用户名: 密码: 验证码:
大豆(Glycine max L.)根系分泌物缓解铝毒的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先对19个大豆品种进行耐铝性筛选,选择浙春2号和浙春3号作为实验材料,主要采用水培法,结合砂培法和小盆钵土培法,比较研究了铝胁迫下大豆根系分泌物的主要成分变化和分泌特征;综合分析了铝胁迫下大豆根系分泌物对土壤P和K的活化作用、对大豆种子萌发和幼苗生长的化感作用、与铝的络合作用和清除自由基作用,以及对根际土壤微生物区系的影响、微生物的物质转化功能和土壤酶活性的影响;初步探讨了大豆根系分泌的有机酸在大豆体内与铝的结合和运输,并深入研究了铝胁迫协同柠檬酸分泌抑制剂作用下大豆根尖相关酶活性变化,揭示了铝对大豆根系分泌物的诱导机制。此外,还研究了模拟主要根系分泌物(外源柠檬酸)加入条件下,二大豆品种根系形态、根尖铝积累的荧光染色以及根尖呼吸代谢等生理特性。现将主要研究成果总结如下:
     1.耐酸铝筛选结果表明,浙春2号的相对根长为127%,明显高于其他品种,表明耐性最强;而2DD06097和浙春3号的相对根长较短,是敏感品种。从品种推广的角度,我们选择优质品种浙春2号和浙春3号作为实验材料。
     2.柠檬酸是铝胁迫下大豆根系分泌物的特征性物质,而氨基酸,化感类物质以及可溶性糖等成分也可以检测出来。2h铝处理后大豆根系就能分泌一些特征性物质如柠檬酸,以响应铝胁迫;而根系脱离铝处理液6h后,大豆根系基本上不能继续维持正常铝胁迫下的分泌特性,各组分分泌的增长速度减缓。
     3.大豆根系分泌物对土壤P、K有明显的活化效应,活化效应随分泌物浓度和植株培养时间的增长而缓缓增强。铝胁迫下根系分泌物的活化能力又比正常根系分泌物有所增强。此外,根系分泌物具有一定的螯合Al~(3+)的能力和清除DPPH自由基的功能。化感作用结果显示,催芽3d时,大豆根系分泌物显著抑制种子的萌发率和胚根增长,具有明显的自毒作用;而7d时,大豆根系分泌物更多表现出促进效应。
     4.土壤铝含量较低条件下(0.2,0.4 g kg~(-1)),大豆根系分泌物的应激分泌促使土壤微生物数量增多、微生物物质转化能力增强和土壤酶活性增大;土壤铝含量较高(0.8 g kg~(-1))时,根系分泌物的分泌相对受抑制,土壤微生物活性和土壤酶活性相应地受到抑制;外源根系分泌物也能影响土壤微生态,显示出一定的缓解铝毒能力。
     5.随铝浓度的增加,浙春2号根际土壤相对于非根际土壤而言,Al~(3+)、(AlOH)~(2+)、Al(OH)_2~+等形态铝含量均有所降低,单聚体羟基铝[(AlOH)~(2+)、Al(OH)_2~+]含量的降低尤为显著,而腐殖酸铝(HA-Al)含量有所升高;根系分泌物对根系土壤具有一定的酸化作用,而铝的形态与pH值有直接的关系,所以根系分泌物对铝形态还存在一定的间接影响。
     6.铝在大豆根部以铝—苹果酸(1:3)复合物和铝—柠檬酸(1:1)复合物二种铝-有机酸复合物形态存在,其化学位移在11.16ppm和-0.38ppm左右,而在茎和叶中,没有检测到铝-有机酸复合物。大豆根茎叶中可溶性铝主要以[AlO_4Al_(12)(OH)_(24)(H_2O)_(12)]形态存在,其化学位移在63.2ppm左右。茎和叶铝的含量比根少,表明大豆抗铝毒作用主要在根部,根部通过分泌有机酸及在根内部形成铝-有机酸复合物来排斥铝和解毒。同时说明大多数铝都不能通过根进入地上部分,一旦铝运输到大豆地上部分,就不能形成铝-有机酸复合物来解毒,而植物体内铝水合物中的铝对植物的毒性较大。
     7.铝胁迫下大豆根尖细胞质膜H~+-ATP酶与根系柠檬酸分泌的关系密切,同时柠檬酸合成酶和酸性磷酸酶活性与大豆根系柠檬酸分泌也有关,而苹果酸脱氢酶、磷酸烯醇式丙酮酸羧化酶、NAD-柠檬酸脱氢酶的活性几乎不受影响。柠檬酸分泌抑制剂A9C和柠檬酸载体抑制剂Mersal对柠檬酸分泌的显著抑制作用。
     8.大豆根尖细胞细胞壁积累铝的现象十分明显,且随着铝处理浓度的增加和处理时间的延长,细胞壁固定的铝逐渐增多;外源柠檬酸存在下,细胞壁铝积累明显减少,浙春3号尤为显著。浙春3号和浙春2号铝积累量随着铝浓度的增大和铝处理时间的延长而呈不同的变化趋势。从铝形态结果分析,可以判断Al_a和Al_b活性铝的含量变化趋于相同,外源柠檬酸作用下,各浓度梯度的Al_a和Al_b活性铝含量均较单铝胁迫时有所降低,而Al_c反而增加。
     9.水溶性蛋白表达结果表现为低浓度铝利于其表达,而高浓度和较长时间处理则起抑制作用;浙春3号在铝处理12h和24h,蛋白表达量比相应处理下浙春2号明显要低。
     随铝浓度和处理时间的增加,浙春2号和3号根尖呼吸速率均有不同程度地降低;在外源柠檬酸作用下,呼吸速率较相应浓度对照组有所上升,但在无铝(0μM/L Al~(3+))状态及铝胁迫初期(1h),浙春2号反而降低。线粒体H~+-PPase活性变化与呼吸作用相似,随铝浓度和处理时间的上升呈一定下降趋势;而外源柠檬酸作用下,浙春3号的增强比例大于浙春2号。
In these experiments,19 high quality varieties and lines of soybean(Glycine max L.)from East and nabe were tested for their tolerance to aluminum toxicity. With solution culture,sand culture and pot culture,two varieties of soybean (Zhechun No.2 and Zhechun No.3)were employed as the main material for the research.The important contents were comparatively study of nutritional components and exudating characteristics of soybean root exudations under aluminum;Synthetically analysis of the effect of soybean root exudates on mobilization of soil sparingly soluble phosphorus and potassium,chelation of Al~(3+),scavenging activity against DPPH free radical,and allelopathy of soybean seedings,as well as microorganism population;biochemical function and soil enzyme;Primarily probe into chelation with almuimun and transportation of important organic acids in soybean and lucubrating the inducing system of aluminum on root exudation of soybean.Further more,the dynamic changes of root morphology,accumulation of Al and respiratory metabolism in root tips were studied.The main research were as follows:
     1.19 cultivars were analysed and found to differ considerably in aluminum (Al)resistance,it shows that relative root length of Zhechun No.2 was 127%which was universally higher than others for strongest resistance of Al. By contraries,2DD06097 and Zhechun No.3 were most sensitive to Al.So Zhechun No.2(Al-resistant)and Zhechun No.3(Al-sensitive)were selected for further analysis,considering the facts.
