用户名: 密码: 验证码:
玉米耐荫性的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料和工业原料作物,为我国第二大粮食作物,常年种植面积约4亿亩左右,总产量约1. 5亿吨,在国民经济中占有重要地位。由于荫雨寡照造成的弱光胁迫是玉米生育期间经常遇到的非生物逆境,也是当今黄淮海区玉米生产面临的重要问题。每年因弱光胁迫造成玉米减产10%-15%,重者达20%-30%。弱光胁迫已成为我国玉米生产可持续发展的主要制约因素。选育优良的耐荫玉米杂交种是当前玉米遗传育种的重要目标之一。玉米耐荫性是受多基因控制的数量性状,采用传统的育种方法改善其耐荫性效率较低。本研究以耐荫性强的自交系中72和耐荫性弱的自交系502为实验材料,配制F2作图群体,在弱光胁迫与非胁迫条件下,于郑州和浚县两地,调查F3家系田间耐荫性相关性状的表型,对抽雄天数、吐丝天数、雌雄间隔、比叶重、茎粗、株高、穗位高与耐荫性相关的QTL进行了定位和遗传分析,讨论了不同遗传背景的作图群体所定位玉米耐荫QTL的一致性和QTL之间的互作对耐荫性的影响。主要试验结论如下:
     1用716对SSR引物对玉米自交系中72×502的亲本进行多态性筛选,共筛选出210对多态性引物,去除严重偏离的标记,用Mapmaker3.0作图软件进行构图,得到197个多态性标记的玉米遗传连锁图谱,图谱总长度2693.6CM,全基因组平均图距13.67 cM ,最小图距0.5 cM。
     2在郑州和浚县两个试验点,F2:3家系的抽雄天数、吐丝天数、雌雄间隔、比叶重、茎粗、株高、穗位高遮荫敏感性相关性状均表现出数量性状遗传特点,F2:3家系的平均值接近双亲平均值,有一定数量的双向超亲家系。
     3 F2:3家系在遮荫条件下,抽雄期、吐丝期延长,雌雄间隔期拉大,比叶重降低,株高、穗位高下降,变异范围扩大,整个群体的各个性状均符合正态分布,因此,F2:3家系群体可以用于进行QTL分析。
     4 F2:3家系在郑州和浚县遮荫条件下两点各性状的QTLs定位。抽雄天数:在郑州点检测到一个QTL,在浚县点共检测到5个QTL,郑州和浚县共同检测到1个QTL,位于第1条染色体上umc1395—umc2083标记之间,贡献率分别为12.71%、6.76%;吐丝天数:郑州点检测到4个QTL,浚县点检测到3个QTL,郑州和浚县在第1条染色体上共同检测到一个QTL,位于umc1403和phi001之间,贡献率分别为10.93%、9.85%;雌雄间隔天数:郑州点检测到4个QTL,在浚县点检测到2个QTL,郑州和浚县在第一条染色体上共同检测到一个QTL,贡献率分别为10.01%和10.12%,位于umc1403和phi001之间。比叶重:郑州点检测到4个QTL,在浚县点检测到2个QTL;茎粗:在郑州没有检测到QTL,在浚县点检测到4个QTL;株高:郑州点检测到4个QTL,浚县点检测到4个QTL,郑州和浚县共同检测到3个QTL,分别位于1、4、10染色体上,分别位于umc1082和bnlg1671、bnlg2244和umc1051、umc1432和umc1962标记之间,贡献率为8.45%、8.53%,7.28%、9.92%,10.13%、8.77%。穗位高:郑州点检测到3个QTL,浚县点检测到5个QTL,郑州和浚县共同检测到3个相同的QTL,位于1、4、5染色体上,分别位于umc1082—bnlg1671、bnlg2244—umc1051、umc2036—bnlg1879标记之间,其贡献率分别为12.93%、13.79%,8.45%、7.13%,8.17%、6.36%。
     5 F2:3家系郑州和浚县两点光照下各性状的QTLs定位。抽雄天数:在郑州点检测到3个QTL,浚县点共检测到4个QTL,郑州和浚县共同检测到1个QTL,位于第一条染色体上umc2083—bnlg1057标记之间,贡献率为10.25%、14.39%。吐丝天数:郑州点检测到3个QTL,浚县点检测到2个QTL,郑州和浚县在第1条染色体上共同检测到一个QTL,位于第一条染色体上umc2083—bnlg1057标记之间,贡献率分别为10.95%、10.23%。雌雄间隔天数:郑州点检测到5个QTL,浚县点检测到6个QTL,郑州和浚县共同检测到2个QTL,分别位于第1、8条染色体上umc1976—umc1403、umc1960—mmc0181标记之间,贡献率分别为10.23%、6.88%,4.66%、7.02%。比叶重:郑州点检测到4个QTL,浚县点检测到3个QTL,郑州和浚县共同检测到一个QTL,位于第10条染色体上bnlg594—bnlg2190标记之间,贡献率分别为6.75%、5.14%。茎粗:郑州点检测到2个QTL,浚县检测到2个QTL,两点没有检测到共同的QTL。株高:郑州点检测到4个QTL,浚县点检测到5个QTL,郑州和浚县共同检测到2个QTL,分别位于4、8染色体上,分别位于bnlg2244和umc1051、umc1202和umc1562标记之间,贡献率分别为11.81%、13.35%,8.2%、6.72%。穗位高:郑州点检测到5个QTL,分别位于1、3、4、5、7染色体上,贡献率变幅为4.23%—9.86%,累计贡献率为33.98%;浚县点检测到2个QTL,分别位于1、5染色体上,贡献率分别为4.97%、6.6%,累计贡献率为11.57%,两点没有检测到共同的QTL。
