用户名: 密码: 验证码:
不同基因型作物水分—产量响应关系及生理生态学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物水分-产量响应关系及其生理生态学基础研究是生物节水理论的重要内容。本文在河北省农林科学院旱作农业研究所衡水试验站开展了冬小麦和夏玉米的试验,以研究和确立不同基因型作物水分-产量响应关系及其生理生态学基础。试验采用梯度控制作物不同生育期的灌水定额,通过定期观测不同基因型冬小麦和夏玉米的植株冠层与根系的分布特征、光合速率、蒸腾速率和气孔导度以及物质分配比例等生理生态指标,定性地分析作物水分-产量响应基因型差异的根源,定量地确立适合不同基因型的作物水分-产量响应关系及其参数,并模拟验证基于作物水分-产量响应函数的作物产量模型——Aquacrop模型。主要的研究结果如下:
     1、从全生育期来看,冬小麦的需水量、耗水量与作物系数在分蘖期和拔节期出现两个峰值。各生育阶段的日需水量和耗水量大小关系均为:拔节-孕穗期>扬花-灌浆期>返青期>苗期。品种间耗水量在拔节-孕穗期和扬花-灌浆期间也存在着显著差异,偃麦20在这两个生育期的日耗水量显著高于石家庄8号。
     2、各生育期冬小麦的营养器官花前贮藏同化物运转量、营养器官花前储存同化物的运转率以及花前贮藏同化物运转量对籽粒的贡献率均为中度亏水>轻度亏水>重度亏水。不同生育期中度和重度亏水均影响花前贮藏氮素和磷素向籽粒中的转移,而在返青-拔节期和灌浆后期轻度亏水有利于营养器官的氮素和磷素向籽粒中转移。
     3、不同基因型冬小麦的WUE以及各生育阶段的水分-产量响应系数不同。偃麦20在返青、拔节、扬花三个生育阶段的Ky值分别为0.25、0.51和0.30;石家庄8号在此三阶段的Ky值分别为0.26、0.57和0.36。由此可见,对于冬小麦各生育期来说,水分对产量的响应最强烈的阶段是拔节-孕穗期,其次是扬花-灌浆期,最弱的阶段是返青期。
     4、水分亏缺对玉米株高和叶面积指数的增长均有抑制作用,且其抑制程度随水分胁迫的强弱及玉米的不同生育期而变化。各生育阶段中拔节阶段的水分亏缺会显著地影响两基因型的最终株高值和叶面积指数。不同生育阶段水分处理对玉米干物质积累影响不同,其中拔节期生长速率最高,而且拔节期供水对干物质累积的效应最大。
     5、本研究中得出不同基因型夏玉米的水分产量响应系数:鲁单981在拔节、开花、灌浆三个生育阶段的Ky值分别为0.40、1.40和0.45。而郑单958在此三阶段的Ky值分别为0.34、1.20和0.64。水分对产量的响应最强烈的阶段是开花期,其次是灌浆期,最弱的阶段是拔节期。
     6、本研究引进AquaCrop模型的同时,阐述了模型的运行机理。并基于2008年夏玉米的水分池试验数据对模型中所用的参数进行了提取和调整,利用参数化的模型模拟了2008年大田夏玉米生长过程和作物生产力水平,并通过对2008年的大田实测数据与模拟结果进行比较,达到了一定的准确度,验证了模型的正确性。
Yield response to water and its ecophysiological mechanisms research of the crop are important study content of biological water saving theoretics. Field experiment was conducted in the station of the Institute of Dry Land Farming and Water-saving Agriculture, located in Hengshui, Heibei Province, from 2007 to 2008.The experiment’s aim is to research and establish the relationship of yield response to water of different genotypic crops and their ecophysiological mechanisms. In this study, different water grads were taken to control the irrigation norm during different growth durations. By regularly observing some ecophysiological indices, i.e. the distribution characteristics of crops’canopy and root system, photosynthetic rate, transpiration rate, stomatal conductance, and the proportion of physical distribution, the author qualitatively analyses the source of difference in yield response to water, and quantitatively establishes the relationship of yield response to water suitable for different genotypic crops. Finally, crop yield model, namely AquaCrop model, which was based on the function of yield response to water, is simulated and validated by the experimental data. Research results are as follows:
     1. During whole growth period, two peak values of water requirement, water consumption and crop coefficient of winter wheat shows in tillering and jointing stage. The orders of diurnal water requirement and diurnal water consumption in each growth phase both are jointing to booting stage>flowering to filing stage>turning-green stage. Water consumption has significant difference in jointing to booting and flowering to filing stage of different genotypes. Compared different genotypic winter wheat, the diurnal water consumption of YM20 is much higher than SJZ8 in these two growth stages.
