    129. Lejay L, Wirth J, Pervent M, Cross JMF, Tillard P, Gojon A (2008). "Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis." Plant Physiology 146(4):2036-2053.
    130. Lenburg ME, O'Shea EK (1996). "Signaling phosphate starvation." Trends in Biochemical Sciences 21(10):383-387.
    131.Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009). "Legume Transcription Factor Genes:What Makes Legumes So Special?" Plant Physiology.151(3): 991-1001.
    132. Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008). "Identification of Four Soybean Reference Genes for Gene Expression Normalization." Plant Genome 1(1):44-54.
    133. Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008). "Regulatory network of microRNA399 and PHO2 by systemic signaling." Plant Physiology 147(2): 732-746.
    134. Lin WY, Lin SI, Chiou TJ (2009). "Molecular regulators of phosphate homeostasis in plants." Journal of experimental botany 60(5):1427-1438.
    135. Linkohr BI, Williamson LC, Fitter AH, Leyser H (2002). "Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis." Plant Journal 29(6):751-760.
    136. Lipsett, J. (1964). "The phosphorus content and yield of grain of different wheat varieties in relation to phosphorus deficiency." Australian Journal of Agricultural Research 15(1):1-8.
    137. Liu C, Muchhal US, Raghothama KG (1997). "Differential expression of TPS11, a phosphate starvation-induced gene in tomato." Plant Molecular Biology 33(5):867-874.
    138. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998a). "Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus." Plant Physiology 116(1):91-99.
    139. Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010). "OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice." Plant Journal 62(3):508-517.
    140. Liu, H., A. T. Trieu, et al. (1998). "Cloning and characterization of two phosphate transporters from Medicago truncatula roots:regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi." Molecular Plant-Microbe Interactions 11(1):14-22.
    141. Liu JQ, Uhde-Stone C, Li A, Vance C, Allan D (2001). "A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.)." Plant and Soil 237(2):257-266.
    142. Liu TY, Chang CY, Chiou TJ (2009). "The long-distance signaling of mineral macronutrients." Current Opinion in Plant Biology 12(3):312-319.
    143. Livak KJ, Schmittgen TD (2001). "Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." Methods 25(4):402-408.
    144. Lloyd JC, Zakhleniuk OV (2004). "Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3." Journal of experimental botany 55(400):1221-1230.
    145. Lough TJ, Lucas WJ (2006). "Integrative plant biology:role of phloem long-distance macromolecular trafficking." Annual review of plant biology 57:203-232.
    146. Luan, S. (2003). "Protein phosphatases in plants." Annual review of plant biology 54(1): 63-92.
    147. Lynch J, Brown K (1998). Regulation of root architecture by phosphorus availability Phosphorus in Plant Biology.Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes, American Society of Plant Physiologists, Rockville, MD,USA.
    148. Miiller O, Bayer MJ, Peters C, Andersen JS, Mann M, Mayer A (2002). "The Vtc proteins in vacuole fusion:coupling NSF activity to V(0) trans-complex formation." EMBO Journal 21(3):259-269.
    149. Muller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007). "Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism." Plant Physiology 143(1):156-171.
    150. Muller R, Nilsson L, Nielsen LK, Hamborg Nielsen T (2005). "Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves." Physiologia Plantarum 124(1):81-90.
    151. Ma Z, Baskin TI, Brown KM, Lynch JP (2003). "Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness." Plant Physiology 131(3): 1381-1390.
    152. Marschner, H. (1995). Nutrient availability in soils. Mineral Nutrition of Higher Plants. London, Academic Press:483-507.
    153. Martin AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de La Pena A, Leyva A, Paz-Ares J (2000). "Influence of cytokinins on the expression of phospnate starvation responsive genes in Arabidopsis." Plant Journal 24(5):559-567.
    154. Massari ME, Murre C (2000). "Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms." Molecular and cellular biology 20(2):429-440.
    155. Massonneau A, Martinoia E, Dietz KJ, Mimura T (2000). "Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don." Planta 211(3):390-395.
    156. Mimura, T. (1999). "Regulation of phosphate transport and homeostasis in plant cells.' International review of cytology 191:149-200.
    157. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N (2005). "A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.' Proceedings of the National Academy of Sciences of the United States of America 102(33): 11934.
    158. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004). "Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants." Plant Molecular Biology 55(5):727-741.
    159. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997). "Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions." Proceedings of the National Academy of Sciences of the United States of America 94(13): 7098-7102.
