用户名: 密码: 验证码:
亚洲棉GaP5CS和GaTPS基因启动子的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在转基因植物工程中,多数采用的是花椰菜花叶病毒(CaMV)的35S启动子等组成型启动子,它们驱动外源基因在植物的各种组织和各发育时期都表达,因而往往造成物质和能量的浪费,增加了植物的代谢负担,甚至引起植物形态发生改变,影响植物生长发育。因此,采用组织特异启动子或诱导型启动子启动外源基因在转基因植物中特定组织中得到表达,不但可以降低植物耗能、减轻对植物形态和生长发育的影响,还可以提高外源基因在特定部位的表达浓度,增加转基因的效果。
     脯氨酸和海藻糖是两种重要的渗透调节物质,吡咯琳-5-羧酸合成酶(pyrroline-5-carboxyate synthetase,P5CS)与海藻糖-6-磷酸合成酶(TPS)分别是脯氨酸和合成途径中的关键酶。本研究从亚洲棉中克隆出P5CS基因启动子和TPS基因启动子,分别命名为GaPROP5CS和GaPROTPS。取得的研究结果如下:
     1启动子的克隆和序列分析
     利用改良的TAIL-PCR法,从亚洲棉基因组中扩增出2个基因的5’端上游序列,命名为GaPROP5CS和GaPROTPS。GaPROP5CS全长795bp,找到转录起始位点A,TATAbox位于-22处; GaPROTPS全长1269bp,TATAbox距离转录起始位点A有32bp。
     2启动子的瞬时表达分析
     构建了GaP5CS和GaTPS的启动子和GUS融合基因表达载体,利用基因枪转化法将两种载体转入洋葱表皮细胞,并以含有PEG的培养基进行后期培养。通过GUS染色结果推测2个启动子是受旱胁迫诱导启动子。
     3启动子的功能分析
     通过农杆菌介导法分别将GaPROP5CS和GaPROTPS转入烟草进行功能验证。在干旱胁迫处理条件下,在转基因植株的叶片和根部都发现GUS基因的表达,从GUS酶活性测定结果表明启动子都具有较强的表达活性,在干旱胁迫诱导后表达活性得到提高。为了进一步研究GaPROP5CS S启动子在棉花中的启动活性,接着将GaPROP5CS启动子通过农杆菌介导法转化陆地棉,继续探讨启动子在转基因棉中的启动活性。
     4启动子缺失片段的获得和功能分析
     初步探索GaPROP5CS启动子序列中负调控元件,利用PCR法构建了8段启动子5,端缺失序列,通过基因枪转化法转化洋葱表皮细胞, PEG胁迫下检测GUS的表达,GUS活性测定结果表明, -444/+52缺失启动子以及-123/+52响应旱胁迫诱导活性最强,与CaMV-35S活性相当。为了进一步研究缺失启动子片段活性的强弱,将上述表达活性强的缺失启动子构建的表达载体转化农杆菌,利用农杆菌转化法转化烟草,以探讨GaPROP5CS缺失片段中活性最强缺失启动子。
Constitutive promoters, such as CaMV 35S, were mostly used in transgenic plant engineering. They drive foreign gene to express during the whole growth period and in every organizations of transgenic plant, which often causes substances and energy waste, increases the metabolism burden of plant, even leads to changes of plant morphology and affects plant growth and development. Therefore, using tissue specific promoter or inducible promoter can not only improve level of expression of the foreign gene, increase the effect of genetically modified, but also reduce plant energy consumption and the damages of plant.
     Proline and trehalose are two important osmolytes. Pyrroline-5-carboxyate synthetase and trehalose 6-phosphate-synthase are the key enzymes in the biosynthesis of proline and trehalose, respectively. The promoters of the two genes were cloned and characterized from Gossypium arboreum(ShixiyaⅠcultivar).The main results were as follows:
     1 Promoter cloning and sequence analysis
     Using modified TAIL-PCR method, the two genes 5’upstream sequence were amplified from the Asian cotton genome, which named GaPROP5CS and GaPROTPS. Sequence analysis showed that GaPROP5CS was 795bp in length, in which the TATA box was found at position -22 relative to the putative transcriptional star site (TSS). GaPROTPS was 1269bp in length and TATA box was at 32bp away from the TSS.