     2. The translocation, translocation rate and kernel contribution rate of assimilates stored by winter wheat’s vegetative organ before anthesisin present the same rule: moderate deficit>light deficit>severe deficit. Bothe moderate deficit and severe deficit in different growth durations affect the nitrogen and phosphorus translocation before anthesisin, but in turning-green to jointing stage and after filling stag, moderate deficit benefits to translocation of nitrogen and phosphorus from vegetative organ to kernel.
     3. Differences appear in WUE and the response factors of yield to water between different genotypic winter wheat. Ky values of YM20 in turning-green, jointing and flowing stages are respectively 0.25, 0.51 and 0.30; Ky values of SJZ8 are 0.26, 0.57 and 0.36. It can be seen from these that the order of yield response to water is jointing to booting stage>flowering to filing stage> turning-green stage.
     4. Water deficit restrains the increase of plant height and leaf area index of maize, and the extent changes with the strong or weak of water stress and the growth period. The water deficit in jointing stage can significantly impacts the ultimate plant height and leaf area index. The influences of water treatment to the dry matter accumulation in different stages are diverse. Both the growth rate and the effect of water supply to dry matter accumulation in jointing stage are the most.
     5. The research educes yield response factors of different genotypic maize. Ky values of LD981 in jointing, flowing and filing stages are respectively 0.40, 1.40 and 0.45; Ky values of SZD 958 are 0.34, 1.20 and 0.64. The order of yield response to water is flowering stage>filing stage>jointing stage.
     6. This research introduces AquaCrop model and expatiates on its operational mechanism. After the parameters of model are distilled and adjusted, based on the data of maize water pool experiment in 2008, the growth process and crop productivity of field maize are simulated. And the verification and validation of model’s accuracy are achieved by compared simulated result with observed data.
引文
1.薄玉华.新疆棉花水分生产函数的试验研究.中国农村水利水电, 1992, (8): 15~18.
    2.陈亚新,于健.考虑缺水滞后效应的作物-水模型研究.水利学报, 1998(4): 70~74.
    3.陈亚新.非充分灌溉中作物——水模型的建模与识别,内蒙古农业大学学报(自然科学版), 1992, (2): 103~110.
    4.迟道才,王瑄,夏桂敏,张玉龙.北方水稻动态水分生产函数研究.农业工程学报, 2004, 20(3): 30~34.
    5.代久江,王永涛.农业减灾指南.北京:中国农业出版社, 1994.
    6.董雪娜,李世明,林银平,蒋昕晖,杨华.西北水资源特点及合理利用.西北水资源与工程, 2001, 112(1): 8~11.
    7.郭家选,梅旭荣,卢志光.冬小麦冠层温度及其影响因素初探,中国农业生态学报, 2003, 4: 24~26.
    8.何文寿.宁夏春小麦磷素利用效率的基因型差异研究.干旱地区农业研究, 2003, 21(2): 1~6.
    9.康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社, 1994.
    10.康绍忠.旱地土壤水分动态模拟的初步研究.中国农业气象, 1987, 8(2): 38~40.
    11.康绍忠.西北地区农业节水与水资源持续利用.北京:中国农业出版社, 1999, 1~20.
    12.李会昌.作物敏感指数与敏感系数的分析与研究.灌溉排水, 1990, (4): 7~14.
    13.李世娟,周殿玺,诸叶平,李建民,兰林旺.水分和氮肥运筹对小麦氮素吸收分配的影响.华北农学报, 2002, 17(1): 69~75.
    14.李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应.西北植物学报, 2000, 20(1): 22~28.