    160. Miura K, Jin JB, Hasegawa PM (2007). "Sumoylation, a post-translational regulatory process in plants." Current opinion in plant biology 10(5):495-502.
    161. Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009). "Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling.' Proceedings of the National Academy of Sciences of the United States of America 106(13): 5418-5423.
    162. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005). "The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses." Proceedings of the National Academy of Sciences of the United States of America 102(21):7760-7765.
    163. Morcuende R, Bari R, Gibon Y, Zheng W, PANT BD, BL SING O, USADEL B, Czechowski T, UDVARDI MK, Stitt M (2007). "Genome:wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus." Plant, Cell & Environment 30(1):85-112.
    164. Muchhal US, Pardo JM, Raghothama K (1996). "Phosphate transporters from the higher plant Arabidopsis thaliana." Proceedings of the National Academy of Sciences of the United States of America 93(19):10519-10523.
    165. Muchhal US, Raghothama KG (1999). "Transcriptional regulation of plant phosphate transporters." Proceedings of the National Academy of Sciences of the United States of America 96(10):5868-5872.
    166. Mudge SR, Rae AL, Diatloff E, Smith FW (2002). "Expression analysis suggests novel roles for members of the Phtl family of phosphate transporters in Arabidopsis." Plant Journal 31(3):341-353.
    167. Muller R, Nilsson L, Krintel C, Hamborg Nielsen T (2004). "Gene expression during recovery from phosphate starvation in roots and shoots of Arabidopsis thaliana." Physiologia Plantarum 122(2):233-243.
    168. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004). "Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database." Plant Cell 16(9): 2394-2405.
    169. Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005). "A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis." Plant Physiology 138(4):2061-2074.
    170. Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M (2006). "Differential regulation of five Phtl phosphate transporters from maize (Zea mays L.)." Plant Biology 8(2):186-197.
    171. Narang RA, Bruene A, Altmann T (2000). "Analysis of phosphate acquisition efficiency in different Arabidopsis accessions." Plant Physiology 124(4):1786-1799.
    172. Neckelmann G, Orellana A (1998). "Metabolism of uridine 5'-diphosphate-glucose in Golgi vesicles from pea stems." Plant Physiology 117(3):1007-1014.
    173. Neuhaus HE, Maa U (1996). "Unidirectional transport of orthophosphate across the envelope of isolated cauliflower-bud amyloplasts." Planta 198(4):542-548.
    174. Nilsson L, Muller R, Nielsen TH (2007). "Increased expression of the MYB-related transcription factor, PHR1,leads to enhanced phosphate uptake in Arabidopsis thaliana." Plant, Cell & Environment 30(12):1499-1512.
    175. Ogawa N, DeRisi J, Brown PO (2000). "New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis." 11(12):4309-4321.
    176. Ogawa N, Noguchi K, Sawai H, Yamashita Y, Yompakdee C, Oshima Y (1995). "Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae." Molecular and Cellular Biology 15(2):997-1004.
    177. Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998). "Phosphate transporter gene family of Arabidopsis thaliana." DNA Research 5(5):261-269.
    178. Osmont KS, Sibout R, Hardtke CS (2007). "Hidden branches:Developments in root system architecture." Annual review of plant biology 58:93-113.
    179. Ozturk L, Eker S, Torun B, Cakmak I (2005). "Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil." Plant and Soil 269(1-2):69-80.
    180. Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008). "Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor." Plant Cell 20(12):3258-3272.
    181. Pan X-w, Li W-b, Zhang Q-y, Li Y-h, Liu M-s (2008). "Assessment on Phosphorus Efficiency Characteristics of Soybean Genotypes in Phosphorus-Deficient Soils." Agricultural Sciences in China 7(8):958-969.
    182. Pant BD, Buhtz A, Kehr J, Scheible WR (2008). "MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis." Plant Journal 53(5):731-738.
    183. Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009). "Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing." Plant Physiology 150(3):1541-1555.
    184. Pao SS, Paulsen IT, Saier MH, Jr. (1998). "Major Facilitator Superfamily." Microbiology and Molecular Biology Reviews 62(1):1-34.
    185. Paszkowski, U. (2006). "A journey through signaling in arbuscular mycorrhizal symbioses." New Phytologist 172(1):35-46.
    186. Paszkowski U, Kroken S, Roux C, Briggs SP (2002). "Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis." Proceedings of the National Academy of Sciences of the United States of America 99(20): 13324-13329.