Maize is an important food, feed and industrial crops, as China's second largest food crops, perennial planting around an area of about 4 million mu, the total output of about 150 million tons, in the national economy occupies an important position.The stress of rain and poor light during the maize growing is often encountered in non-biological adversity,is also the important issue of maize production of the Huang-Huai-Hai area in today’s facing. Each year due to stress caused by low light, corn production is lowed by 10 -15%, in serious cases up to 20% -30%. Low-light stress has become a sustainable development of China's maize production of the major constraints. Breeding excellent tolerant maize hybrids of maize genetics and breeding is one of the important goals. Tolerant corn is controlled by multiple genes of quantitative traits using traditional breeding methods to improve their tolerant and less efficient. In this study, inbred lines of strong tolerant of the中72 and inbred lines of weak tolerant of the 502 were for experimental materials,and the F2 mapping groups were prepared.In low-light stress and non-stress conditions, in Zhengzhou and xunxian ,investigate the F3 families tolerant field-related phenotypic traits, the number of days to heading, silking days, male and female interval, specific leaf weight, stem diameter, plant height, ear height. Tolerant QTL associated to the location and genetic analysis are aslo done. Tolerant maize QTL consistency and interoper ability between the effect against tolerant are discussed in the genetic background of different groups of mapping QTL positioning . The main trial findings were as follows:
     1 716 pairs of SSR primers for maize inbred lines in 72×502 were for the parental polymorphism screening, a total of 210 pairs of polymorphisms were selected primers, and the tags deviated seriously were removed.Using mapping software Mapmaker3.0 , genetic linkage map of maize was obtained with 197 polymorphism, the total length of map 2693.6CM, the average genome-wide map 13.67 cM, a minimum map distance 0.5 cM.
     2 At xunxian and Zhengzhou the two pilot sites, F2:3 families tasselling days, silking days, ASI, specific leaf weight, stem diameter, plant height, ear height ,which are shade-sensitive traits related , showed genetic characteristics of quantitative traits.F2:3 family close to the average of the parents,and there are a certain number of two-line super-in-laws.