     2.Citric acid was the idiocratic substance in soybean exudation under Al,but amino acid,isoflavone,phenolic acid,carbohydrate and so on were also detected with dose and time matter.The effects of Al stress on soybean exudation had beguin after 2-h induration period,yet Al had a continuous effect on all these components when roots was removed from Al treatment solution within 6-h.But the effect palled on after 6-h.
     3.The result shows that soybean root exudates has remarkable mobilization ability of soil sparingly soluble phosphorus and potassium;The mobilization effect enhanced slowly with the concentration of root exudate and culture time of seedings,and the activation ability is stronger of root exudates under Al treatment than that of the CK.Furthermore,it has the efficacity of chelating Al and scavenging activity against DPPH free radical by soybean root exudates.The result of allelopathy reveals that it restrains the seed germination and radicle length of soybean as be considered the notable autotoxicity for 3 days of breeding;But it showed promotion effect for 7days of breeding.
     4.Results indicate that in treatments low in soil Al(0.2 and 0.4 g kg~(-1)),irritated secretion from the soybean roots increased the population of soil microbes, strengthened their capability of material transformation and stimulated the activity of soil enzymes,whereas in treatments high in soil Al(0.8g kg~(-1)), root exudation was restrained comparatively,resulting in inhibition of the activity of microorganisms and soil enzymes.The results also demonstrated that exogenous root exudation could also influence the microbial ecosystem.
     5.Result indicates that exchangeable aluminum[Al~(3+)]and[(AlOH)~(2+), Al(OH)_2~+]of Zhechun NO.2 decreased,while[HA-Al]increased compare to non-rhizosphere soils.It reveals that the root exudates had something to do with the acidification of soil,and the form of aluminium had a direct relationship with pH,so the root secretion also had a certain impact on the form of aluminum indirectly.
     6.The NMR results show that Al in soybean roots was mainly chelated to citrate and malate in Al-citrate(1:3)and Al-malate(1:1)stoichiometry with the corresponding chemical shifts at 11.16ppm and-0.38ppm respectively, but no Al-organic acid complexes were found in soybean stems or leaves. Dissolubility Al in soybean root,stems or leaves exists in [AlO_4Al_(13)(OH)_(24)(H_2O)_(12)]form with the chemical shift at63.2ppm.It make clear that it is mainly in roots that some important organic acids chelate with almuimun and form complexes with little toxicity which can be transport to shoots.
     7.The experiment also showed that the activity of H~+-ATPase had relationship with citrate acids efflux of soybean root,as well as the activity of CS and AP. But MDH,NADP-ICDH and PEPCase associate little with citrate acids efflux.Moreover,citrate carrier inhibitor A9Cand anion channel inhibitor Mersal restrain availably the exudation of citrate acids.
     8.Results showed it was significant that aluminum accumulated in the cell wall of soybean root tip cells,and it became more and more remarkable with dose and time increased;in the present of exogenous citric acid,the content of aluminum accumulated in the cell wall decreased,especially in Zhechun No.3.The change of comparative Al content in root tips of Zhechun No.3 and Zhechun No.2 did not play the same pattern in dose-and time-dependent manner.From the analysis of aluminum speciation,it could be seen that the change pattern of the content of Al_a and Al_b are parallel;the content of the two form decreased but Al_c increased with exogenous organic acids.
     9.Results of water-soluble protein's expression showed that lower aluminum concentration can promote water-soluble protein' expression,but higher aluminum concentration and longer treatment time inhibited its expression; the degree of water-soluble protein's expressions in Zhechun NO.3 were obviously lower than that in Zhechun NO.2 after 12 h and 24 h treatments in the same aluminum concentration.
     With increasing of aluminum concentration and treatment time,the respiratory rate of root tips fell to different extent in both varieties;with the treatment of extraneous source citric acid.The change of Mitochondria' H~+-PPase activity was similar to the respiration's,with increasing of aluminum concentration and treatment time,activity in both varieties fell; with the treatment of extraneous source citric acid,H~+-PPase activity in Zhechun NO.3 is higher than that in Zhechun NO.2.
引文
[1]Delhalze E,Ryan P R.Aluminum toxicity and tolerance in plants[J].Plant Physiol,1995,107:315-321.
