用户名: 密码: 验证码:
渗透胁迫信号传导关键基因的克隆及DREB1A基因对水稻的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱及低温等环境条件,都会构成对植物的渗透胁迫,使植物缺水受伤害,甚至导致植物死亡。由此造成的作物严重减产,已成为全球性的问题。如何通过提高作物抗干旱、盐碱及低温的能力来增加粮食产量,以满足日益增长的粮食需求,无疑是关系到国计民生的重大问题。与传统的育种技术和分子标记辅助育种相比,利用基因工程手段提高植物的抗逆性是更具吸引力的途径。但是由于渗透胁迫反应在遗传上和生理上的复杂性,使得人们对渗透胁迫的耐受机制的认识还远远不够,限制了基因工程技术的应用。表现为单独导入某个功能基因难以获得理想的抗逆性。最新研究结果表明,在渗透胁迫条件下,信号传导过程中的关键基因,如DREB、CDPK等,能够调节信号传导和功能基因的表达。它们在转基因植物中的过量表达会激活许多内源抗逆功能基因协同表达,从而获得更强的抗逆性。
     本研究针对上述问题,以水稻为材料,深入系统地进行了渗透胁迫信号传导过程中关键基因的克隆、植物表达载体构建以及再生体系和遗传转化体系建立等研究工作,为抗渗透胁迫转基因水稻品种(系)的培育以及水稻抗渗透胁迫机理研究奠定了基础。探索一条抗渗透胁迫分子育种的新途径。
     本研究获得的主要研究结果如下:
     1.利用RT-PCR方法从拟南芥中克隆了DREB2A基因。序列分析结果表明,该序列与GENBANK上的序列完全相同。
     2.利用嵌套式RT-PCR方法,用水稻钙依赖的蛋白激酶基因osCDPK7特异引物从抗盐的水稻品种辽盐241中扩增到约1700bp的片段。经酶切鉴定,初步确定为osCDPK7基因。
     3.利用RT-PCR方法,用水稻促分裂原活化蛋白激酶基因osMSRMK2特异引物从水稻品种辽盐241中扩增到约1200bp的片段。经嵌套式PCR和酶切鉴定,初步确定为osMSRMK2基因。
     4.利用PCR方法,用水稻促分裂原活化蛋白激酶基因osMSRMK2特异引物从水稻品种辽盐241基因组DNA中扩增到约2500bp的片段。经嵌套式PCR鉴定,初步确定为osMSRMK2基因。
     5.利用RT-PCR方法,用水稻促分裂原活化蛋白激酶基因osMAPK4特异引物从水稻品种辽盐241中扩增到约1500bp的片段。经酶切鉴定,初步确定为osMAPK4基因。
     6.构建了8个由不同启动子调控的、带有不同克隆位点的、分别适合于在单子叶植物和双子叶植物中表达的植物表达载体卡盒。其中,pCU、pCE12适用于在单子叶植物中的组成型表达外源基因;pC29A、pCC29A适用于在单子叶植物中的渗透胁迫诱导型表达外源基因;pBE12、pBCE12适用于在双子叶植物中的组成型表达外源基因;pB29A、pBC29A适用于在双子叶植物中的渗透胁迫诱导型表达外源基因。
    
     东北农业大学农学博士学位论文
    一
    7.构建了4个由不同启动子调控的、分别适合于在单子叶植物和双子叶植物中表达的
     DREB基因植物表达载体。其中,pCDE12用于DREBIA基因在单子叶植物中的组
     成型表达:水*29A用于*RE B IA基因在单子叶植物中的渗透胁迫诱导型表达;姆*35s
     用于DREB IA基因在双子叶植物中的组成型表达;pBD29A用于DREBIA基因在双子
     叶植物中的渗透胁迫诱导型表达。
    8.构建了2个由不同启动于调控的适合于在单子叶植物中表达的DREBZA基因植物表达
     载体。其中,pCDRE12用于DREBZA基因在单子叶植物中的组成型表达;pCDR29A
     用于DREBZA基因在单子叶植物中的渗透胁迫诱导型表达。
    9.建立了水稻再生体系
     门)愈伤组织诱导培养基为:MS+3mg/L 2,4D+30g/L蔗糖十sg/L琼脂。
     (2)继代培养基为:*以Zing/L 2,4o叶og/L蔗糖十10叭琼脂,提高蔗糖及琼脂浓度
     有利干愈伤组织保持结构紧密的状态。
     (3)不定芽诱导培养基为:MS+Zmg/L6-BA+30g/L蔗糖十gg/L琼脂。
    10.建立了农杆菌介导的遗传转化体系
     门)确定了愈伤组织继代阶段双丙胺磷(PPT)的筛选压力为 10mg/L;愈伤组织分化
     阶段双丙胺磷(PPT)的筛选压力为1刀mg/L。
     (2)影响遗传转化的3个主要因素的正交试验较优组合为:农杆菌重悬液为WSB,共
     培养pH值为5.2,添加阿魏酸100mglL。各影响因素的主次顺序是:酚类添加物
     >重悬液组成>pH值。
    11.用农杆菌介导法进行了DREBIA基因对5个水稻品种的遗传转化,现己获得抗性苗,
     并有大量材料处于分化筛选阶段。
    12.建立了植物DNA的小量提取方法;确定了转基因植株PCR检测的反应条件。
Drought, high salinity and low temperature are common stress condition that adversely affect plant growth and crop production, which is a global problem. How to promote the resist ability of crops to drought, high salinity and low temperature and then increase crop production is a important question related to the national economy and the people's livelihood. Compared with traditional breeding technique and molecular marker aided selection, it is a more attractive approach to improve the resist ability of crops by plant