    187. Peleg Y, Aramayo R, Kang S, Hall JG, Metzenberg RL (1996). "NUC-2, a component of the phosphate-regulated signal transduction pathway inNeurospora crassa, is an ankyrin repeat protein." Molecular and General Genetics MGG 252(6):709-716.
    188. Pinson B, Merle M, Franconi JM, Daignan-Fornier B (2004). "Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae." Journal of Biological Chemistry 279(34): 35273-35280.
    189. Plaxton WC, Carswell MC (1999). Metabolic aspects of the phosphate starvation response in plants. In Plant Responses to Environmental Stresses, from Phytohormones to Genome Reorganization,Lerner, H.R., ed., New York, USA:M. Dekker.
    190. Poirier Y., Bucher M. (2002). Phosphate transport and homeostasis in Arabidopsis., Rockville, MD, USA:American Society of Plant Biologists.
    191. Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991). "Mutant of Arabidopsis deficient in xylem loading of phosphate." Plant Physiology 97(3):1087-1093.
    192. Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003). "Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Phtl family." Plant Molecular Biology 53(1-2):27-36.
    193. Raghothama, K. G. (1999). "Phosphate Acquisition." Annual Review of Plant Physiology and Plant Molecular Biology 50:665-693.
    194. Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010). "Strategies for improving phosphorus acquisition efficiency of crop plants." Field Crops Research 117(2-3): 169-176.
    195. Rashid M, Saha S, Raghava GPS (2007). "Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs." BMC Bioinformatics 8:337.
    196. Rausch, C., M. Bucher (2002). "Molecular mechanisms of phosphate transport in plants." Planta 216(1):23-37.
    197. Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001). "A phosphate transporter expressed in arbuscule-containing cells in potato." Nature 414(6862):462-470.
    198. Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006). "Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana." Plant Cell and Environment 29(1):115-125.
    199. Ribot C, Wang Y, Poirier Y (2008a). "Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid." Planta 227(5): 1025-1036.
    200. Ribot C, Zimmerli C,Farmer EE, Reymond P, Poirier Y (2008b). "Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSIT1VE1-dependent pathway." Plant Physiology 147(2):696-706.
    201. Riesmeier JW, Willmitzer L, Frommer WB (1992). "Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast." EMBO Journal 11(13): 4705-4713.
    202. Robinson, R. (1942). "The mineral content of various clones of white clover when grown on different soils." Journal of the American Society of Agronomy 34(10):933-939.
    203. Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009). "Plant hormones and nutrient signaling." Plant molecular biology 69(4):361-373.
    204. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001). "A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae." Genes & Development 15(16):2122-2133.
    205. Sanchez-Calderon L, Lopez-Bucio J. Chacon-Lopez A, Gutierrez-Ortega A, Hernandez-Abreu E, Herrera-Estrella L (2006). "Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency." Plant Physiology 140(3):879-889.
    206. Sakakibara H, Hayakawa A, Deji A, Gawronski SW, Sugiyama T (1999). "His-Asp phosphotransfer possibly involved in the nitrogen signal transduction mediated by cytokinin in maize:molecular cloning of cDNAs for two-component regulatory factors and demonstration of phosphotransfer activity in vitro." Plant molecular biology 41(4):563-573.
    207. Sakano, K. (1990). "Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.) G. Don." Plant Physiology 93(2):479-483.
    208. Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Cruz-Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005). "Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana." Plant & cell physiology 46(1): 174-184.
    209. Santner A, Calderon-Villalobos LI, Estelle M (2009). "Plant hormones are versatile chemical regulators of plant growth." Nature chemical biology 5(5):301-307.
    210. Schachtman DP, Reid RJ, Ayling SM (1998). "Phosphorus Uptake by Plants:From Soil to Cell." Plant Physiology.116(2):447-453.
    211. Schikora Schmidt W (2001). "Acclimative changes in root epidermal cell fate in response to Fe and P deficiency:a specific role for auxin?" Protoplasma 218(1):67-75.
    212. Schmidt W, Schikora A (2001). "Different Pathways Are Involved in Phosphate and Iron Stress-Induced Alterations of Root Epidermal Cell Development." Plant Physiology 125(4): 2078-2084.
    213. Schmittgen TD, Livak KJ (2008). "Analyzing real-time PCR data by the comparative CT method." Nature Protocols 3(6):1101-1108.