    [2]Kochian L V.Cellular mechanism of aluminum toxicity and resistance in plants[J].Annu Rev Plant Physiol Plant Mol Biol,1995,46:237-260
    [3]中国林学会主编.酸雨与农业[M].北京:中国农业出版社,1998
    [4]Bi S P,An S,Tang W,et al.Modeling the distribution of aluminum speciation in acid soil solution equilibria with the mineral phase alunite[J].Environmental Geology,2001,41:25-36
    [5]张帆,罗承德,张健.铝毒害胁迫发生机制及其内在缓解途径研究进展[J].四川环境,2005,24(3):64-69
    [6]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.36-37
    [7]Wagatsuma T,Kaneko M,Hayasaka Y.Destruction process of plant root cells by aluminum[J].Soil Science and Plant Nutrition,1987,33,161-175
    [8]Ma J F,Furukawa J.Recent progress in the research of external Al detoxification in higher plant:a minireview[J].Journal of Inorganic Biochemistry,2003,97:45-51
    [9]Kochian L V,Pineros M A,Hoekenga O A.The physiology,genetics and molecular biology of plant aluminum resistance and toxicity[J].Plant and Soil,2005,274:175-195
    [10]Bi S P,Gan N,Lu X C.Evaluation of aluminum speciation in surface waters in China and its environmental risk assessment[J].Environmental Geology,2003,45:65-71
    [11]余健,俞元春,房莉,等.有机酸对森林土壤pH及铝形态变化的影响[J].福建林学院学报2005,25(3):243-246
    [12]Scho"ll L V,Keltjens W G,Hoffiand E,et al.Aluminium concentration versus the base cation to aluminium ratio as predictors for aluminium toxicity in Pinus sylvestris and Picea abies seedlings[J].Forest Ecology and Managemen,2004,195:301-309
    [13]Umemura T,Usami Y,Aizawa S I,et al.Seasonal change in the level and the chemical forms of aluminum in soil solution under a Japanese cedar forest[J].The Science of the Total Environment,2003,317:149-157
    [14]顾明华,Tetsuo Hara,陆中年,等.铝毒在不同作物上的差异及温度的影响[J].热带亚热带土壤科学,1994,3(2):59-65
    [15]Kollmeier M,Felle H H,Horst W J.Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone.Is reduced basipetal auxin flow involved in inhibition of root elongatation by aluminum?[J].Plant Physiology,2000,122:945-956
    [16]Barcelo J,Poschenrieder C.Fast root growth responses,root exudates,and internal detoxication as mechanisms of aluminum toxicity and resistance:a review[J].Environmental and Experimental Botany,2002,48:75-92
    [17]Ciamporova M.Diverse responses of root cell structure to aluminium stress[J].Plant and Soil,2000,226:113-116
    [18]Ciamporova M.Morphological and structural responses of plant roots to aluminium at organ,tissue,and cellular levels[J].Biology Plant,2002,45:161-171
    [19]Silva I,Smyth T,Moxley D,et al.Aluminum accumulation at nuclei of cells in the root tip.Fluorescence detection using lumogallion and confocal laser scanning microscopy[J].Plant Physiology,2000,123:543-552
    [20]Lazov D B,Holland M J.Evaluation of the aluminum-induced root growth inhibition in isolation from low pH effects in Glycine max,Pisum sativum and Phyaseolus vulgaris[J].J.Plant Physiol.1999,26:147-157
    [21]Samac D A,Tesfaye M.Plant improvement for tolerance to aluminum in acid soils-a review[J].Plant Cell,Tissue and Organ Culture,2003,75:189-207
    [22]Liu K,Luan S.Internal aluminum block of plant inward K~+channels[J].Plant Cell,2001,13:1453-1465
    [23]Pineros M A,Kochian L V.A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize.Identification and characterization of Al~(3+)-induced anion channels[J].Plant Physiology,2001,125:292-305
    [24]Kiegle E,Gilliham M,Haseloff J,et al.Hyperpolarisation-activated calcium currents found only in cellsfrom the elongation zone of Arabidopsis thaliana roots[J].The Plant Journal,2000,21:225-229
    [25]Kong F X,Liu Y,Cheng F D.Aluminum toxicity and nutrient utilization in the mycorrhizal fungus Hebeloma mesophacus[J].Bulletin of Environment Contamination and Toxicology,1997,59:125-131
    [26]林咸永,章永松,陶勤南.不同耐铝性的小麦基因型在酸性铝毒土壤的适应性及其与体内养分 状况的关系[J].浙江大学学报(农业与生命科学版),2000,26(6):635-639
    [27]杨婉身,陈惠,王晓丽,等.酸铝对杉木磷吸收和代谢的影响[J].林业科学,2000,36(3):73-76
    [28]黄娟,孔国辉,夏汉平.铝毒与有机酸和磷的关系[J].应用与环境生物学报,2005,11(4):498-503
    [29]何龙飞,沈振国,刘友良,等.植物铝毒害机理的研究[J].广西农业生物科学,2002,21(3):188-194
    [30]Kinraide,T B.Ion fluxes considered in terms of membranesurface electrical potentials[J].Journal of Plant Physiology,2001,28:605-616.
    [31]Kinraide,T B.Toxicity factors in acidic forest soils:attempts to evaluate separately the toxic effects of excessive Al~(3+)and H~+ and insufficient Ca~(2+)and Mg~(2+)upon root elongation[J].European Journal of Soil Science,2003,54:323-333
    [32]Kinraide,T B,Pedler J F,Parker D R.Relative effectivenessof calcium and magnesium in the alleviation of rhizotoxicityin wheat induced by copper,zinc,aluminum,sodium,andlow pH[J].Plant and Soil 2004,259:201-208
    [33]沈宏,严小龙.铝对植物的毒害和植物抗铝毒机理及其影响因素[J].土壤通报,2001,32(6):281-285
    [34]秦瑞君,陈福兴.湘南红壤作物苗期铝中毒的研究[J].植物营养与肥料学报,1999:5(1):50-55
    [35]Pan W L.Aluminum inhibition of shoots lateral branches of Glycine max and reversal by exogenous cytokinin[J].Plant and Soil,1989,120:1-9
    [36]肖祥希,杨宗武,肖晖,等.铝胁迫对龙眼叶片活性氧代谢及膜系统的影响[J].林业科学,2003,39(1):52-57
    [37]刘鹏,Yang Y S,徐根娣,等.南方4种草本植物对铝胁迫生理响应的研究[J].植物生态学报,2005,29(4):644-651
    [38]刘鹏,徐根娣,姜雪梅,等.铝对大豆幼苗膜脂过氧化和体内保护系统的影响[J].农业环境科学学报,2004,23(1):51-54
    [39]石贵玉.铝对水稻幼苗生长和生理的影响[J].广西植物,2004,24(1):77-80
    [40]Sivaguru M,Baluska F,Volkmann D,et al.Impacts of aluminum on the cytoskeleton of the maize root apex.Short-term effects on the distal part of the transition zone[J].Plant Physiology.1999,119:1073-1082