     3 F2:3 families in shade conditions, tasselling stage and silking period were prolonged, male and female gap intervals were extended, specific leaf weight was lowed, plant height and ear height were decreased ,variability were expanded .The various characters of the whole group are state distribution, so that, F2: 3 family groups can be used for QTL analysis.
     4 The characters of the F2: 3 families ,in xunxian and Zhengzhou ,under the shade conditions had been QTLs positioned. The number of days tasselling: in Zhengzhou ,a QTL was detected, in xunxian five QTL were detected. A common QTL was detected in Zhengzhou and xunxian, which was located on chromosome 1 , between umc1395-umc2083 and the contribution rates were 12.71%, 6.76%; silking days: four QTL were detected in Zhengzhou point, three QTL were detected in xunxian point.A common QTL was detected in Zhengzhou and xunxian, which was located on chromosome 1 , between umc1403 and phi001, and the contribution rates were 10.93%, 9.85%; ASI: four QTL were detected in Zhengzhou points, two QTL were detected in xunxian point. A common QTL was detected in Zhengzhou and xunxian, which was located on chromosome 1, and the contribution rate of 10.12 percent and 10.01 percent, between umc1403 and phi001.Specific leaf weight: four QTL were detected in Zhengzhou point, two QTL were detected in xunxian point; diameter: no QTL was detected in Zhengzhou, 4 QTL were detected in xunxian point; height: 4 QTL were detected in Zhengzhou, four QTL were detected in xunxian points, three common QTL were detected in Zhengzhou and xunxian, which were located on chromosome 1,4,10, and were located in between umc1082 and bnlg1671, bnlg2244 and umc1051, umc1432 and umc1962 tags, and the contribution rate to 8.45 percent, 8.53%, 7.28%, 9.92%, 10.13%, 8.77%. Ear height: three QTL were detected in Zhengzhou points, five QTL were detected in xunxian points, three common QTL were detected in Zhengzhou and xunxian, which were located on chromosomes 1,4,5, and were located in umc1082-bnlg1671,bnlg2244-umc1051, umc2036-bnlg1879 tags,and the contribution rate of 12.93 percent, respectively, 13.79%, 8.45%, 7.13%, 8.17%, 6.36%.
     5 The characters of the F2: 3 families ,in xunxian and Zhengzhou ,under the light conditions had been QTLs positioned. The number of days tasselling: three QTL were detected in Zhengzhou points, four QTL were detected in xunxian, a common QTL was detected in Zhengzhou and xunxian, which was located on the first chromosome,between umc2083-bnlg1057 ,and the contribution rate of 10.25% , 14.39%. Silking days: three QTL were detectedin Zhengzhou points, two QTL were detected in xunxian points, a common QTL was detected in Zhengzhou and xunxian, which was located on the first chromosome, between markers umc2083-bnlg1057,and contribution rates were 10.95%, 10.23%.The number of days between the male and female: five QTL were detected in Zhengzhou points, six QTL were detected in xunxian point, two common QTL were detected in Zhengzhou and xunxian, which were located on chromosome 1and 8 ,between umc1976-umc1403, umc1960-mmc0181 ,and respectively the contribution rate of 10.23%, 6.88%, 4.66%, 7.02%. Specific leaf weight: four QTL were detected in Zhengzhou points, three QTL were detected in xunxian points, a common QTL was detected in Zhengzhou and xunxian, which was located on chromosome 10 between marker bnlg594-bnlg2190 ,and respectively the contribution rate of 6.75%, 5.14%. Diameter: two QTL were detected in Zhengzhou points, two QTL were detected in xunxian, no common QTL was detected. Height: four QTLwere detected in Zhengzhou points, five QTL were detected in xunxian points, two common QTL were detected in Zhengzhou and xunxian, which were located on chromosome 4,8, in bnlg2244 and umc1051, umc1202 and umc1562 ,and respectively the contribution rate of 11.81%, 13.35%, 8.2%, 6.72%. Ear height: five QTL were detected in Zhengzhou points, which are located on chromosome 1,3,4,5,7, the contribution rate ranged from 4.23% -9.86%, the cumulative contribution rate of 33.98%; 2 QTL were detected in xunxian, which were located on chromosome 1,5, respectively the contribution rate of 4.97%, 6.6%, the cumulative contribution rate of 11.57%, no common QTL had been detected .