    214. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). "Genome sequence of the palaeopolyploid soybean." Nature 463(7278):178-183.
    215. Shane M, Lambers H, Cawthray G, Kuhn A, Schurr U (2008). "Impact of phosphorus mineral source (Al-P or Fe-P) and pH on cluster-root formation and carboxylate exudation in Lupinus albus L." Plant and Soil 304(1):169-178.
    216. Shane MW, Lambers H (2006). "Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply:a proteacean with resistance for developing symptoms of 'P toxicity'." Journal of experimental botany 57(2):413-423.
    217. Shin H, Shin HS, Chen R, Harrison MJ (2006). "Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation." Plant Journal 45(5):712-726.
    218. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004). "Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments." Plant journal:for cell and molecular biology 39(4):629-642.
    219. Shoemaker RC, Schlueter J, Doyle JJ (2006). "Paleopolyploidy and gene duplication in soybean and other legumes." Current Opinion in Plant Biology 9(2):104-109.
    220. Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010). "PROSITE, a protein domain database for functional characterization and annotation." Nucleic Acids Research 38(Database issue):D161-166.
    221. Gahoonia TS, Nielsen NE (2004). "Root traits as tools for creating phosphorus efficient crop varieties." Plant and Soil 260(1):47-57.
    222. Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, Meagher RB (2010). "Histone H2A.Z Regulates the Expression of Several Classes of Phosphate Starvation Response Genes But Not as a Transcriptional Activator." Plant Physiology 152(1):217-225.
    223. Smith FW, Ealing PM, Dong B, Delhaize E (1997). "The cloning of two Arabidopsis genes belonging to a phosphate transporter family." Plant Journal 11(1):83-92.
    224. Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J (1995). "Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit." Journal of Biological Chemistry 270(43):25435-25444.
    225. Steen, I. (1998). "Phosphorus availability in the 21st century:management of a non-renewable resource." Phosphorus and potassium 217:25-31.
    226. Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007). "Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways." Plant Journal 50(6):982-994.
    227. Storz, G. (2002). "An expanding universe of noncoding RNAs." Science 296(5571): 1260-1263.
    228. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007). "Small RNAs as big players in plant abiotic stress responses and nutrient deprivation." Trends in plant science 12(7):301-309.
    229. Sunkar R, Zhu JK (2004). "Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis." Plant Cell 16(8):2001-2019.
    230. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007). "Root tip contact with low-phosphate media reprograms plant root architecture." Nature genetics 39(6):792-796.
    231. Tamura K, Dudley J, Nei M, Kumar S (2007). "MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0." Molecular Biology and Evolution 24(8): 1596-1599.
    232. Thompson JD, Higgins DG, Gibson TJ (1994). "CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice." Nucleic Acids Research 22(22):4673-4680.
    233. Ticconi CA, Abel S (2004). "Short on phosphate:plant surveillance and countermeasures." Trends in Plant Science 9(11):548-555.
    234. Ticconi CA, Delatorre CA, Abel S (2001). "Attenuation of phosphate starvation responses by phosphite in Arabidopsis." Plant Physiology 127(3):963-972.
    235. Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004). "Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development." Plant journal:for cell and molecular biology 37(6):801-814.
    236. Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009). "ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability." Proceedings of the National Academy of Sciences of the United States of America 106(33):14174-14179.
    237. Trull M, Guiltinan M, Lynch J, Deikman J (1997). "The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation." Plant, Cell & Environment 20(1):85-92.
    238. Trull MC, Deikman J (1998). "An Arabidopsis mutant missing one acid phosphatase isoform." Planta 206(4):544-550.
    239. Tusnady GE, Simon I (2001). "The HMMTOP transmembrane topology predction server." Bioinformatics 17(9):849-850.
    240. Uhde-Stone C, Zinn KE, Ramirez-Yanez M, Li A, Vance CP, Allan DL (2003). "Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency." Plant Physiology 131(3):1064-1079.
    241. Ullrich-Eberius C, Novacky A, Bel A (1984). "Phosphate uptake in Lemna gibba G1: energetics and kinetics." Planta 161(1):46-52.
    242. Ullrich-Eberius CI, Novacky A, Fischer E, Luttge U (1981). "Relationship between Energy-dependent Phosphate Uptake and the Electrical Membrane Potential in Lemna gibba G1." Plant Physiology 67(4):797-801.
    243. Vance CP, Uhde-Stone C, Allan DL (2003). "Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource." New Phytologist 157(3): 423-447.