    [41]Ahn S J,Sivaguru M,Chung G C,et al.Aluminium-induced growth inhibition is associated with impaired efflux and influx of H~+ across the plasma membrane in root apices of squash(Cucurbita pepo).Journal of Experimental Botany,2002 53:1959-1966
    [42]Ahn S J,Sivaguru M,Osawa H,et al.Aluminum inhibits the H~+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots[J].Plant Physiology,2001,126:1381-1390
    [43]Rengel Z,Zhang W.Role of dynamics of intracellular calcium in aluminium-toxicity syndrome[J].New Phytologist,2003,159:295-314
    [44]谢正苗,黄铭洪,叶志鸿.铝超积累植物和铝排斥植物吸收和累积铝的机理[J].生态学报,2002,22(10):1654-1659
    [45]Ma J F,Hiradate S,Nomoto K,et al.Internal detoxification mechanism of Al in hydrangea.Identification of Al from in the leaves[J].Plant Physiology,1997,113:1033-1039
    [46]Matsumoto H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International Review of Cytology,2000,200:1-46
    [47]孔繁翔,桑伟莲,蒋新,等.铝对植物毒害及植物抗铝作用机理[J].生态学报,2000,20(5):855-862
    [48]Deborah A,Tesfaye M.Plant improvement for tolerance to aluminum in acid soils-a review[J].Plant Cell,Tissue and Organ Culture,2003,75:189-207
    [49]Ma,J F.Role of organic acids in detoxification of aluminum in higher plants.[J]Plant Cell Physiol.2000,41:383-390
    [50]孟晓英,毕清淑,包冬萍,等.铝胁迫下7个不同大豆品种幼苗的生长反应[J].南京林业大学学报,2005,29(2):19-23
    [51]Ramgareeb S,Cooke J A,Watt M P.Responses of meristematic callus cells of two Cynodon dactylon genotypes to aluminium.Journal of Plant Physiology,2004,16:1245-1258
    [52]Delhaize E,Craig S,Beaton C D,et al.Aluminum tolerance in wheat(Triticum aestivum L.)I.Uptake and distribution of aluminum in root apices[J].Journal of Plant Physiology,1993,103:655-693
    [53]Larson P B,Tai C Y,Kochian L V,et al.Arabidopsis mutant with increased sensitivity to aluminum[J]. Plant Physiology,1996.110:743-751
    [54]Nguyen VT,Nguyen BD,Sarkarung S,et al.Mapping of genes controlling aluminum tolerance in rice:Comparison of different genetic backgrounds[J].Journal Molecular Genetics and Genomics,2002,267:772-780
    [55]Nguyen B D,Brar D S,Bui B C,et al.Identification and mapping of the QTL for aluminum tolerance introgressed from the new source,Oryze rufipogon Griff.,intoindica rice(Oryza sativa L.)[J].Theoretical and Applied Genetics,2003,106:583-593
    [56]Magalhaes J V,Garvin D F,Wang Y,et al.Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae[J].Genetics,2004,167:1905-1914
    [57]申建波,张福锁.根系分泌物的生态效应[J].中国农业科学导报,1999,4(1):21-27
    [58]张福锁.根分泌物及其在植物营养中的作用:Ⅰ.缺锌对双子叶植物根系分泌物的影响[J].北京农业大学学报,1991,17(2):63-67
    [59]王敬国.微生物与根际中物质的循环(综述)[J].北京农业大学学报,1993,19(4):98-105
    [60]Ma J F,Ryan P R,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids[J].Trends Plant Sci.2001,6:273-278
    [61]Pellet D M,Grunes D L,Koehian L V.Organic acids exudation as an aluminum tolerance mechanism in maize[J].Planta.1995,196:788-795
    [62]Delhaize E,Hebb D M,Ryan P.Expression of a pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or effiux[J].Plant Physiol,2001,125:2059-2067
    [63]Kinraide T B.Three mechanisms for the calcium alleviation of mineral toxicities[J].Plant Physiol,1998,118:513-520
    [64]Kihara T,Wada T,Suzuki Y,et al.Alteration of Citrate Metabolism in Cluster Roots of White Lupin[J].Plant cell physiol,2003,44(9):901-908
    [65]Li X F,Ma J F,Hiradate S,et al.Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays[J].Physiol Plant,2000,108:152-160
    [66]Ligaba A,Shen H,Shibata K,et al.The role of phosphorus in aluminium-induced citrate and malate exudation from rape(Brassica napus)[J].Physiol Plant,2004,120:575-584
    [67]Ma J F,Hiradate S,Matsumoto H.High aluminum resistance in buckwheat Ⅱ.Oxalate acid detoxifies aluminum internally[J].Plant Physiol,1998,117:753-759
    [68]Ma Z,Miyasaka S C.Oxalate exudation by taro in response to Al[J].Plant Physiol,1998,118:861-865
    [69]Ohno T,Koyama H,Hara T.Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion[J].Plant cell physiol,2003,44(2):156-162
    [70]Ryan P R,Delhaize E,Randall P J.Characterization of Al-stimulated efflux of malate from apices of Al tolerant wheat roots[J].Planta,1995,196:103-110
    [71]Sigvaguru M,Fujjwara T,Samaj J,et al.Aluminum-induced 1→3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plamodesmata.A new mechanism of aluminum toxicity in plants[J].Plant Physiol,2000,124:991-1005
    [72]Yokel R A.Aluminum chelation principles and recent advances[J].Coo Chemi Rev,2002,228:97-113
    [73]胡红青,黄巧云,李学恒.不同铝浓度对小麦根系分泌氨基酸和糖类的影响[J].土壤通报,1995,26(1):15-17
    [74]黎晓峰,马建锋,松本英明.玉米根冠粘胶和铝的结合及有机酸累积[J].植物生理与分子 生物学报,2002,28(2):121-126
    [75]黄鹤,年海.菜用大豆在铝诱导下的柠檬酸分泌及铝积累特性[J].华南农业大学学报,2001,22(4):19-21
    [76]沈宏,严小龙.低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积[J].生态学报,2002,22(3):387-394
    [77]章文华,马建锋,刘友良.荞麦根吸收铝和分泌草酸的部位[J].植物生理学通讯.2002,38(1):9-11
    [78]张福锁.植物高铁载体在小麦适应缺铁石灰性土壤中的作用[J].北京农业大学学报,1993,19(1):11-15
    [79]Mori S,Nishizawa N.Mentioning as a dominant precursor of phytosiderophores in graminaceae plants[J].Plant Cell Physiol,1987,28:1080-1092
    [80]Mori S,Nishizawa N.Dynamic state of mugineic acid and endogenous phytosiderophores in Fe-deficient barley[J].Plant Nutr,1987,10:1003-1011
    [81]Marschner H,Roemheld V,Kissel M.Different strategies in higher plants in mobilization and uptake of iron[J].Plant Nutr,1986,9:695-713
    [82]张福锁.根分泌物与禾本科植物对缺Fe胁迫的适应机理[J].植物营养与肥料学报,1995,1(1):17-23
    [83]Miyasaka S C,Buta J G,Howell R K,et al.Mechanism of aluminum tolerance in snapbeans:Root exudation of citric acid[J].Plant Physiol.1991,96:737-743.