engineering. But as a result of the complexity of osmotic stress reaction in heredity and physiology, the knowledge about molecular mechanism of osmotic stress is far from necessity, which restrict the application of genetic engineering technique. For example, it is difficult to obtain ideal resist ability when single functional gene was introduced into plants. The last research results showed that some key genes involved in osmotic stress signal transduction, such as DREB and CDPK, regulated
     the expression of functional genes. Overexpression of these genes in transgenic plants activated endogenesis stress resisted genes, therefore endowed higher resist ablity.
    According to above-mentioned problems, this study take rice as material to clone key genes during osmotic stress signal transduction, construct plant expression vectors and cultivate transgenic rice. These will provide the foundation for studying osmotic stress resist mechanism and cultivating transgenic rice varieties which resist to osmotic stress.
    The main results was summarized as follows.
    1. DREB2A gene was cloned from Arabidopsis thaliana by RT-PCR. The result of sequence analysis showed that the sequence we obtained was the same as that in GenBank.
    2. A 1700bp fragment was amplified from a salinity resist rice variety, liaoyan 241 by nested RT-PCR using osCDPK.7 gene special primer. It was identified as osCDPK7 gene by endonuclutidase analysis.
    3. A 1200bp fragment was amplified from a salinity resist rice variety, liaoyan 241 by RT-PCR using osMSRMK2 gene special primer. It was identified as osMSRMK2 gene by nested PCR and endonuclutidase analysis.
    4. A 2500bp fragment was amplified from a sality resist rice variety, liaoyan 241 genomic DNA by PCR using osMSRMK2 gene special primer. It was identified as osMSRMK2 gene by
    nested PCR.
    5. A 1500bp fragment was amplified from a salinity resist rice variety, liaoyan 241 by RT-PCR using osMAPK4 gene special primer. It was identified as osMAPK4 gene by endonuclutidase analysis.
    6. Eight plant expression vector cassettes were constructed, which were regulated by different promoters, contained different cloning sites and were fit for expression in monocotyledon or dicotyledon respectively. In these vector cassettes pCU and PCE12 were fit for constitutive expression of foreign genes in monocotyledon, pC29A and PCC29A fit for osmotic stress inducible expression of foreign genes in monocotyledon, pBE12 and pBCE12 fit for constitutive expression of foreign genes in dicotyledon, pB29A and pBC29A fit for osmotic stress inducible expression of foreign genes in dicotyledon.