引文
1.陈煜,杨志民,李志华。草坪草耐荫性研究进展中国草地学报(j) 2006 28 (3)71—76
    2.范彦,周寿荣.川西三种野生草坪地被植物耐荫性的研究[J].中国草地,1999.(5):48—52.
    3.冯英,水稻DH群体的构建与微卫星标记分析,2002,博士学位论文(浙江大学)
    4.关义新,林葆凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000, 26(6): 806 - 812.
    5.金之庆;葛道阔;郑喜莲;等;评价全球气候变化对我国玉米生产的可能影响(J),作物学报1996 ,22(5):513—524
    6.姜丹,陈雅君.刘丹等.光氮互作对草地早熟禾碳氮代谢的影响[ J].中国草地,
    7.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    8.李潮海栾丽敏王群等苗期遮光及光照转换对不同基因型玉米光合效率的影响(a)作物学报2005 31(3):381—385
    9.李潮海,栾丽敏,郝四平等.玉米光胁迫研究进展.河南农业大学学报. 2004,38(1):9-12
    10.李潮海栾丽敏尹飞等,弱光胁迫对不同基因型玉米生长发育和产量的影响(b)生态学报2005,(4):824—830
    11.李潮海袁刘正王秀平等不同玉米自交系耐荫性比较玉米科学。2008,16(6):19-23
    12.林世埕,周文培,邱亦维等.林下微生境对草坪;草叶绿素含量的影响(J).浙江林业科技.2004,(1):1 2—1 5.
    13.李双顺,孙谷畴.生长后期的玉米植株不同叶位叶片中磷酸烯醇式丙酮酸羧化酶和苹果酸脱氢酶活性的变化[J].中国科学院华南植物研究所集刊。1986,3:91–95.
    14.芦站根.赵昌琼,周史杰等.光强对曼地亚红豆杉膜代谢及保护系统的影响.重庆大学学报,2003 (26);89 92.
    15.莫惠栋.数量遗传学的新发展一数量性状基因图谱的构建和应用.中国农业科学,1996,29(2):8-16.
    16.沈利爽,何平,徐云碧等。水稻DH群体的分子连锁图谱及基因组分析植物学报,1998,40(12):1115-1122.
    17.汤继华,马西青,滕文涛等.利用“永久F2”群体定位玉米株高的QTL与杂种优势位点[J].科学通报,2006,51(24):2864—2869.
    18.王绍辉。张振贤,于贤昌.遮荫对生姜生理生化特性的影响[J].西北农业学报。1999,8(2):77 79.
    19.王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展.山东农业大学学报,1998,29(1):130-134.
    20.吴为人,李维明,卢浩然,建立一个重组自交系群体所需的自交代数(英文),福建农业大学学报,1997,26(2):129-132.
    21.向道权,曹海河,曹永国等。玉米SSR遗传图谱构建及产量性状基因定位。遗传学报,2001,28(8):778—784
    22.徐吉臣,朱立煌,陈英等,用双单倍体群体构建水稻地分子连锁图,遗传学报,1994,21(3):205-214.
    23.邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502.
    24.席章营,朱芬菊,台国琴等.作物QTL分析的原理与方法.中国农学通报,2005,21(1):88-92.
    25.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994.
    26.杨俊品,荣廷昭。玉米数量性状RFLP分子标记研究进展。玉米科学,1999,7(1):18—24.
    27.于永涛,张吉民,石云素等。利用不同群体对玉米株高和叶片夹角的QTL分析。玉米科学,2006,14(2):88—92
    28.赵久然,陈国平.不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察.中国农业科学,1990,23(4):28-34.