    [84]Jorge R A,Arruda R Aluminum-induced organic acids exudation by roots of an aluminum tolerant tropical maize[J].Phytochemistry.1997,45:675-681
    [85]李德华,贺立源,刘武定.耐铝的和对铝敏感的玉米自交系根系的有机酸分泌[J].植物生理与分子生物学学报,2003,29(2):114-120
    [86]黎晓峰.几种禾本科作物对铝的敏感性或耐性[J].广西农业生物科学.2002,21(1):16-20
    [87]Ma J F,Zheng S J,Hiradate S,et al.Specific secretion of citric acid induced by Al stressin Cassia tora L[J].Plant Cell Physiol,1997,38:1019-1025
    [88]Zheng S J,Ma J F,Matsumoto H.High aluminum resistance in buckwheat.1.Al-induced specific secretion of oxalic acid from root tips[J].Plant Physiol,1998b,117:745-751
    [89]Ma J F,Takeda S,Yang Z M.Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale[J].Plant Physoil.2000,122:687-694
    [90]Zheng S J,MaJ F,Matsumoto H.Continuous secretion of organic acid is related to aluminum resistance during relatively long-term exposure to aluminum stress[J].Plant Physiol,1998a,103:209-214
    [91]Li X F,Ma J F,Matsumoto H.Pattern of Al-induced secretion of organic acid differs between rye and wheat[J].Plant Physiol.2000,123:1537-1543
    [92]黎晓峰.铝诱导黑麦的根尖分泌有机酸[J].广西农业生物科学.2002,21(2):78-82
    [93]张丽梅,贺立源,李建生.植物根系解铝毒分泌物[J].贵州农业科学,2005,33(3):88-90
    [94]王芳,黄朝表,刘鹏,等.铝对荞麦和金荞麦根系分泌物的影响[J].水土保持学报,2005,19(2):106-109
    [95]Yang Z M,Sivaguru M,Horst W J,et al.Aluminium tolerance is achieved by exudation of citric acid from roots of soybean(Glycine max)[J].Physiol Plant,2000,110:72-77
    [96]Yang Z M,Nian H,Sivaguru M,et al.Characterization of aluminum-induced citrate secretion in aluminum tolerant soybean(Glycine max L.)plants[J].Physiol Plant.2001,113:64-71
    [97]Nian H,Ahn S J,Yang Z M,Matsumoto H.Effect of phosphorus deficiency on aluminium-induced citrate exudation in soybean(Glycine max).[J]Physiol Plant,2003,117:229-236
    [98]黄鹤,赵月春,郭秀兰.大豆在铝胁迫下分泌的柠檬酸与品种的耐酸铝性无关[J].大豆科学,2003,22(3):218-222
    [99]Silva,I R,Smyth T J,Israel D W,et al.Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots[J].Plant Cell Physiol,2001,42(5):546-554
    [100]Silva,I R,Smyth T J,Raper C D,et al.Differential aluminum tolerance in soybean:an evaluation of the role for organic acid[J].Physiol Plant,2001,112:200-210
    [101]徐锐,彭新湘.草酸在提高大豆磷吸收利用及抗铝性中的作用[J].西北植物学报,2002,22(2):291-295
    [102]Shen H,He L F,Sasaki T,et al.Citrate secretion coupled with the modulation of soybean root tip under aluminum stress.Up-regulation of transcription,translation,and threonine-oriented phosphorylation of plasma membrane H~+-ATPase[J].Plant Physiology,2005,138:287-296
    [103]Silva IR,Smyth TJ,Israel DW,et al.Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by root[J]s.Plant cell physiol,2005,42:645-554
    [104]Bilkisu AA,Huang P,Bao DP,et al.Effects of citric acid on soybean seedling growth under aluminum stress[J].Journal of Plant Nutrition,2004,27:367-375
    [105]陈凯,马敬,曹一平,等.磷亏缺下不同植物根系有机酸的分泌[J].中国农业大学学报,1999,4(3):58-62
    [106]张福锁.根分泌物及其在植物营养中的作用:Ⅱ.缺锌对禾本科植物根系分泌物的影响[J].北京农业大学学报,1991,17(4):67-70
    [107]李花粉,张福锁,李春俭,等.根分泌物对根际重金属动态的影响[J].环境科学学报,1998,18(2):199-203
    [108]Lipton D S,Blandchar R W,Blevins D G.Citrate,malate and succinate concentration in exudation from P-sufficient and P-stressed Medicago sativa L.seedlings[J].Plant Physiol,1987,85:315-317
    [109]Hoffland E,Findenegg,G R,Nelmans J A.Solubilization ofrockphosphate by rape.Ⅰ.Evaluation of the role of the nutrient uptake pattern[J].Plant and Soil,1989,113:155-160
    [110]Hoffiand E,Findenegg G R,Nelmans J A.Solubilization of rock phosphate by rape.Ⅱ.Local root exudation of organic acids as a response to P-starvation[J].Plant and Soil,1989,113:161-165
    [111]马敬.磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化[D].北京:北京农业大学,1994
    [112]Gardner W K,Barber D A,Parbery D G.The acquisition of phosphorus by Lupinusalbus L.Ⅲ.The probable mechanism by which phosphorus movement in soil/root interface is enhanced[J].Plant and Soil,1983,70:107-124
    [113]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997,200-275
    [114]张福锁.根系分泌物及其在植物营养中的作用(综述)[J].北京农业大学学报,1992,8(4):353-358
    [115]高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应[J].应用生态学报,1998,9(5):549-554
    [116]邓麟,曹金锁,王秦虎,等.植物化感作用研究进展[J].陕西农业科学,2007,4:81-83
    [117]Patterson D T.Effect of allelopathic chemicals on growth physiological responses of soybean[J].Weed Science,1981,29(1):53-58
    [118]曾任森,林象联,骆世明,等.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报,1996,16(1):20-27
    [119]Macrae I,Castro T F.Carbohydrates and aminoacids in the root exudates of rice seedlings[J].γTON,1966,23(2):95-100
    [120]林文雄,何华勤,郭玉春,等.水稻化感作用及其生理生化特性的研究[J].应用生态学报,2001,12(6):871-875.