    7. Four DREB 1A gene plant expression vectors were constructed, which were regulated by different promoters and were fit for expression in monocotyledon or dicotyledon respectively. In these vectors, pCDE12 is fit for constitutive expression of DREB 1A gene in
    
    
    monocotyledon, pCD29A fit for osmotic stress inducible expression of DREB1A gene in monocotyledon, pBD35s fit for constitutive expression of foreign DREB1A gene in dicotyledon, pBD29A fit for osmotic stress inducible expression of DREB1A gene in dicotyledon.
    8. Twor DREB2A gene plant expression vectors were constructed, which were regulated by different promoters and were fit for expression in monocotyledon. In these vectors, pCDRE12 is fit for constitutive expression of DREB2A gene in monocotyledon, pCDR29A fit for osmotic stress inducible expression of DREB2A gene in monocotyledon.
    9. Rice
引文
1 迪芬巴赫,德维克斯勒著,黄培堂等译。PCR技术实验指南。北京,科学出版社,2002
    2 杜秀敏,殷文璇,赵彦修,张慧。植物中活性氧的产生及清除机制。生物工程学报,200117(3):121-125
    3 傅荣昭,孙勇如,贾士荣。植物遗传转化技术手册。中国科学技术出版社,1994
    4 侯彩霞,汤章城。细胞相容性物质的生理功能及其作用机制。植物生理学通讯,1999,35(1):1-7
    5 李学宝,毛慧珠。酵母Pro2基因转化紫云英的研究。实验生物学报,1997,44:243-252
    6 李银心、常凤启、杜立群等。转甜菜碱脱氢酶基因豆瓣菜的耐盐性。植物学报,2000,42(5):480-484
    7 林鸿生,华志华,卢德赵等。水稻基因枪转化过程中选择标记基因的研究。上海农业学报,200117(3):9-12
    8 刘强、张勇、陈受宜。干旱、高盐及低温诱导的植物蛋白激酶基因。科学通报,2000,45(6):561-566
    9 刘志学,张旭,徐亚南等。用LBA4404/pCAMBIA系列转化水稻的最佳条件。复旦学报,1999,38(4):439-443
    10 卢圣栋。现代分子生物学实验技术(第二版)。北京,中国协和医科大学出版社,1999
    11 萨姆布鲁克,拉塞尔著,黄培堂等译。分子克隆实验指南(第三版)。北京,科学出版社,2002
    12 苏金,陈丕铃,吴瑞。甘露醇-1-磷酸脱氢酶转基因表达对转基因水稻幼苗抗盐性的影响。中国农业科学,1999,32(6):101-103
    13 汤章城。对渗透的淹水胁迫的适应机理。余叔文,汤章城主编,植物生理与分子生物学(第二版)。北京,科学出版社,1998,739-751
    14 王关林,万宏筠。植物基因工程原理与技术(第二版)。北京,科学出版社,2002
    15 吴迪,周长梅,朱延明。酚类物质对葡萄遗传转化的影响。园艺学报,2003,30(1):77-78
    16 袁朝兴,匡达人。在烟草中酵母脯氨酸基因B的转化。植物生物学报,1993,19(3):12-14
    17 曾庆平,郭勇。植物的逆境应答与系统抗性诱导。生命的化学,1997,17(3):31-33
    18 赵恢武,陈杨坚,高音等。干旱诱导性启动子驱动的海藻糖-6-磷酸合成酶基因载体的构建及转基因烟草的耐旱性。植物学报,2000,42(6):616-619
    19 Abebe T,Guenzi AC,Martin B,Cushman JC.Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity.Plant Physiol.2003,131(4):1748-1755
    20 Abe h,Yamaguchi-Shinozaki K,Urao t,et al.Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression.Plant Cell.1997,1859-1868
    21 Abe H,Urao T,Ito T,Seki M,Shinozaki K,Yamaguchi-Shinozaki K.Arabidopsis AtMYC2
    
    (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell.2003,15(1):63-78
    22 Agrawal GK,Rakwal R,Iwahashi H.Isolation of novel rice multiple stress responsive MAP kinase gene,OsMSRMK2,whose mRNA accumulates rapidly in response to environmental cues.Biochem Biophys Res Commun.2002,294(5):1009-1016
    23 Aguilar P.S.,Hernandez-Arriaga A.M.,Cybulski L.E.,Erazo A.C.and de Mendoza D.Molecular basis of thermosensing:a two-component signal transduction thermometer in Bacillus subtilis.EMBO J.2001,20:1681-1691
    24 Alia kondo Y,Sakamoto A,et al.Enhanced tolerance to light stress of transgenic Arbidopsis plant that express the coda gene for a bacterial choline oxidase.Plant Molecular Biology.1999,40:279-288