     2 Transient expression analysis of promoter
     Two expression vectors were constructed, in which GUS was drove by GaPROP5CS and GaPROTPS, respectively. The vectors were transformed into onion by particle bombardment transformation to test their functions, respectively. The onion were cultivated in the medium with PEG10%.The results suggested that GaPROP5CS and GaPROTPS are the drought stress-induced promoters, and the activity of GaPROP5CS is stronger than that of GaPROTPS.
     3 Analysis of promoter function
     GaPROP5CS and GaPROTPS were transformed into Nicotiana babacum by Agrobacterium infiltration method to test their functions, respectively. Under drought stress, gene expressions of GUS were found in leaves and roots of transgenic plants, GUS activity showed that the two promoters had a stronger expression of activity after drought stress-induced. To further study the expression activity of GaPROP5CS, we transformed the GaPROP5CS into Gossypium hirsutum L., using Agrobacterium- mediated transformation.
     4.Deletion analysis of promoter
     To study the negative regulatory element, a series of 5’-deletions were legated to GUS in expression vector. Then, we transformed the deletions into onion by particle bombardment transformation. Lastly, the transgenic onions were cultivated by PEG. The GUS activity results showed that the highest GUS activity were examined at the region of 444/+52 and -123 /+52, which were equal to CaMV-35S activity. Then, we transformed it into Nicotiana babacum by Agrobacterium infiltration method, so as to select the deletion of highest activity.
引文
1. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-ShinozakiK.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell, 2002(15): 63-78
    2. Angenon G., Vanmontagu M., Depicker A.. Analysis of the step codon in context in plant nuclear genes [J ]. FEBS Lett. ,1990, 271 (1- 2) : 144- 146.
    3. Benfey P.N.,Chua N.H..Regulated genes in transgenic plants.Science.1989,244:174-181.
    4. Benfey P.N.,Ren L.,Chua NH..Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J, 1990,9(6):1677-1684.
    5. Bevan M.,Shufflebotton D.,Edwards K..Tissue and cell specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants[J].EMBO J,1989,8(7):1899-1906
    6. Bohner S., and Rieping M.. Transcriptional activator TVG mediates dexamethasone -inducible and tetracycline-inactivatable gene expression,.Plant, 1999, 19(l): 87-95
    7. Busk P.K., Jensen A.B.,Pages M..Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.Plant J, 1997(11): 1285-1295
    8. Choi H., Hong J., Ha J., Kang J., Kim S.Y..ABFs, a family of ABA-responsive element binding factors.J Biol Chem,2000(275): 1723-1730
    9. Cummins J., Ho M..W., and Ryan A.. Hazardous CaMV promoter?. Nature Biotechnol, 2000, 18(4): 361-363
    10. Delvoye N. L.,Destroismaisons N. M.,Wall L. A..Activation of the beta-globin promoter by the locus control region correlates with binding of a novel factor to the CAAT box in murine erythroleukemia cells but not in K562 cells.Mol Cell Biol,1993,13(11):6969-83
    11. Dubouzet J. G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E. G., Miura S.,Seki M., Shinozaki K., Yamaguchi-Shinozaki K..OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression.Plant J. 2003,11(33): 751-763
    12. Guo S.D., 1995, Engineering of insect-resistant plant with Bt crystal protein genes, China Agricultural Science, 28(5): 8-13