    29.张志明,赵茂俊,荣廷昭等.玉米SSR连锁图谱构建与株高及穗位高QTL定位[J].作物学报,2007,33(2):341-344.
    30.郑洪建;董树亭;生态因素与玉米产量关系的研究,山东农业大学学。2000,33(2):315—319
    31.郑洪建;董树亭;王空军等;生态因素对玉米品种产量影响及调控的研究(J)作物学报2001 27(6):862—868
    32.张庆费。夏檑.钱又宇.城市绿化植物耐荫性的诊断指标体系及其应用[J].中国园林。2000,(16):93~95.
    33.周兴元,曹福亮。陈忐明等.遮荫对几种暖地型草坪草成坪速度及其景观效果的影响[J].草原与草坪,2003,(2):26—29.
    34.赫忠友,谭树义.不同光照强度和光质对玉米雄花育性的影响[J].中国农学通报,1998,14(4):6 - 8.
    34.朱军。遗传模型分析方法【M】。北京:中国农业出版社,1997:88.97-119
    35. Agrama HAS, Moussa ME. Mapping QTLs in breeding for drought tolerance in maize.Euphytica, 1996.91:89-97
    36. Ashemi-Dezfouli A, Herbert S J. Intensifying plant density response of corn with artificial shade[J]. Agron. J. 1992, 84:547 - 551.
    37. Austin D F,Lee M. Genetic resolution and Verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize.Genome,1996,39(6):957—968
    38. Austin D F,Lee M.Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress. Crop sci,1998,38(5):1296—1308.
    39. Beavis WD,Smith OS,Grant D,Fincher R. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize.Crop Sci.1994.34:882-896
    40. Berke TG,Rocheford TR. Quantitative trait loci for flowering, plant and ear height,and kernel traits in maize.Crop Sci. 1995.35:1542-1549
    41. Bohn M B,Schulz R,Kreps D,Klein and A Melchinger.QTL mapping for resistance against the European corn borerin early maturing European dent germplasm.TAG,2000,1001:907—917.
    42. Bouchez A,Hospital F,Causse M,Gallais A,Charcosset.A Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines.Genetics,2002,162:1945-1959.
    43. Burr,B.,Burr F.A.,Recombinant inbreds for molecular mapping in maize:theoretical and practical considerations, TIG,1991,7:55-60.
    44. Bubeck D M ,Goodman M M,Beavis W D,Grant D.quantitative trait loci controlling resistance to gray leaf spot in maize .crop sci,1993,33:838—847.
    45. Churchill GA,and Doerge Rw.empiricial threshold values for quantitative trait mapping.Geeneticcs,1994,138:963-971
    46. Duvick DN. What is yield? In:Edmeades GO, Banziger M, Mickelson HR, Pena-Valdivia CB.(eds).Developing drought and low-N tolerant maize.El Batan,Mexico:CIMMYT, 1997.332-335.
    47. Duvick DN. Biotecnology in the 1930s:the development of hybrid maize.Nature Reviews of Genetics, 2001.2:69-72.
    48. Edwards M D, Helentiaris T,wright S, Stuber C W. Molecular-facilitated investigations of quantitative trait loci in maize. VI. Analysis based on genome saturation with isozyme and restriction fragment length polymorphis markers. Theor Appl Genet,1992,765—774.
    49. Ephrath-je;wang-re;terashima-k;hesketh-jd;huck-mg;hummel-jw.shading effects on soybean and corn. Biotronics. 1993,22:15-24
    50. Faustino-fc;Julia-jf;margate,-r.c;Ocampo,-e.m;Claveria,-m.t;abilay,-r.m. trial on corn cultivation under shade :the influence of shade on the photosynthetic and yield potential of corn[J]. crop science, 1997,5:25-29
    51. Fournier,-C;Andrier,-B.dynamics of the elongation of internodes in maize.effects of shadetreatment on elongation patterns[J]. annals-of-botany.2000;86(6):1127-1134.