    15.刘静,李凤霞,王连喜,张晓煜,戴小笠,苏占胜.灌溉对春小麦蒸腾速率的影响及其生理原因.麦类作物学报, 2003, 23(1): 58-62.
    16.卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展.植物学通报, 1994, 11(增刊): 9-13.
    17.罗毅.作物-土壤系统模型Crops研究.中国科学院地理科学与资源研究所博士后研究工作报, 2000.
    18.峁智,崔远来,李新建.我国南方水稻水分生产函数试验研究.水利学报, 1994, (9): 21~31.
    19.峁智,崔远来,李远华.水稻水分生产函数及其时空变异理论与应用.北京:科学出版社, 2003.
    20.梅旭荣,罗远培.缺水与我国粮食生产;问题、潜力与对策,科技导报, 2000, 6: 331~334.
    21.梅旭荣,史长丽.我国农业用水态势与节水高效农业发展战略.节水高效农业理论与技术.北京:中国农业科学技术出版社, 2004, 3~8.
    22.梅旭荣等.节水农业在中国.北京:中国农业科学技术出版社, 2006, 11~13.
    23.孟兆江,贾大林,刘安能,庞鸿宾,王和洲,陈金平.调亏灌溉对冬小麦生理机制及水分利用效率的影响.农业工程学报, 2003, 19(4): 66~69.
    24.任春霞,商彦蕊,徐东瑞.国外节水农业研究与实践.河北农业科学, 2004, 8(1): 70~75.
    25.任鸿瑞,罗毅.鲁西北平原冬小麦和夏玉米耗水量的实验研究.灌溉排水学报, 2004, 23(4): 37-39.
    26.山仑,陈陪元.旱地农业生理生态基础.北京:科学出版社, 1998.
    27.山仑,邓西平,张岁岐.生物节水研究现状及展望.中国科学基金, 2006, 20(2): 66~71.
    28.山仑,康绍忠,吴普特.中国节水农业.北京:中国农业出版社, 2004.
    29.山仑,徐萌.节水农业及其生理生态基础.应用生态学报, 1991, 2(1): 70~76.
    30.山仑.旱地农业技术发展方向.中国农业科学, 2002, 35: 848~855.
    31.石元春.开拓中的蹊径:生物性节水.科技导报, 1999, 10: 3~5.
    32.孙振元,韩碧文,刘淑兰,王华芳,高荣孚.小麦籽粒充实期氮素的吸收和再分配及6-苯氨基嘌呤的调节作用.植物生理学报, 1996, 22(3): 258~264.
    33.王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响.应用生态学报, 2004, 15(8): 1339~1343.
    34.王美云,车步昆,赵明.关于玉米光舍作用与叶片水分利用效率关系的研究.作物学报, 1997, 23(3): 345~352.
    35.王修贵,张祖莲,赵长友.作物产量对水分亏缺敏感性指标的初步研究.灌溉排水, 1998, 17(2): 25~30.
    36.王仰仁,孙小平.山西农业节水理论与作物高效用水模式.北京:中国科学技术出版社, 2003.
    37.魏远莉.冬小麦水分生产函数建模方法研究. [博士学位论文].北京:清华大学, 2004.
    38.魏占民,陈亚新,史海滨. BP神经网络的作物-水模型的初步研究.灌溉排水, 2002, 21(2): 12~16.
    39.魏占民,陈亚新,史海滨.关于作物-水模型敏感指标意义的认识.灌溉排水, 2002, 6(21).
    40.魏占民,陈亚新,史海滨.控制灌溉定额试验处理的作物-水模型确认分析.见:水土工程专业委员会.农业水土工程学.呼和浩特:内蒙古教育出版社, 2001, 94~98.
    41.吴景社.世界水土资源的潜力与粮食人口问题.世界农业, 1994, 2: 6~8.
    42.肖俊夫,刘战东,段爱旺,刘祖贵,李晓东.不同灌水处理对冬小麦产量及水分利用效率的影响研究.灌溉排水学报, 2006, 25(2): 20~23.
    43.信乃诠,立祥.中国北方旱区农业.江苏:江苏科学技术出版社, 1998.
    44.信乃诠.中国北方旱区农业研究.北京:中国农业出版社, 2002.