    13. Hatton D,Sablowski R,Yung M.Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco[J].Plant J,1995,7(6):859~876
    14. Higo K., Ugawa Y., Iwamoto M., and Higo H.,1999, Plant cis-acting regulatory DNA elements(PLACE) database, Nucleic Acids Res., 27(1): 297-300
    15. Hincha D. K. and Hagemann M..Stabilization of model membranes during drying by compatible s- olutes involved in the stress tolerance of plants and microorganisms. Biochem J,2004,383:277-283
    16. Hudspeth R.L., Anderson D.M., Rajasekaran K., Grula J.W., and Hobbs S.L.. Characterization and expression of Metallothionein-like genes in cotton.Plant Molecular Biology, 1996,3(31): 701-705
    17. Jefferson R A.Assaying chimeric genes in plants:the Gus gene fusion system.Plant MolBiol Rep,1987,5:387-405
    18. John M.E., and Keller G., Metabolic pathway engineering in cotton:Biosynthesis of polyhybutyrate in fiber cell.Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 12768-12773
    19. Joshi C.P.. An inspection of the domain between putative TATA box and translation start site of 79 plant genes. Nucleic Acids Research ,1987,15:6643–6653
    20. Keerti S.R., and Ganesan S., CaMV 35S promoter in transgenic cotton:development and tissue-specific regulation, Plant, 2002, 1: 12-16
    21. Kizis D., Pages M.,Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.Plant J,2002(30) :679-689
    22. Kohli A., Griffiths S., Palacios N., Twyman R.M., Laurie D.A., and Christou P., Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV35S promoter and confirms the predominance of microhomology mediated recombination, Plant, 1999, 17: 591-601
    23. Kosmas S.A.,Tsakas S.,Loukas M.G., Eliopoulos E.,Tsakas S.,and Kaltsikes P.J.Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton ( Gossypium hirsutum L.). Planta, 2006,223(2): 329-339
    24. Kusnetsov V.,Landsberger M.,Meurer J.,Oelmuller R..The assembly of the CAAT box binding complex at a photosynthesis gene promoter is regulated by light,cytokinin,and the stage of the plastids.J Biol Chem,1999,274(50):36009-14
    25. Lamppa G., Nagy F., and Chua N.H.,.Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco.Nature, 1985,316: 750-752
    26. Liua H.C., and Creech R.G., Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3.Biochimica et Biophysica Acta, 2000, 1: 106-111
    27. Luo K.M., Zhang G.F., Deng W., Luo F.T., Qiu K., and Pei Y.. Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Reports, 2008, 4(27): 707-717
    28. Li L., Wang X.L., Huang G.Q., and Li X.B.. Molecular characterization of cotton GhTUA9 gene specifically expressed in fibre and involved in cell elongation,.Journal of Experimental Botany, 2007, 58(12): 3227-3238
    29. Li X.B., Fan X.P., Wang X.L., Cai L., Yang W.C.. The cotton Actin1 gene is functionally expressed in fiber and participates in fiber elongation,.The Plant Cell, 2005, 17:859-875
    30. Liu Y.G., Robert F., and Whitler K..Thermal asymmetricin terlaced PCR:automatable amplification and sequencing of insert end fragment from P1 and YAC clones for chromosome Walking. Genomics, 1995, 25: 674-681
    31. Lv S.L., Zhang K.W., Gao Q., Lian L.J., Song Y.J., Zhang J.R.. Overexpression of an H+-PPase gene from thellungiella halophila in Cotton enhances salt tolerance and improves growth andphotosynthetic performance,.Plant and Cell Physiology, 2008,48:1150-1164