    25 Allen Rd.Dissection of oxidative stress tolerance using transgenic plants.Plant Physiol,1995,107:1049-1055
    26 Aono M.Paraquat tolerance of transgenic nicotiana tabacum with enchanced activities of glutathione reductase and superoxide dismutase.Plant Cell Physiol,1995,36:1687
    27 Bowler C,Slooten L,Vandenbranden S.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants.EMBO,J.1991,10:1723-1732
    28 Bray,E.A.Plant responses to water deficit.Trends Plant Sci.1997,2:48-54
    29 Caimi P G,Mccole L M,Kisin T M et al.Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and patato.The New Phytologist,1997,136:19-28
    30 Carlos Romero Jose M,Belles Jose L,Vaya et al.Expession of the yeast trehalose-phosphate synthase gene in transgenic tobacco plant pleiotropic phenotypes include drought tolerance.Planta,1997,201:293-297
    31 Cushman J C,Bohnert H J.Genomics approaches to plant stress.Curr Opin Plant Bio,2000,3(2):117-124
    32 Davis T,Yamada M, Elgort M.Nucleotide sequence of the mannitol operon in Escherichia coli.Molecular Microbiol.1988,2(3):405-412
    33 De Ronde JA,Spreeth MH,Cress WA.Effect of antisense Δ'-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress.Plant Growth Reg.2000,32:13-26
    34 Deshnium P,Los Hayashi H.Transformation of synechococcus with a gene for choline oxidase enhances tolerance to stress,Plant Molecular Biology,1995,29:897-907
    35 DeWald,D B.,Torabinejad J.,Jones C.A.,Shope J.C.,Cangelosi,A.R.,Thompson J.E.Prestwich,G.D and Hama,H.Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis.Plant Physiol.2001,126:759-769.
    36 Dubouzet J G,Sakuma Y,Ito Y,Kasuga M,Dubouzet E G,Miura S,Seki M,Shinozaki
    
    K,Yamaguchi-Shinozaki K.OsDREB genes in rice,Oryza sativa L,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression.Plant J 2003 Feb;33(4):751-63
    37 Elbein A,The metabolisin of α-trehalose,Adv carbohydrchem Biochem,1974,30:227-256
    38 Eleutherio E CH,Dearaujo P S,Panek A D.Role of the trehalose carrier in dehydration resistance of Saccharomyces Cerevisiase.Biochim Biophys Acta,1993,1156:263-266.
    39 Foyer D P,Kunert K J.Protection against oxygen radicals:an impotant defense mechanism studied in transgenic plants.Plant Cell Environmemt.1994,17:507-523
    40 Fromm M E,Taylor L P,Walbot V.Expression of genes transferred into monocot and dicot plant cells by electroporation.Proc Natl Acad USA.1985,882:5824-5828
    41 Fu SF,Chou WC,Huang DD,Huang HJ.Transcriptional regulation of a rice mitogen-activated protein kinase gene,OsMAPK4,in response to environmental stresses.Plant Cell Physiol.2002,43(8):958-63
    42 Gilmour S J,Sebolt A M,Salazar M P,Everard J D,Thomashow MF.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.Plant Physiol 2000 Dec;124(4):1854-65
    43 Gilmour,S.J.,Zarka,D.G.,Stockinger,E.J.,Salazar,M.P.,Houghton,J.M.,and Thomashow,M.F.Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.Plant J.1998,16:433-442.