    45.许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响.干旱地区农业研究, 2004, 22(4): 75~79.
    46.许振柱,于振文,李辉等.限量灌水对冬小麦光合性能和水分利用的影响.华北农学报, 1997, 12(2): 65-70.
    47.许振柱,于振文,亓新华,余松烈.土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响.植物生理学报, 1995, 21(3): 295~301.
    48.许振柱,于振文.限量灌溉对冬小麦水分利用的影响.干旱地区农业研究, 2003, 21(1): 6~10.
    49.杨晓亚,于振文,许振柱.灌溉量和灌水时期对小麦耗水特性和氮素积累分配的影响.生态学报, 2009, 29(2): 846~853.
    50.张瑞美,彭世彰,徐俊增,吴宏霞.作物水分亏缺诊断研究进展.干旱地区农业研究, 2006, 3: 5-10.
    51.张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响.灌溉排水学报, 2003, 22(2): 1~4.
    52.赵辉,戴廷波,姜东,荆奇,卫星.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报, 2007, 18(2): 333~338.
    53.赵聚宝,徐祝龄,钟兆站,毛学森.中国北方旱地农田水分平衡.北京:中国农业出版社, 2000.
    54.郑成岩,于振文,马兴华,王西芝,白洪立.高产小麦耗水特性及干物质的积累与分配.作物学报, 2008, 34(8): 1450~1458.
    55. Aggarwal P. K., N. Kalra. Analyzing the limitations set by climatic factors, genotype, water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Research, 1994, 38: 93~103.
    56. Akhter J., K. Mahmood1, M. A. Tasneem, M. H. Naqvi1, K. A. Malik. Comparative water-use efficiency of Sporobolus arabicus and Leptochloa fusca and its relation with carbon-isotope discrimination under semi-arid conditions. Plant and Soil, 2003, 249(2): 263~269.
    57. Allen R. G. Operational estimates of reference evapotranspiration. J. Agron., 1989, 81: 650~662.
    58. Allen R. G., M. Smith, L. S. Pererea. An update for the calculation of reference evapotranspiration. ICII Bull, 1994, 43(2): 35~92.
    59. Arkley R. J. Relationship between Plant growth and transpiration. Hilgardia, 1963, 34: 559~584.
    60. Baker D. N., J. D. Hesketh, W. G. Duncan. Simulation of growth and yield in cotton, I. Gross photosynthesis, respiration, and growth. Crop Science, 1972, 12: 431~435.
    61. Banedjschafie S., S. P. Widmoser, K. Mengel. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat. European Journal of Agronomy, 2008, 28(1): 1~7.
    62. Becker M., D. E. Johnson, M. C. S. Wopereis, A. Sow. Rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa. Journal of Plant Nutrition Soil Science, 2003, 166: 61~67.
    63. Berkhout J. J. A. Quantification of agroecological characterization. In: Bunting A. H. Agricultural environments, characterization, Classification and Mapping. International Wallingford, 1987, 185~197.
    64. Blank H. Optimal irrigation decisions with limited water. [Ph. D. Thesis], DePartment of Civil Engineering, Colorado State University, Fort Collins, CO, 1975.
    65. Bouma J., A. K. Bregt. Land qualities in space and time. Wageningen: Netherlands Pudoc, 1989.
    66. Burgess S. O., M. A. Adams, N. C. Turner. The redistribution of soil water by tree root systems. Oecologia, 1998, 115: 306~311.
    67. Burkey K. O. Genetic variation of photosynthetic electron transport in barley: identification of plastocyanin as a potential limiting factor. Plant Science, 1994, 98(2): l77~l 87.
    68. Cakir R. Effect of water stress at different development stages on vegetative and reproductivegrowth of corn. Field Crops Research, 2004, 89(1): 1~16.
    69. Caldwell M. M., T. E. Dawson, J. H. Richards. Hydraulic lift: consequence of water efflux from the roots of plants. Oecologia, 1998, 113: 151~161.
    70. Caldwell M., J. H. Richards. Hydraulic lift: Water efflux from upper roots improves effectiveness of water up-take by deep roots. Oecologia, 1989, 79: 1~5.