    32. Manoj K., Anoop K.S., Harpal S., and Rakesh T.. Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter,.Journal of Biotechnology, 2009, 140(3): 143-148
    33. Narusaka Y.. Interaction between two cis-acting elements ,ABRE and DRE , in ABA-dependent expression of Arabidopsisrd 29A gene in response to dehydration and high-salinity stresses.Plant J , 2003 , 34 (2) : 137
    34. Mitsuhara I.. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants.Plant Cell Physiol , 1996 , 37 : 49
    35. Odell J T..Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development . Plant Mol Biol , 2000 , 15 (4) : 605
    36. Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y., Yamaguchi S..Gibberellin biosynthesis and response during Arabidopsis seed germination.Plant Cell.,2003(15): 1591-16040
    37. Ren M.Z., Chen Q.J., Li L., Zhang R., and Guo S.D.,. Functional Analysis of Nodulin-like Promoter in Transgenic Cotton Plants,.Journal of Integrative Plant Biology, 2005, 10(47): 1254-1259
    38. Rinehart J.A., Petersen M.W., and John M.E.. Tissue-specific and developmental regulation of cotton gene FbL2A,.Plant Physiol, 1996, 112: 1331-1334
    39. Ruan M.B., Liao W.B., Zhang X.C., Yu X.L., and Peng M.. Analysis of the cotton sucrose synthase 3 (Sus3) promoter and first intron in transgenic Arabidopsis, Plant Science, 2008,3(176): 342-351
    40. Schunmann P.H.D., Llewellyn D.J., Surin B., Boevink P., and De Feyter R.C.. A suite of novel promoters and terminators for plant biotechnology, Functional Plant Biology, 2003, 30(4): 443-452
    41. Shirsat A., Wilford N., Croy R., Boulter D..Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco.Mol Gen Genet.,1989(215):326-3310
    42. Simpson S. D., Nakashima K., Narusaka Y., Seki M., Shinozaki K.,Yamaguchi-Shinozaki K..Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydrationstress and dark-induced senescence.lant J. 2003(33): 259-270
    43. Song P., Heinan J.L., and Burns T.H..Expression of Two Tissue-Specific Promoters in Transgenic Cotton Plants,.The Journal of Cotton Science, 2000, 4:217-223
    44. Suniikumar G.,Mohr L.,Lopata-finch E..Develomental and tissue-specific expression of CaMV35S promoter in cotton as revealed by GFP.Plant Mol Biol.,2002,50(3):463-474
    45. Sunilkumar G., Connell J.P., and Smith C.W., Reddy A.S., and Rathore K.S.. Cotton-Globulin Promoter: Isolation and Functional Characterization inTransgenic Cotton、Arabidopsis、and Tobacco,.Transgenic Research, 2002,4(11): 347-359
    46. Sven K.D., Sharon J.O., Michael M.H., and Jeremy N.T. The fiber-specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. Plant and Cell Physiology, 2007,10: 111-117
    47. Taylor J. E.,Renwick K. F.,Webb A..ABA-regulated promoter activity in stomatal guard cells.Plant J.1995,7(1):129~34
    48. Tan G.H., Gao Y., Shi M., Zhang X.Y., He S.P., Chen Z.L., and An C.L.. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking,.Nucleic Acids Res., 2005,33(13): 122-129
    49. Terauchi R.,Kahl G..Rapid isolation of promoter sequences by TAIL-PCR:the 5'-flanking regions of Pal and Pgi genes from yams(Dioscorea).Mol Gen Genet,2000,263(3):554~60.
    50. Tjaden G., Edwards J. W., Coruzzi G. M..Cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase.Plant Physiol,1995, 1(108):1109-1117