    44 Giraudat J,Parcy F,Bertauche N,et al.Current advance in abscisic acid and signaling.Plant Mol Boil,1994,26(5):1557-1577
    45 Goddijn O J M,Vereoerd T C,Voogd E et al.Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants.Plant Physiology,1997,113:181-190
    46 Hare P D,Cress W A,Van Stdaden J.Dissecting the roles of osmolyte accumulation during stres.Plant Cell and Environment,1998,21:535-553
    47 Hasegawa,P.M.,Bressan,R.A.,Zhu,J.K.,and Bohnert,H.J.Plant cellular and molecular responses to high salinity.Annu.Rev.Plant Mol.Plant Physiol.2000,51:463-499.
    48 Hauptman R M,Ozias A P,Vasil V,et al.Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species.Plant Cell Rep.1987,6:265-272
    49 Hayashi HA,Mustardy L,Deshnium P,Ida M,Murata N.Transformation of Arabidopsis thaliana with the coda gene for choline oxidase:accumulation of glycine betaine and enhanced tolerance to salt and cold stress.Plant J.1997,12:133-142
    50 Hier Y,Ohta S,Komari T et al.Efficient transformation of rice(Orzya sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Plant.1994,6:271-282
    51 Hirayama,T,Ohto,C.,Mizoguchi,T.,and Shinozaki,K.A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in
    
    Arabidopsis thaliana.Proc.Natl.Acad.Sci.USA.1995,92:3903-3907
    52 Holmstrom K O.Engineering Plant adaptation to water-stress.Acta-Universitatis-Agriculture-Sueciase-Agraia.1998,84:49-55
    53 Hong B,Barg R,Ho TH.Developmental and organ-specific expression of an ABA- and stress-induced protein in barley.Plant Mol Biol.1992,18(4):663-74.
    54 Ichimura,K.,Mizoguchi,T.,Yoshida,R.,Yuasa,T.,and Shinozaki,K.Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J.2000,24:655-665
    55 Ingram J,Bartels D.The molecular basis of dehydration tolerance in plants.Annu Rev Plant Physiol Plant Mol Boil,1996,47:377-403
    56 Ishizaki-Nishizawa O.Low-temperature resistance of higher plants is significantly enchanced by a nonspecific cyanobacterial dessaturase.Nat Biotechnol,1996,14:1003-1009
    57 Iwasaki t,Yamaguchi-Shinozaki K,Shinozaki K.Indentification of a cis-regulatory region of gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis.Mol Gen Genet,1995,247(4):391-398
    58 Jaglo-Ottosen K R,Gilmour S J,Zarka D G,Schabenberger O,Thomashow MF.Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.Science.1998,280:104-106
    59 Jang J C,Leon P,Zhou L et al.Hexolinase as a sugar sensor in higher plants.The Plant Cell,1997,9:5-19
    60 Jang IC,Oh SJ,Seo JS,Choi WB,Song SI,Kim CH, Kim YS,Seo HS,Choi YD,Nahm BH,Kim JK.Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth.Plant Physiol.2003,131(2):516-524
    61 Joshee N,Kisaka H,Kitagawa Y.Isolation and characterization of a water stress-specific genomicgene,pwsi 18,from rice.Plant Cell Physiol.1998,39(1):64-72
    62 Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nat Biotechnol 1999,17(3):287-91
    63 Kavi Kishor.Overexpression of Δ1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants.Plant Physiol,1995,108:1387-1394
    64 Kawasakia S,Borcherta C, Deyholosb M,et al.Gene expression profiles during the intitial phase of salt stress in rice.Plant Cell,2001,13(4):889-906
    65 Kazuo T,Kyoko K,A recessive arabidopsis mutant that grows photoautotrohically under salt stress shows enhanced active oxygen detoxification.The Plant Cell.1999,11:1195-1206
    66 Kenonowicz A K.Biochemical and celluar mechanism of stress tolerance in plant.Berlin:
    
    Spring-verlag,1994,381-414
    67 Kiegerl S.,Cardinale F.,Siligan C.,Gross A.,Baudouin E.,Liwosz A.,Eklof S.,Till S., Bogre L.,Hirt H.and Meskiene I.SIMKK,a mitogen-activated protein kinase (MAPK) kinase,is a specific activator of the salt stress-induced MAPK,SIMK.Plant Cell 2000,12:2247-2258
    68 Kim SA,Kwak JM,Jae SK,Wang MH,Nam HG.Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants.Plant Cell Physiol.2001,42:74-84
    69 Knight H.Calcium signaling during abiotic stress in plants.Int.Rev.Cytol.2000,195:269-325
    70 Kodama H.Genetic enchancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco.Plant Physiol,1994,105:601-610