    52. Flint-Garcia SA.Jampatong C,Darrah LL and McMullen MD.Quantitative Trait Locus Analysis of Stalk Strength in four Maize populations.Crop sci 43:13-22(2003)
    53. Fukuta Y, Sasahara H, Tamura K and Fukuyama T. RFLP linkage map included the information of segregation distortion in a wide cross population between indica and japonica (Oryza sativa L.). Breeding Science. 2000,50:65-72.
    54. Groh S,Gonzalez-Leon D,Khairallah MM,et al.QTL Mapping in tropical maize: Genomic regions for resistance to Diatraea spp.and associated traits in two RIL polulation.Crop sci 1998,38:1062-1072
    55. Gerakis P A, Parakosta-tasopoulou D. Effects of dense planting and artificial shading on five maize hybrids. Agricultural Meteorology, 1980, 21 (2): 129-137.
    56. Galton F. Regression towards mediocrity in hereditary stature. Journal of Anthropological Institute. 1885,15:246-263.
    57. G Allard,C J Nelson,S G Pallardy.Shade effects on growth of tall fescue:I. I eaf anatomy and dry matter partitioning [J].CropScience,1991,31(1):1 63 167.
    58. Gaskell-Ml;Pearce-Rb.Photosynthetic acclimation of maize to solar radiation level[J].maydica 1980,25:2,55-64
    59. G E Bell,T K Danneberger,M J McMahon.Spectral irradiance available for turfgrass growlh in sun and shade[J].Crop Science,2000,40:189—195.
    60. G E Bell。T K Danneberger.Temporal shade on creeping bentgrass turf[J].Crop Science。1999,39:1142—1146.
    61. G Morelli . I Ruberti . Shade avoidance responses . Driving auxin along lateral routes[J].Plant Physiology,2000,122(3):621—626.
    62. G E Bell。T K Danneberger.Temporal shade on creeping bentgrass turf[J].Crop Science。1999,39:1142—1146.
    63. Khairallah MM,Bohn M,Jiang C,Deutsch JA,Jewell DC,Mihm JA,Melchinger AE,Gonzd-le z-De-Lebn D,Hoisington DA. Molecular mapping of QTL for southwestern corn borer resistance,plant height and flowering in tropical maize.Plant breeding, 1998.117:309-318
    64. Hoppenstedt-A;Geisler-G Root developments and nitrogen distribution in maize as influenced by light and nitrogen supply.journal-of-agronomy-and-Crop- science,1992,169:1-2,114-121
    65. Hashemi-Dez Fouli-A;Herbert-SJ intersifying plant density response of corn with artificial shade.agronomy Journal[J].1992,84:4,547-551
    66. Heun, M.and A.E.Kennedy,J.A.Anderson, N.L.V. Lapitan, M.E.Sorrelis and S.D.Tanksley,Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare), Genome,1991,34:437-447.
    67. Halward T, Stalker HT and Kochert G, Development of an RFLP linkage map in peanut species. Theoretical andApplied Genetetics. 1993, 87:379-394.
    68. Huang N, Angeles ER,Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J ,Khush G S. Pyramiding of bacterial blight resistance genes in rice:marker assisted selection using RFLP and PCR . Theor Appl Genet,1997,95:313-320.
    69. Jansen RC and Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994,136:1447-1455.
    70. Jansen R C, van Ooijen J W, Stam P, Lister C, Dean C, Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet,1995,91:33-37.
    71. Kiniry-JR;Ritchie-JT.Shade-sensitive interval of kernel number of maize.Agronomy Journal.1985,77:5,711-715
    72. Kiniry-JR,Response of maize kernel number to shading stress: timing of sensitivitydisserdd in the reproductive stage and characteristics of genotypes differing in this sensitivity.dissertation abstracts internation,b science and engineering.1985,46:5,1392b.