    [121]Willis RJ.The historical bases of the concept of allelopathy[J].J Hist Biol,1985,18:71-102
    [122]刘秀芬,马瑞霞,袁光林,等.根际区他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,1996,16(1):2-10
    [123]周志红,骆世明,牟子平.番茄(Lycopersicon)的化感作用研究[J].应用生态学报,1997,8(4):445-449
    [124]Sadhu M K,Das T M.Root exudates of rice seedlings:The influences of one variety on another[J].Plant and Soil,1971,34:541-546
    [125]王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响[J].中国农业大学学报,2001,6(3):26-31
    [126]黄益宗,张福珠,刘淑琴,等.化感物质对土壤N_2O释放影响的研究[J].环境科学学报,1999,9(5):478-482
    [127]张俊英,许永利,李富平,等.植物化感作用研究进展[J].安徽农业科学,2007,35(21):6357-6358,6409
    [128]Inderjit,Daksgini,K.M.M.Algal allelopathy[J].Bot.Rev.1994,60:182-196
    [129]湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494
    [130]Marschner P,Crowley D E,Higashi R M.Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizat pepper(Capsicum annuum L.)[J].Plant and Soil,1997,189:11-20
    [131]张琴,张磊.豆科植物根瘤菌结瘤因子的感知与信号转导[J].中国农学通报,2005,2l(7):233-238
    [132]Darrah P R.Models of the rhizosphere,a quasi three-dimensional 7simulation of the microbial population dynamics around a growing root releasing soluble exudates[J].Plant and Soil,1991,138:147-158
    [133]赵大君,郑师章.凤眼莲根分泌物氨基酸对根际肠杆菌属F2细菌降酶的影响[J].应用生态学报,1996,7(4):435-438
    [134]李振高,李良谟,潘映华,等.小麦苗期根系分泌物对根际反硝化细菌的影响[J].土壤学报,1995,32(4):408-413
    [135]Murary A H.Effect of simple phenolic compounds of heather(Calluna vulgaris)on rumen microbial activity in vitro[J].Chem Ecol,1996,22(8):1493-1505
    [136]张庆平,刘中兴.荞麦根系分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察[J].内蒙古农业科技,1994,(1):8-9
    [137]韩丽梅,鞠会艳,杨振明.两种基因型大豆根分泌物对大豆根腐病菌的化感作用[J].应用生态 学报,2005,16(1):137-141
    [138]叶志毅,屠振立.桑树根的分泌物和根际微生物的研究[J].蚕叶科学,2005,31(1):18-21
    [139]刘建福,杨道茂,欧阳明安,等.澳洲坚果根系溶提物对AM真菌孢子萌发和菌丝生长的影响[J].植物生态学报,2005,29(6:)1038-1042
    [140]张高峡,卢振祖.从作物根际分离的多粘芽孢杆菌固氮作用的研究[J].武汉大学学报(自然科学版),1998,44(6):745-748
    [141]林敏,平淑珍,尤崇杓.粪产碱菌对水稻根质子分泌作用及根际微生态的影响[J].植物生理学报,1992,18(3):233-238
    [142]Phillips D A,Fox T C,King M D,et al.Microbial products trigger amino acid exudation from plant roots[J].Plant Physiol,2004,136:2887-2894
    [143]Kraffczyk I,Trolldenier G,Beringer H.Soluble root exudates of maize:Influence of potassium supply and rhizosphere microorganisms[J].Soil Biol Biochem,1984,16:315-322
    [144]Laheurte F,Berthelin J.Effectofaphosphatesolubilizingbacteria on maize growth and root exudation over four levels of labile phosphorus[J].Plant and Soil,1988,105:11-17
    [145]孟颂东,关桂兰,王卫平,等.根际微生物产生的植物激素对小麦生长的作用[J].植物生理学通讯,1998,34(6):427-429
    [146]邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005,25(2):27-30
    [147]施卫明.根系分泌物与养分有效性[J].土壤,1993.25(5):252-256
    [148]Ma J F.Role of organic acid in detoxification of aluminum in higher plants[J].Plant Cell Physiol,2000,44:383-390.
    [149]田中民,秦芳玲,王波.缺磷白羽扇豆根系分泌物收集方法的比较研究[J].西北农林科技大学学报(自然科学版),2003,31(4):154-158.
    [150]傅小芸,吕建德.毛细管电泳[M].浙江:浙江大学出版社,1997:170-211.
    [151]汤章城.现代植物生理学实验指南(第一版)[M].北京:科学出版社,1999:127.
    [152]王光全,孟庆杰,扈学立,等.山楂种质器官总黄酮含量的测定分析及其资源利用研究[J].食品科学,2005,26(8):307-309.
    [153]曹炜,索志荣.Folin-Ciocalteu比色法测定蜂蜜中总酚酸的含量[J].食品与发酵工业,2004,29(12):80-82
    [154]朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:34-36
    [155]罗安才.柑桔果实有机酸代谢生理和奉节脐橙芽变株系的AFLP分析研究[D].西南农业大学博士学位论文,2003:44-46
    [156]曹黎明,潘晓华.水稻耐低磷机理的初步研究[J].作物学报,2002,28(2):260-264
    [157]董登峰.缺磷和铝毒协迫下大豆有机酸形成分泌的作用和机理研究[D].华南农业大学博士学位论文,2003
    [158]张淑香,高子勤.连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质[J].应用生态学报,2000,11(1):152-156
    [159]王金胜,郭春绒.混合硝酸稀土对小麦幼苗琥珀酸脱氢酶活性的影响[J].山西农业大学学报,1995 15(1):59-63.