    71 Kopka J.,Pical C.,Gray J.E.and Muller-Rober B.Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato.Plant Physiol.1998,116:239-250
    72 Lee J H,Van Montagu M,Verbruggen N.A highly conserved kinase is an essential component of stress tolerance in yeast and plant cells.Proc NaCl Acad Sci USA,1999,96(10):5873-5877
    73 Lilius G,Holmberg N,Bulow L.Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase.Bio Technology.1996,14:177-180
    74 Liu L.Transcription factors and their genes in higher plants.Eur.J.Biochem.1999,262:247-257
    75 Liu Q,Kasuga M,Sakuma Y,Abe H,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis.Plant Cell 1998,10(8):1391-406
    76 Liu Q.,Kasuga M.,Sakuma Y.,Abe H.,Miura S.,Yamaguchi-Shinozaki K.and Shinozaki,K.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis.Plant Cell 1998,10:1391-1406
    77 Mckersie B D,Chen Y,Beus M.Superoxide dismutase enhance tolerance of freezing stress in transgenic alfalfa.Plant Physiology,1993,103:1155-1163
    78 Mckersie BD.Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase.Plant Physiol,1996,111:1177-1185
    79 Medina J.,Bargues M.,Terol J.,Perez-Alonso M.,and Salinas J.The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose
    
    expression is regulated by low temperature but not by abscisic acid or dehydration.Plant Physiol.1999,119:463-470
    80 Menkes A E,Schindler U,Cashmore A R.The G-Box:a ubiquitous regulatory DNA element in plants bound by GBF family of bZIP proteins.Trends Biochem Sci,1995,20(12):506-510
    81 Mikami K.,Katagiri T.,Luchi S.,Yamaguchi-Shinozaki K.,and Shinozaki K.A gene encoding phosphatidylinositol 4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana.Plant J.1998,15:563-568
    82 Mikolajczyk M.,Olubunmi S.A.,Muszynska G.,Klessig D.F.and Dobrowolska G.Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells.Plant Cell 2000,12:165-178
    83 Mikos G L,Rubin G M.The role of the genome project in determing gene function:Insights from model organism.Cell,1996,86(4):521-529
    84 Mohanty A,Kathuria H,Ferjani A,Sakamoto A,Mohanty P,Murata N,Tyagi AK.Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the coda gene are highly tolerant to salt stress.Theor Appl Genet.2002,106(1):51-57
    85 Munns R Progresses limiting plant growth in saline soils.Plant Cell and Environment.1993 16:15-24
    86 Murata N.Composition and positional distribution of fatty acid in phospholipids from leaves of chilling sensitive and chilling resistant plant.Plant Cell Physiol,1982,23:1071-1078
    87 Nakashima k,kiyosue t,Yamaguchi-Shinozaki K,et al.a nuclear gene,erdl,encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana.Plant J,1997,12(4):851-861
    88 Otting G.protein hydration in apueons solution.Science 1991,254.:974-980
    89 Papageorgiou GC Murata N.The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxyen-evolving photosystem Ⅱ complex.Photosynthesis research.1995,44:243-252
    90 Park JM,Park CJ,Lee SB,Ham BK,Shin R,Pack KH.Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco.Plant Cell.2001,13:1035-1046
    91 Perl A,Treves R,Galili S.Enhanced oxidative stress defense in transgenic potato expression tomato Cu/Zn Superoxide dismutase.Theo.Appl.Genet.1993,85:568-576
    92 Pical C.,Westergren T.,Dove S.K.,Larsson C.,and Sommarin,M.Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate,diacylglycerol pyrophosphate,and phosphatidylcholine in Arabidopsis thaliana cells.J.Biol.Chem.1999,274:38232-38240
    93 Pilon-smits E A H Ebskamp M J M Paul M J et al.Improved peformance of transgenic
    
    fructan-accumulating tobacco under drought stress.Plant physiol.1995,107:125-130
    94 Rajendrakumar C S V Suryanarayana T Reddy A R.DNA helix destabilization by proline and betaine possible role in the salinity tolerance process.FEBS Letter.1997,410:201-205
    95 Ray W Jin S Jayaprakash T.How to obtain optimal gene expression in transgenic plant.北京,第七次基因学术会议。1999
    96 Rennenberg H,Polle A.Protection from oxidative stress in transgenic plants.Biochem Soc Trans,1994,22:936-941