    51. Townsend B.J., and Llewellyn D.J.. Spatial and temporal regulation of a soybean (Glycine max) lectin promoter in transgenic cotton (Gossypium hirsutum), Functional Plant Biology, 2002, 29:835-843
    52. Umbeck P., Johnson G., Barton K., and Swain W..Genetically transformed cotton (Gossypium hirsutum L.)plants. Biotechnology, 1986, 12(5): 263-266
    53. Vilas P., Vinod K., Ganesan S., Leanne C.,Narendra S., and Keerti R.. Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance, Molecular Breeding, 2009, 4(23): 625-639
    54. Wu A.M..and Liu J.Y..Analysis of the cotton E6 promoter,.Tsinghua science and technology, 2005, 4(10): 409-413
    55. Wu A.M., Hu J.S., and Liu J.Y.. Functional analysis of a cotton cellulose synthase A4 gene promoter in transgenic tobacco plants,.Plant Cell Reports, 2009, 28(10): 1539-1548
    56. Xie Y.Q., Zhu Z, and Liu Y.L.. Coat protein promoter from cotton leaf curl virus is not a tissue-specifically expressed promoter, Chinese Science Bulletin, 2000, 20(45): 1869-1874
    57. Yamaguchi-Shinozaki K.,Shinozaki K..A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low temperature,or high-salt stress.Plant Cell.1994,6:251-64
    58. Yin Y.,Chen L.,Beachy R..Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice.Plant J,1997,12(5):1179~1118
    59. Zhang D.S., Hrmova M., Wan C.H., and Wu C.F., Balzen J., Densmore L.D., Fincher G.B., and Zhang H.. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant molecular biology, 2004, 54: 352-372
    60. Zhang H..Members of a new group of chitinase-like genes are expressed preferentially . Plant J,1999,4(10):356~361
    61.刘传亮,武芝霞,张朝军等.农杆菌介导棉花大规模高效转化体系的研究.西北植物学报, 2004, (5):76-82
    62.刘传亮,于娅,马峙英等.陆地棉中棉所24胚性愈伤组织的诱导及植株再生.西北植物学报,2004,24(2):306-310
    63.刘全义,张裕繁,严根土.棉花抗旱盐育种途径探讨.中国棉花,2000,27(4):2-5
    64.刘根齐,李秀丽,杨春玲等.不同调控序列控制下的GUS基因在水稻和毛白杨愈伤组织中的瞬时表达.植物生理与分子生物学报,2005,31(3):327~330
    65.郝林,曹军.CaMV35S启动子在拟南芥中的增强表达.植物生理学通讯, 2000, 36(6): 517 -519
    66.罗晓丽,陈晓英等.南瓜韧皮部特异性启动子在转基因棉花中的表达.棉花学报,2007,19(6):431-435
    67.皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志, 2003, 23(1):1-4
    68.苏京平,闫双勇,孙林静等.我国转基因水稻研究的现状.天津农业科学,2007,13(4):7-11
    69.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998:351-353
    70.王仁祥,中国转基因抗虫棉的应用与发展对策.棉花学报,15(3):180-184
    71.王忠华,舒庆尧,崔海瑞,夏英武. Bt杀虫基因与Bt转基因抗虫植物研究进展,植物学报, 1999,
    16(1): 51-58
    72.万丙良,张献龙.基因枪介导转化水稻花粉获得转基因植株.农业生物技术学报,2000, 8(4) :332-333
    73.尉万聪.草甘膦诱导高表达基因及启动子的克隆和功能分析,博士学位论文,中国农业科学院研究生院,2005,导师:郭三堆
    74.魏伟,裴克全,桑卫国等. 2002,转Bt基因棉花生态风险评价的研究进展,植物生态学报,2002, 26: 127-132
    75.夏江东,程在全,吴渝生等.高等植物启动子功能和结构研究进展.云南农业大学学报, 2006, 21(1) :7~14
    76.徐琼芳,李连成,陈孝等.基因枪法获得GNA转基因小麦植株的研究.中国农业科学,2001,34(1): 5-8
    77.谢迎秋,刘玉乐,朱祯,棉花曲叶病毒互补链基因启动子功能区的缺失分析.中国科学,2000, 10(5):528-535
    78.谢迎秋,朱祯,刘玉乐等.一种新型双向启动子-棉花曲叶病毒启动子的分离、序列分析与功能初探.高技术通讯,2002, 4: 13-17
    79.袁正强,贾燕涛,吴家和等.三个韧皮部特异性启动子在转基因烟草中表达的比较研究.农业生物技术学报,2002,10(1):6-9
    80.于娅,刘传亮,马峙英等.基因枪转化技术在棉花遗传转化上的应用.棉花学报,2003,15(4):243- 247
    81.张雪妍,刘传亮,王俊娟,李付广,叶武威.PEG胁迫方法评价棉花幼苗耐旱性研究.棉花学报.2007, 19(3):205-209
    82.张震林,刘正銮,周宝良等.转兔角蛋白基因改良棉纤维品质研究.棉花学报,2004,14(2):72-76
    83.张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展.遗传学报,2004,31(12):1455-1464.
    84.张艳华,季静,王罡.转基因植物与生物安全性,作物杂志, 2003,6: 4-7
    85.张晓宁.盐藻耐盐相关基因的克隆、功能分析与高效启动子的分离鉴定:[博士学位论文],复旦大学,2002
    86.张秀君,刘俊起,赵倩等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报,1997 ,7(4):363-367
    87.智联腾.棉花纤维特异表达基因LTP3和FBL2A启动子的克隆及其活性研究[硕士学位论文].2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700