    73. Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newslett, 1999, 16: 104-106.
    74. Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Sci, 2002, 52: 319-325.
    75. Kearsey M J .The principles of QTL analysis (a minimal mathematics approach)[J]. J Exp Bot,1998,49:1619-1623.
    76. Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L). Breeding Sci, 2002, 52: 319-325.
    77. Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP Mapping in soybean:association between marker loci and variation in quantitative trait. Genetic,1990,126:735-742.
    78. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet,1990,79:583-592.
    79. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled haploid population. Theor Appl Genet,1996,93:1211-1217.
    80. Lu CG,Takabatake K and Ikehashi H. Identification of segregation-distortion-neutral alleles to improve pollen fertility of Oryza saliva L. indica-japonica hybrids in rice (Oryza saliva L.). Euphytica. 2000, 111:1-7.
    81. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199.
    82. Mather K.Variation and selection of polygenic characters. Journal of Genetics. 1941,41:159-193.
    83. Melchinger A E, Utz H F, Schon C C. Quantitative trait locus(QTL) mapping using different tester and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics,1998,149:383-403.
    84. Mbewe D M N, Hunter R B. The effect of shade stress on the performance of corn for silage versus grain. Can. Plant Sci., 1986, 66: 53-60.
    85. Nienhuis J, Helentjaris T, Slocun M, Ruggero B, Schaefer A. Restriction fragement length polymorphism analysis of loci associated with insect resistence in tomato .Crop Sci,1987,27:797-803
    86. Paran I, Goldman I, Tanksley SD and Zamir D. Recombinant inbred lines for genetic mapping in tomato.Theoretical and Applied Genetics. 1995, 90:542-548.
    87. Paterson A H, Domon S, Hewitt J D, Peterson S,Lincoln S E, Tanksley S D. Resolution of quantitative trait loci into Mendelian factors by using a linkage map of RFLP. Nature, 1988,335:721-726.
    88. Paterson A H, Domon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato:comparison across species,generations, and environments.Genetics,1991,127:181-197.
    89. Paran l and Zamir D. Quantitative traits in plants beyond the QTL Trends in Genetics. 2003,19(6):303-306.
    90. Pearson K. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London.1895,A:186-343.
    91. Reed A J, Singletary G W, Schussler J R, et al. Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Sci., 1988, 28 (5): 819-825.
    92. Ribaut JM,Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D. Identification of quantitative trait loci under drought conditions in tropical maize I flowering parameters and the anthesis-silking interval.Theor.Appl.Genet.1996.92:905-914
    93. Shaw-RH;Thurtell-GW;King-KM Measurement of response rates of stomata of corn in the field to change in light intensity.training in agrometerorology and reserarch onphotosynthesis of corp in relation to productivity final report guelph project[J]. 1974,57-69
    94. Sari-Gorla M,Krajewski P,Fonzo ND,Villa M,Forva C. Genetic analysis of drought tolerance in maize by molecular markers.ll.plant height and flowering.Theor.Appl.Genet. 1999.99:289-29
    95. Sax K .The association of size diferences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics.1923,8:552-560.
    96. Stuber CW,Moll RH,Goodman MM, Schafer HE and Weir BS. Alozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L). Genetics. 1980, 95:225-236.
    97. Sehon C C, Melehinger A E, BoPPenmaier J, Brunklaus E, Jerrtnann, R G, Seitzer J G RFLP mapping in maize: Quantitative trait loei affeeting ttesteross performanee of elite EuroPean flint lines.Crop Sci.1994,34:378:389.
    98. Stuber C W, Edwards M D and Wendel J.F1 Molecular marker facilitated investigations of quantitative trait loci in maize . Factors influencing yield and its component traits. Crop Sci,1987,27:639-648.