    97 Richmond T,Shauna S.Chasing the dream:Plant Est Microarrays.Curr Opin Plant Biol,2000,3(2):108-116
    98 Romero C,Belies JM,Vaya J L et al.expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants pleiotropic phenotypes include drought tolerance.Planta,1997,201:293-297
    99 Rontein D,Basset G,Hanson AD.Metabolic engineering of osmoprotectant accumulation in plants.Metab Eng 2002,4(1):49-56
    100 Roxas VP,Lodhi SA,Garrett DK,Mahan JR,Allen RD.Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase.Plant Cell Physiol.2000,41:1229-1234
    101 Roxas VP,Smith RK Jr,Allen ER,Allen RD.Overexpression of glutathione-S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress.Nature Biotechnol.1997,15:988-991
    102 Saijo Y,Hata S,Kyozuka J,Shimamoto K,Izui K.Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J.2000,23(3):319-27
    103 Saijo Y,Kinoshita N,Ishiyama K,Hata S,Kyozuka J,Hayakawa T,Nakamura T,Shimamoto K,Yamaya T,Izui K.A Ca(2+)-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles.Plant Cell Physiol.2001,42(11):1228-33
    104 Sakamoto A,Alia HH,Murata N.Metabolic engineering of fice leading to biosynthesis of glycine betaine and tolerance to salt and cold.Plant Mol.Biol.1998,38:1011-1019
    105 Sanders D.,Brownlee C.and Harper J.F.Communicating with calcium.Plant Cell 1999,11:691-706
    106 Schellenbaum L,Sprenger N,Schuepp H,Wiemken A,Boller T.Effects of drought,transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants.New Phytol.1999,142(1):67-77.
    107 Schroeder J.I.,Allen G.J.,Hugouvieux V.,Kwak J.M.and Waner D.Guard cell signal transduction.Annu.Rev.Plant Physiol.Plant Mol.Biol.2001,52:627-658
    108 Seki M,Narusaka M,Abe H,et al.Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full length edna microarray.Plant cell,
    
    2001,13(1):61-72
    109 Shen B,Jensen R G,Bohnert H J.Increase resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts.Plant Physiol.1997,113:1177-1183
    110 Shen Q,Ho T H D.Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element.Plant Cell,1995,7(2):295-307
    111 Shinozaki K,Yamaguchi-Shinozaki K,Mizoguchi t,et al.Molecular response to water-stress in Arabidopsis thaliana.J Plant Res,1998,111(3):345-351
    112 Shinozaki K,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stressresponse.PlantPhysiol,1997,115(1):327-334
    113 Shinozaki K,Yamaguchi-Shinozaki K.Molecular response to drought stress.In:Sato K,Murata N,eds.Stress Responses Of Photosynthetic Organisms.Amsterdam:Elsevier,1998,141-163
    114 Shinozaki K,Yamaguchi-Shinozaki K.Molecular response to drought and cold stress.Curr Opin Biotechnol,1996,7(2):161-167
    115 Shor P B R Hong Z Miao G H et al.Overexpression of Δ-pyrroline-5-carboxylate sythetase increase proline production and confers osmototerance in transgenic plant.Plant physiol,1995,108:1387-1394
    116 Sivamani E,Bahieldin A,Wraith J M,Al-Niemi T,Dyer W E,Ho THD,Qu RD.Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA 1 gene.Plant Sci.2000,155:1-9
    117 Steponkus PL,Uemura M,Joseph RA,Gilmour SJ,Thomashow MF.Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana.Proc Natl Acad Sci U S A.1998,95(24):14570-14575
    118 Stockinger E.J.,Gilmour S.J.and Thomashow M.F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.Proc.Natl.Acad.Sci.USA 1997,94:1035-1040
    119 Stockonger E J,Glamour S J,Thomashow M F.Arabidopsis thaliana CBF1 encode an AP2 domain-containing transcriotion activator that binds to the c-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit.Proc Nalt Acad Sci USA,1997,94(3):1035-1040
    120 Sussman M R,Amasino R M,Young J C,et al.The Arabidopsis knockout facility at the University of Wisconsin Madison.Plant Physiol,2000,124:1465-1467
    121 Suzuki I.,Los D.A.,Kanesaki Y.,Mikami K.,and Murata N.The pathway for perception and transcription of low-temperature signals in Synechocystis.EMBO J.2000,19:1327-1334
    122 Tamminen I,Makela P,Heino P,Palva E T.Ectopic expression of AB13 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana.