    71. Campbell B. T., P. J. Bauer. Genetic variation for yield and fiber quality response to supplemental irrigation within the Pee Dee Upland Cotton Germplasm Collection. Crop Science, 2007, 47: 591~599.
    72. Chen L. H., G. K. Huang, W. E. Splinter. Developing a physical-chemical model for a plant growth system. ASAE Trans, 1969, 12: 698~702.
    73. Chen Y. X., Z. M. Wei, H. B. Shi, Z. Y. Qu. Simulative Study on Models of Crop Response to Water for High-efficient Water-Saving Irrigation. Session 2: Sustainable Agriculture. Promoting G1obal Innovation of Agricultural Science & Technology.
    74. Childs S. W., J. R. Gilley, W. E. Splinter. A simplified model of corn growth under moisture stress. Trans Am Soc Agric Eng, 1977, 20: 858~865.
    75. Choudhury B. U., B. A. M. Bouman, A. K. Singh. Yield and water productivity of rice-wheat on raised beds at New Delhi, India. Field Crops Research, 2007, 100(2-3): 229~239.
    76. Curry R. B. Dynamic simulation of plant growth, I. Development of a model. ASAE Trans, 1971, 14(5): 946~959.
    77. Curry R. B., L. H.Chen. Dynamic simulation of plant growth, II. Incorporation of actual daily weather and partitioning of net photosynthetic. ASAE Trans, 1971, 14: 1170~1175.
    78. Dagdelen N., E. Y?lmaz, F. Sezgin, T. Gurbuz. Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agricultural Water Management, 2006, 82(1-2): 63~85.
    79. Dawson T. E. Hydraulic lift, water use by plants: implications for water balance, performance, and plant-plant interactions. Oecologia, 1993, 95: 565~574.
    80. De Wit C. T. Dynamic concepts in biology. In: Prediction and Management of Photosynthetic Productivity. Proceedings International Biological Program/Plant Production Technical Meeting. Wageningen: Netherlands PUDOC, 1970, 17~23.
    81. De Wit C. T. Photosynthesis of leaf canopies. Wageningen, Netherlands: Inst Biol Chem Res Field Crops Herb. Agric Res Rep, 1965, 663.
    82. Donald E., R. H. Hawkins, R. Y. Jiang. Runoff curve number method: examination of the initial abstraction. TRB 2004 Annual Meeting CD-ROM, 2004.
    83. Doorenbos J., A. H. Kassam. Yield response to water. FAO Irrigation and Drainage Paper. No.33. Rome: Food and Agrieulture Organization of the United Nations, 1979.
    84. Downey L.A. Water-yield relations for nonforage crops. J. Irrig. Drain. Div. ASCE(J), 1972, 98(IRI): 107~115.
    85. Duncan W. G., J. D. Hesketh. Net photosynthetic rates, relative leaf growth rates, and leaf numbersof 22 races of maize grown at eight temperatures. Crop Science, 1968, 8: 670~674.
    86. Erdem Y., A. N. Yuksel. Yield response of watermelon to irrigation shortage. Scientia Horticulturae, 2003, 98(4): 365~383.
    87. FAO. Report on the agroecological zones project, I. Methodology and results for African. World resource Report 48. FAO, 1978.
    88. Farahani H. J., I. Gabriella, Y. O. Theib. Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton. J. Agron., 2009, 101: 469~476.
    89. Ferreira T. C., D. A. Goncalves. Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate. Agricultural Water Management, 2007, 90(1-2): 45~55.
    90. Fischer R. A. Irrigated spring wheat and timing and amount of nitrogen fertilizer. II: Physiology of grain yield response. Field Crops Research, 1993, 33(1-2): 57~80.
    91. Garcia M., D. Raes, S-E. Jacobsenc. Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management, 2003, 60(2): 119~134.
    92. Geerts S., D. Raes, M. Garcia. Calibration of the FAO-AquaCrop Model for the Under-Utilized Crop Quinoa (Chenopodium quinoa Willd.) ASA-CSSA-SSSA. International Annual Meetings, 2007.
    93. Gencoglan C., H. Altunbey, S. Gencoglan. Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation. Agricultural Water Management, 2006, 84(3): 274~280.