    99. Stuber C W, Wolff D W ,Helentjars T, Lander E S. Identification of genetic factors contribution to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers.Genetic,1992,132:823-839
    100. Tang Ji—hua,Teng Wen—tao,Yan Jian-bing,Ma Xi—qing,Meng Yi-jiang,Dai Jin-rui,Li ian-Sheng.Genetic dissection of plant height by molecular markersusing a population of recombinant inbred lines in maize.Euphytica,2007,155:117-124.
    101. Tanksley SD. Mapping polygenes. Annual Reviews of Genetics.1993, 27:205-233.
    102. T A Ivanova,V I Pyankov.Influence of ecological factors on parameters of leaf mesophyll structurer[J].BotanicheskiiZhurnal。2002。87(12):l7—28.
    103. Uhart S A, Andrade F H. Nitrogen deficiency in Maize:Ⅱ. Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci., 1995, 35:1384-1389.
    104. Ueda-S;Kubota-F.Environmental factors and productivity in silage maize.effects of shading treatments on the production of maize hybrids Journal of japanese society of grassland science 1981,27:2,174-181
    105. V Mika,A Kohoutek,S Beran.Grass quality in shaded stands[J].Rostlinna roba,1998,44(9):431 436.
    106. Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: Grain yield and yield components. Crop Sci, 1996,36:1310-1319.
    107. Veldboom LR, Lee M. Genetic mapping of quantitative trait loci in maize in stress andnonstressen vironments:II .Plant height and flowering.Crop Sci. 1996.36:1320-1327
    108. Ward D A, Woolhouse H W. Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats.Ⅰ. Gas exchange, leaf anatomy and ultrastructure[J]. Plant, Cell and Environment, 1986, 9, 261 - 270.
    109. Ward D A, Woolhouse H W. Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats.Ⅱ. Photosynthetic enzyme activities and metabolism[J]. Plant, Cell and Environment, 1986, 9, 271 - 277.
    110. Yang XingHong,WangWei,SunXueZhen.Effects of synergism of plant growth regulator and nutrient substance on morphological characters and anatomical structure of hypocotyl of cotton seedlings[J].A c’ta Agriculturae Boreal Sinica。l999,14(2):58—62.
    111. Yuling Li,Yongbin Dong,Suzhun Niu,Dangqun Cui.The genetic relationship among plant-height traits found using multiple-traits found using multiple—trait QTL mapping of a dent com and pop corn cross.Genome,2007,50(4):357-364.
    112. Zeng ZB. Precision mapping of quantitative trait loci. Genetics 1994, 136,1457-1468.
    113. Zeng ZB. Theoretical basis for separation of multiple linked gene efects in mapping quantitative trait loci.Proceedings of the NationalAcademy of Sciences of USA. 1993,90:10972-10976.
    114. Zehr B E, Dudley J W, Chojecki J. Saghai-Maroof M A, and Mowers R P. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid, Theor Appl Genet,1992,83:903-911.
    115. Zhang ZhenXian,Ouo YanKui。Zou Qi.Effects of shading 0n ultrastructure of chloroplast and microstructure of ginger leaves[J3.Acta Horticulturae Sinica,1999,26(2) 196—100.
    116. Zhu J.and weir B S.Mixed model approaches for genetic quantitative traits. In: Chen L S,Ruan S G, and zhu J (eds) Advanced Topics in Biomathematics: Proceedings of international Conference on mathematical Biology.Singapore:World Scientific publishing Co., 1998,p321-330
    117. Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani, Huang N, Zheng K L. Analysis of QTL×environment interaction for yield components and plant height in rice.Theor Appl Genet,1997,95:799-808
    118.Struik P C. The effects of short and long shading, applied during different stages of growth, on the development, productivity and quality of forage maize (Zea mays L.) [J]. Netherlands journal of agricultural science, 1983, .31 (2): 101 - 124.
    119 Yano Masahiro&Sasaki Takuji,1997。Genetic and molecular dissectionofquantitative traits in dee.Plant Molecular Biology 35:145-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700