    
    Plant J.2001,25:1-8
    123 Tanaka Y,Hibino T,Hayashi Y.Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in plasts.Plant Science,1999,148:131-138
    124 Tarczynski M C,Jensen R G,Bohnert H J.Stress protection of transgenic tobacco by production of the osmolytemannitol.Science.1993,259:508-510
    125 Thomas J C,Sepahi M,Arendall B.Enhancement of seed germination in high sality by engineering mannitol expression in Arabidopsis thaliana.Plant Cell and Enviroment.1995,18:801-806
    126 Thomashow M F.Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance.In:Meyrowitz Z,Somecille C,eds.Arabidopsis.New York:Cold Sprng Harbor Laboratory Press,1994,100-135
    127 Thomashow M.F.Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms.Annu.Rev.Plant Physiol.Plant Mol.Biol.1999,50:571-599
    128 Turk P D,Cress W A,Van Stdaden J et al.the vacuolar sorting domain of speramin transports GUS but not levansucrase to the plant vacuole.The New Phytologist.1997,136:29-38
    129 Urao T,Yakubov B,Satoh R,Yamaguchi-Shinozaki K,Seki M,Hirayama T,Shinozaki K.A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor.Plant Cell.1999,11(9):1743-54
    130 Urao T,Yamaguchi-Shinozaki K,Urao t,et al.AnArabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence.Plant Cell,1993,5(11):1529-1539
    131 Urao T.,Yamaguchi-Shinozaki K.,and Shinozaki K.Two-component systems in plant signal transduction.Trends Plant Sci.2000,5:67-74.
    132 Van Camp W.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide in chloroplasts.Plant Physiol,1996,112:1703-1711
    133 Velculescu V E,Zhang L,Vogelstein B,et al.Serial analysis of gene expression.Science.1995,270(5235):484-487
    134 Wiaman E,Ohlrogge J.Arabidopsis microarray service facilities.Plant physiol.2000,124(4):1468-1471
    135 Winicov I,Bastola DR.Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous,MSPRP2 gene in alfalfa and improves salinity tolerance of the plant.Plant Physiol.1999,120:473-480
    136 Xu D,Duan X,Wang B,Hong B,Ho T,Wu R.Expression of a Late Embryogenesis Abundant Protein Gene,HVA1,from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice.Plant Physiol 1996,110(1):249-257
    137 Yamaguchi-Shinozaki K,Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or hight-salt tress.Plant Cell,
    
    1994, 6(2):251-264
    138 Yamaguchi-Shinozaki K, Shinozaki K.Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Novartis Found Symp 2001,236:176-869
    139 Yang K.Y.,Liu Y.,and Zhang S.Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco.Proc.Natl.Acad.Sci.USA 2001,98:741-746.
    140 Yeo E T,Kwon H B,Han S E et al.Genetic engineering of drought resistant potato plants bu introduction of the trehalose-6-phosphate sythaseTPS1gene from saccharomyces cerevisiae..cerevisiae.Mol Cell.2000,10(3):263-268
    141 Zhang S,Klessig D.F.MAPK cascades in plant defense signaling.Trends Plant Sci.2001,6:520-527
    142 Zhang S,Klessig D.F.The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK.Proc.Natl.Acad.Sci. USA 1998,95:7225-7230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700