    94. Guitman M. R., R. A. Arnozis, A. J. Barneix. Effect of souce-sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat. Physiologia Plantarum, 1991, 82(2): 278~284.
    95. Haiso T. C. Limits to crop productivity imposed by water deficits. In Abstract of the Internatonal Congress of Plant Physology. New Delhi, 1988, 2, 127~136.
    96. Hall A. E. Physiological ecology of crop in relation to light, water, and temperature. In: Carroll C. R., J. H. Vandermeer, R. P. Agroeeology. New York: M C Graw Hill Publishing company, 1990: 191~233.
    97. Hanks R. J. Model for predicting plant yield as influenced by water use. J. Agron., 1974, 66: 660~655.
    98. Heng L. K., T. C. Hsiao, P. Steduto. Validating the FAO AquaCrop Model on Fully Irrigated and Water Deficient Maize and Soybean. 2008.
    99. Hi1er E. A., R. N. Clark. Stress day index to characterize effects of water stress on crop yields. Trans. ASAE, 1971, 14(4): 757~761.
    100. Hijmans R. J., I. M. Guiking-lens, C. A. Van Diepen. WOFOST, user guide for the WOFOST6.0 crop growth simulation model. Wageningen: Technical document, DLO Winand Staring Centre, 1994, 145.
    101. Hirel B., B. Andrieu, M-H. Valadier, S. Renard, I. Quillere, M. Chelle, B. Pommel, C. Fournier, J-L. Drouet. Physiology of maize II: Identification of physiological marker representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiologia Plantarum, 2005, 124(2): 178~188.
    102. Horton J. L., S. C. Hart. Hydraulic lift: a potentially important ecosystem process. Trends in Ecol. & Evol., 1998, 13: 232~235.
    103. Jame Y. W., H. W. Cutforth. Crop growth models for decision support systems. Can. J. Plant Sci., 1996, 76: 9~19.
    104. Jensen M. E. Water consumption by agricultural plants. In: Kozlowski T. Water deficits and Plants Growth, 1968, 2: 1~22.
    105. Jones C. A., J. R. Kiniry. CERES-Maize: A Simulation model of maize growth and development. College station. US: Texas A&M Univ. Press, 1986.
    106. Kang S. Z., L. Zhang, Y. L. Liang, X. T. Hu, H. J. Cai, B. J. Gu. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agricultural Water Management, 2002, 55(3): 203~216.
    107. Kipkorir E. C., D. Raesa, B. Massawe. Seasonal water production functions and yield response factors for maize and onion in Perkerra, Kenya. Agricultural Water Management, 2002, 56(3): 229~240.
    108. Kipkorir E. C., D. Raesa. Transformation of yield response factor into Jensen’s sensitivity index. Irrigation and Drainage Systems, 2002, 16(1): 47~52.
    109. Levitt T. Response of Plants to environmental stress. Water, radiation, Salt and other stresses. New York: Academic Press, 1980, 325~358.
    110. Liu F., S. Savic, C. R. Jensen, A. Shahnazari, S. E. Jacobsen, R. Stikic, M. N. Andersen. Water relations and yield of lysimeter-grown strawberries under limited irrigation. Scientia Horticulturae, 2007, 111(2): 128~132.
    111. Liu W. Z., D. J. Hunsaker, Y. S. Li, X. Q. Xie, G. W. Wall. Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions. Agricultural Water Management, 2002, 56(2): 143~151.
    112. Mandal U. K., U. S. Victor, N. N. Srivastava, K. L. Sharma, V. Ramesh, M. Vanaja, G. R. Korwar, Y. S. Ramakrishna. Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol. Agricultural water management, 2007, 87(3): 315~327.
    113. Minhas B. S., K. S. Parikh, T. N. Srinivasan. Towards the structure of a production function for wheat yields with dated in Puts of irrigation water. Water Resource Research, 1974, 10(3): 383~393.
    114. Mooney H. A. Further observation on the water relations of Prosop is tamarugo of the Northern Atacama Desert. Oecologia, 1980, 44: 177~180.