    [160]周牮君.植物根系分泌物对难溶磷钾及土壤硒的活化作用研究[D].西南农业大学硕士学位论文,2001:17-22
    [161]徐卫红,黄河,王爱华,等.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境,2006,15(1):184-189
    [162]贾玲侠,李绍才,赵秀兰.根系分泌物活化岩石养分[J].微量元素与健康研究,2006,23(3):52-54
    [163]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品,2006,8(9_A,10_A):30-40
    [164]韩雪,吴凤芝,潘凯.根系分泌物与土传病害关系之研究综述[J].植物保护科学,2006,22(2):316-318
    [165]张凤丽,周宝利,王茹华,等.嫁接茄子根系分泌物的化感效应[J].应用生态学报,2005,16(4):750-753
    [166]沈宏,杨存义,范小威,等.大豆根系分泌物和根细胞壁对难溶性磷的活化[J].生态环境,2004,13(4):633-635
    [167]李廷轩,马国瑞,王昌全,等.籽粒苋根际土壤及根系分泌物对矿物态钾的活化作用[J].土壤通报,2003,34(1):48-51
    [168]林琦,陈英旭,陈怀满,等.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报,2003,9(4):425-431
    [169]邱光葵,庞叔薇.羊毛铬箐R分光光度法测定土壤中活性铝[J].分析测试通报,1989,8(4):68-71
    [170]何云核,胡丰林,陆瑞利,等.中国亚热带常见园林植物清除DPPH自由基活性研究[J].园艺学报,2003,30(5):563-567
    [171]韩丽梅,王树起,鞠会艳,等.大豆根分泌物的鉴定及其化感作用的初步研究[J].大豆科学,2000,19(2):119-125
    [172]王东升,徐志强,杜立宇,等.大豆和小麦对矿物钾的活化作用研究[J].土壤通报,2006,37(6):1118-1122
    [173]聂艳丽,郑毅,林克惠.根分泌物对土壤中磷活化的影响[J].云南农业大学学报,2002,17(3):281-286
    [174]金婷婷,刘鹏,郑伟伟.铝胁迫下大豆根系分泌物的分泌特性研究[A];2006年中国植物逆境生理生态与分子生物学学术研讨会论文摘要汇编[C];2006年
    [175]涂书新,郭智芬,孙锦荷.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究[J].核农学报,1999,13(5):305-311
    [176]胡丰林.安徽省一些用材树种鲜叶提取物清除DPPH自由基的活性初探[J].安徽农业大学学报,2004,31(2):197-202
    [177]陈英,柴强.小麦的根系分泌物及典型分泌物间甲酚的化感作用研究[J].兰州大学学报,2005,2(41):26-29
    [178]张福锁,申建波.根际微生态系统理论框架的初步构建[J].中国农业科技导报,1999,1(4):15-20.
    [179]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105
    [180]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285
    [181]俞雪辉.缺铁条件下红三叶草根系分泌物与根际微生物的互作效应[D].浙江大学硕士学位论文,2005.5:18-21
    [182]熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    [183]Liu B R,Jia G M,Chen J,et al.A review of methods for stydying microbial diversity in soils[J].Pedosphere,2006,16(1):18-24
    [184]陈宏宇.不同品种和不同茬口大豆根面及根际的微生物群落结构分析[D].中国农业大学博士学位论文,2005,4:32
    [185]田中民,李春俭,王晨.子叶磷在白羽扇豆缺磷适应性反应中的作用[J].西北植物学报,2001,21(1):59-66
    [186]许光辉,郑洪元.土壤微生物分析方法手册[MJ].北京:农业出版社,1986.102-122
    [187]王加龙,刘坚真,陈杖榴,等.恩诺沙星残留对土壤微生物功能的影响[J].生态学报,2005,25(2):279-282
    [188]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-340
    [189]Harsh P B,Tiffany L W,Laura G P,et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J].Annual Review of Plant Biology,2006,57(1):233-266
    [190]花日茂,李湘琼.我国酸雨的研究进展[J].安徽农业大学学报,1998,25(2):206-210
    [191]Yang L F,Cai Z C.Soil respiration durimg a soybean-growing season[J].Pedosphere,2006,16(2):192-200
    [192]胡斌,段昌群,王震洪,等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604-608
    [193]涂书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67
    [194]徐冬梅,刘光深,许中坚,等.模拟酸雨对土壤酸性磷酸酶活性的影响及机理[J].中国环境科学,2003,23(2):176-179
    [195]秦丽凤.不同木豆品种对低磷与铝毒胁迫的适应性反应及其机理研究[D].广西大学硕士学位论文,2004,5:16-20
    [196]Dinkelaker B,Marschner H.In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plant[J].Plant and Soil,1992,144:199-205
    [197]R.J.Wright.孟福赐译.土壤铝毒与植物生长[J].土壤进展,1992,20(2):29-33
    [198]邵宗臣,何群,王维君.红壤中铝的形态[J].土壤学报,1998,35(1):39-48
    [199]徐仁扣,季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报,1998,535(2):162-170
    [200]Landi L,Valori F,Ascher J,et al.Root exudate effects on the bacterial communities,CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils[J].Soil Biology & Biochemistry,2006,38:509-516
    [201]尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理[J].植物生理与分子生物学学报,2005,31(2):111-118
    [202]姜应和,周莉菊,彭秀英.铝在土壤中铝的形态及其对植物毒性研究概况[J].草原与草坪,2004,106(3):16-32
    [203]Oades J M.Mucilages at the root surface[J].Journal of Soil Science,1978,29:1-16
    [204]付慧兰,邹永久,杨振明,等.大豆连作土壤pH与土壤酶活性[J].大豆科学,1996,16(2):156-161
    [205]冯英明,喻敏,王吕全,等.铝毒诱导植物细胞反应研究进展[J].华中农业大学学报,2005,24(3):320-324
    [206]Akio M,Hideki H,Yousuke F,et al.Chemical Forms of Aluminum in xylem sap of tea plants[J].Phytochemistry.2004,65:2775-2780
    [207]Shen R F,Takashi L.S.,Ma J F.Form of Al changes with Al concentration in leaves of buckwheat[J].Journal of Experimental Botany.2004,55(394):131-136
    [208]Hue N.V,Craddock G R,Adams F.Effect of organic acids on aluminum toxicity in subsoils[J].Soil Sci Soc Am J.1986,50:28-34
    [209]向勤锃,刘德华.茶树富铝的研究进展及展望[J].茶叶通讯.2003,(2):33-36
    [210]Sarah L.H,Peter A.J,fan D.J.Comparative X-ray and ~(27)Al NMR spectroscopic studies of the speciation of Aluminum in Aqueous Systems:Al(Ⅲ)Complexes of N(CH_2CO_2H)_2(CH_2CH_2OH)[J].Journal of Inorgranic Biochemistry.1995,59:785-794
    [211]秦海林,赵天增.核磁共振氢谱鉴别植物中药的研究[J].药学学报.1999,34(1):58-62
    [212]王先龙 邹公伟 毕树平.~(27)Al核磁共振波谱法测定环境生物样品中铝研究进展[J].无机化学学报,2000,4(16):550
    [213]刘拥海,彭新湘,俞乐.荞麦与大豆叶片中草酸含量差异及其可能的原因[J].植物生理与分子生物学报.2004,30(2):201-208
    [214]杨志敏,汪瑾.植物耐铝的生物化学与分子机理[J].植物生理与分子生物学学报,2003,29(5):361-366
    [215]刘拥海,俞乐.植物解铝毒机理的研究进展[J].肇庆学院学报,2004,25(5):51-53
    [216]尤江峰.铝胁迫下大豆柠檬酸分泌机理研究初探[D].吉林农业大学硕士学位论文,2003-S31:11-12
    [217]Yamashita K,Yamamoto Y,Matsumoto H.Characterization of an anion transporter in the plasma membrane of barley roots[J].Plant cell physiol,1996,37(7):949-956
    [218]Hirai M,Ueno I.Developpment of citrus fruits:Fruit development and enzymatic changes in juice vesicle tissue[J].Plant and cell physiol,1977,18:791-799
    [219]张芬琴,沈振国,刘友良.铝和铝+钙对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动的影响[J].植物生理学报,2000,26(2):105-110
    [220]乔云发,韩晓增,马献发.植物根系分泌物研究进展[J].腐植酸,2004,3:17-20
    [221]Sun H G,Zhang F S.Effect of phosphorous deficiency on activity of acid phosphatase exuded by wheat roots[J].Chin J Appl Ecol,2002,13(3):379-381
    [222]Douce R,Neuburger M.The uniqueness of plant mitochondria[J].Ann Rev Plant Physiol Mol Bio,40:371-414.