    244. Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG (2002). "Phosphite, an Analog of Phosphate, Suppresses the Coordinated Expression of Genes under Phosphate Starvation." Plant Physiology 129(3):1232-1240.
    245. Versaw WK, Harrison MJ (2002). "A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses." Plant Cell 14(8):1751-1766.
    246. Wang C, Ying S, Huang H, Li K, Wu P, Shou H (2009a). "Involvement of OsSPX1 in phosphate homeostasis in rice." Plant Journal 57(5):895-904.
    247. Wang X, Shen J, Liao H (2010). "Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?" Plant Science 179(4):302-306.
    248. Wang X, Yi K, Tao Y, Wang F, Wu Z, Jiang D, Chen X, Zhu L, Wu P (2006). "Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level." Plant, Cell & Environment 29(10):1924-1935.
    249. Wang Y, Ribot C, Rezzonico E, Poirier Y (2004). "Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis." Plant Physiology 135(1):400.
    250. Wang Y, Secco D, Poirier Y (2008). "Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens." Plant Physiology 146(2): 646-656.
    251. Wang YH, Garvin DF, Kochian LV (2002). "Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals." Plant Physiology 130(3):1361-1370.
    252. Wang Z, Hu H, Huang H, Duan K, Wu Z, Wu P (2009b). "Regulation of OsSPXl and OsSPX3 on Expression of OsSPX domain Genes and Pi-starvation Signaling in Rice." Journal of Integrative Plant Biology 51(7):663-674.
    253. Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008). "The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency." Plant Physiology 147(3):1181-1191.
    254. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T (2003a). "Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots." Plant, Cell & Environment 26(9):1515-1523.
    255. Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003b). "Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status." New Phytologist 158(2):239-248.
    256. Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001). "Phosphate availability regulates root system architecture in Arabidopsis." Plant Physiology 126(2):875-882.
    257. Wissuwa M, Gamat G, Ismail AM (2005). "Is root growth under phosphorus deficiency affected by source or sink limitations?" Journal of experimental botany 56(417):1943-1950.
    258. Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003). "Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves." Plant Physiology 132(3):1260-1271.
    259. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999). "Psrl, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas." Proceedings of the National Academy of Sciences of the United States of America 96(26):15336-15341.
    260. Wykoff DD, O'Shea EK (2001). "Phosphate Transport and Sensing in Saccharomyces cerevisiae." Genetics 159(4):1491-1499.
    261. Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007). "Regulation of copper homeostasis by micro-RNA in Arabidopsis." Journal of biological chemistry 282(22):16369-16378.
    262. Yan X, Lynch JP, Beebe SE (1995). "Genetic Variation for Phosphorus Efficiency of Common Bean in Contrasting Soil Types:I. Vegetative Response." Crop Science 35(4): 1086-1093.
    263. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005). "OsPTFl, a novel transcription factor involved in tolerance to phosphate starvation in rice." Plant Physiology 138(4): 2087-2096.
    264. Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004). "A systemic small RNA signaling system in plants." Plant Cell 16(8): 1979-2000.
    265. Yuan H, Liu D (2008). "Signaling components involved in plant responses to phosphate starvation." Journal of Integrative Plant Biology 50(7):849-859.
    266. Zakhleniuk OV, Raines CA, Lloyd JC (2001). "pho3:a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh." Planta 212(4):529-534.
    267. Z Zhang S, Sun L, Kragler F (2009). "The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation." Plant Physiology 150(1):378-387.
    268. Zhao L, Versaw WK, Liu J, Harrison MJ (2003). "A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope." New Phytologist 157(2):291-302.
    269. Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009). "Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings." Plant Physiology 151(1):262-274.
    270. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008). "OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants." Plant Physiology 146(4):1673-1686.
    271. Zhou Y, Ni M (2009). "SHB1 plays dual roles in photoperiodic and autonomous flowering." Developmental Biology 331(1):50-57.
    272. Zhou Y, Zhang X, Kang X, Zhao X, Ni M (2009). "SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development." Plant Cell 21(1):106-117.
    273. Zhu, J. K. (2008). "Reconstituting plant miRNA biogenesis." Proceedings of the National Academy of Sciences of the United States of America 105(29):9851-9852.
    274. Zuker, M. (2003). "Mfold web server for nucleic acid folding and hybridization prediction." Nucleic Acids Research 31(13):3406-3415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700