    [223]Sung J S,Xu D P,Galloway C M.A reassessment of glycolysis and gluconeogenesis in higher plants[J].Physiol Plant,1988,72:650-654
    [224]应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展[J].生态环境,2003,12(2):237-239
    [225]赫鲁宁,余叙文.大麦根细胞质膜Ca~(2+)转运系统对盐胁迫的反应[J].植物生理学报,1993,19:275-284
    [226]曾韶西,李美茄.冷和盐预处理提高水稻幼苗抗寒性期间细胞Ca~(2+)-ATP酶活性的变化[J].植物学报,1999,41(2):156-160
    [227]Goh C H,Lee Y.Aluminum uptake and aluminum-induced rapid root growth inhibition of rice seedlings[J].Journal of Plant Biology,1999,42(2):151-158
    [228]Ma J F,Ryan P R.,Delhaize E.Aluminium tolerance in plants and the complexing role of organic acids[J].Plant Science,2001,6(6):273-278
    [229]Blarney F P C,Edmeades D C,Wheeler D M.Role of root cation exchange capacity in differential aluminum tolerance of Lotus species[J].J Plant Nutr,1990,13:729-744
    [230]Rengel Z.Uptake of aluminum by plant cells[J].New Phytol,1996,(134):389-406
    [231]Comin J.J.,Barloy J.,Bourrie G.,et al.Differential effects of monomeric and polymeric aluminium on the root growth and on the biomass production of root and shoot of corn in solution culture[J].European Journal of Agronomy,1999,11:115-122
    [232]Parker D R,Kinraide T B,Zelazny L W.Aluminum speciation and phytotoxicity in dilute hydroxy-aluminum solutions[J].Soil Sci Am J,1988,52:438-444
    [233]Parker D R.Identification and quantification of "Al_(13)" tridecameric polycation using ferron[J].Environ Sci Technol,1992,26:908-914
    [234]潘建伟.大麦根尖和边缘细胞铝毒生物学特性及其机理研究[M].浙江:浙江大学,2002:27-29
    [235]Tamas~* L,Simonoviova.M,Huttowi J,et al.Aluminium stimulated hydrogen peroxide production of germinating barley seeds[J].Environmental and Experimental Botany,2004,51:281-288
    [236]刘温霞,隆言泉,王启常,等.用Al-Ferron逐时络合比色法研究聚合硅酸硫酸铝的结构形态[J].中国造纸学报,2001,16:57-64
    [237]刘文新,栾兆坤,汤鸿霄.铝的生物可给性及其生态效应研究进展[J].应用生态学报,1999,10(2):251-254
    [238]Kochian L V,Hoekenga O A,Pineros M A.How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J].Annu.Rev.Plant Biol.,2004,55:459-493
    [239]沈宏,严小龙,郑少玲,等.铝毒胁迫诱导菜豆柠檬酸的分泌与累积[J].应用生态学报,2002,13(3):307-310
    [240]葛才林,络剑峰,刘冲,等.重金属对水稻呼吸速率及相关同功酶影响的研究农业环境科学学报[J].2005,24(2):222-226
    [241]类淑霞.铝胁迫对大豆根系生理特性的影响及镁硼对铝毒的缓解效应[D].吉林大学硕士学位论文,2005.4:27
    [242]Lundin M,H Baltscheffsky,H Ronne.J Biol Chem,1991,266:12168-12172
    [243]Zancani M,V Casolo,A V ianello,et al.Physiol Plant,1998,103:304-311
    [244]丁蕾,支崇远.铝胁迫对小麦的影响及小麦的抗铝机理[J].种子,2006,3(25):38-43
    [245]王芳,黄朝表,刘鹏,汪伟仙.铝对大豆根系分泌物的影响[J],浙江师范大学学报(自然科学版),2005,3(28):304-308
    [246]李德华,黄升谋,贺立源,刘武定.植物根系有机酸的分泌和解铝毒作用[J].植物生理学通讯,2004,40(4):505-510
    [247]Hall J I.Cellular mechanisms for heavy metal detoxification and tolerance[J].J Exp Bot,2002,53:1-11
    [248]Bethke PC,Jones RI.Cell death of barley aleurone protoplasts is mediated by reactive oxygen species[J].Plant J,2001,25:19-29
    [249]Pan W J,Zhu MY,Chen H.Aluminum-induced cell death in root-tip of barley[J].Environmental and Experimental Botany 2001,46:71-79
    [250]Jabs T.Reactive oxygen intermediates as mediators of programmed cell death in plants and animals[J].Biochem Pharmacol,1999,57:231-245
    [251]Richards K D,Schott E J,Sharma Y K,et al.Aluminum induces oxidative stress genes in Arabidopsis thaliana[J].Plant Physiol,1998,116:409-418
    [252]Ezaki B,Gardner R C,Ezaki Y,et al.Expression of aluminum induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress[J].Plant Physiol,2000,122:657-665
    [253]Pan Jianwei,Zhu Muyuan,Peng Huazheng,et al.Developmental regulation and biological functions of root border cells in higher plants[J].Acta Botanica S inica,2002,44(1):1-8
    [254]王延枝.植物液泡膜上的焦磷酸酶[J].植物生理学通讯,1990(4):73-76
    [255]何龙飞,刘有良,沈振国,等.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响[J].作物学报,2001,27(6):857-861
    [256]胡彦,何虎翼,何龙飞.高等植物铝胁迫研究新进展[J].文山师范高等专科学校学报,2006,1(19):74-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700