    115. Palta J. A., T. Kobata, N. C. Turner, I. R. Fillery. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Science, 1994, 34: 118~124.
    116. Penning de vries F. W. T., D. M. Jansen. Simulation of ecophysiological processes of growth in several annual crops. In: Penning de Vries F. W. T., H. H. Van Laar. Simulation Monographs. Wageningen: Netherlands PUDOC, 1989.
    117. Penning de Vries F. W. T., H. H. Van Laar. Simulation of plant growth and crop production. In: Penning de Vries F. W. T., H. H. Van Laar. Simulation Monographs. Wageningen: Netherlands PUDOC, 1989, 114~136.
    118. Philip J. R. Evaporation, moisture and heat fields in the soil. J. Meteorol. 1957, 14: 354~366.
    119. Pinnschmidt H. O., V. Chamarek, N. Cabulisan, E. Dela Pena, N. D. Long, S. Savary, H. W. Klein-Gebbinck, P. S. Teng. Yield gap analysis of rained lowland systems to guide rice crop and pest management. In: Kropff M. J., P. S. Teng, P. K. Aggarwal, J. Bouma, B. A. Bouman, M. J. W. Jones, H. H. Van Laar. Application of systems approaches at the field level. Systems Approaches for Sustainable Agricultural Development. Kluwer Acad. Publ., Dordrecht, the Netherlands, 1997, 2: 321~338.
    120. Raes D., P. Steduto, T. C. Hsiao, E. Fereres. AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. 2008.
    121. Raes D., S. Geerts, E. Kipkorir, J. Wellens, A. Sahli. Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management, 2006, 81(3): 335~357.
    122. Rallison R. E., R. G. Cronshey. Discussion of runoff curve numbers with varying site moisture. Journal of the Irrigational Drainage Division, 1979, 105: 439~441.
    123. Rao N. H., P. B. S. Sarma, C. Subhash. A simple dated production function for use in irrigated agriculture. Agriculture Water Management., 1988, 13: 25~32.
    124. Rappoldt C. Crop growths simulation model documental version3.0. Centre for World Food studies. Wageningen. Aprail, 1986.
    125. Richards J. H., M. Caldwell. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentate roots. Oecologia, 1987, 73: 486~489.
    126. Ritchie J. T. IBSNAT and CERES-Rice model. Weather and rice, IRRI, 1987, 271~282.
    127. Ritchie J. T., S. Other. Description and performance of CERES-Wheat: a user- Oriented wheat yield model. Willis W O. ARS wheat yield project. US: USEA-ARS, ARS-38, 1985, 159~175.
    128. Ritchie J. T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972, 8(5): 1204~1213.
    129. Schulze E. D., M. M. Caldwell, J. Canadell. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sand. Oecologia, 1998, 115: 460~462.
    130. Serrano L., X. Carbonell, R. Savé, O. Marfà, J. Pef?uelas. Effects of irrigation regimes on the yield and water use of strawberry. Irrigation Science, 1992, 13(1): 45~48.
    131. Sezen M. S., A. Yazar. Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey. Agricultural Water Management, 2006, 81(1-2): 59~76.
    132. Shepherd A., S. M. McGinn, G. C. L. Wyseure. Simulation of the effect of water shortage on theyields of winter wheat in North-East England. Ecological Modelling, 2002, 147(1): 41~52.
    133. Smith D. M., N. A. Jackson, J. M. Roberts. Reverse flow of sap in tree roots and downward siphoning of water by Goreville Robusta. Functional Ecology, 1999, 13: 256~264.
    134. Sobhani G. Are view of possible watershed design methods for possible adoption to Iranian conditions. Utah: Utah State University, 1976.
    135. Splinter W. E. Modeling of plant growth for yield prediction. Agricultural Meteorology, 1974, 14: 243~253.
    136. Stapleton H. N., R. P. Meyers. Modeling subsystems for cotton-the cotton plant simulation. Transactions of the ASAE, 1971, 14(5): 950~953.
    137. Steduto P., T. C. Hsiao, D. Raes, E. Fereres. AquaCrop-The FAO Crop Model to Predict Yield Response to Water, I. 2008.
    138. Steduto P., T. C. Hsiao, E. Fereres, D. Raes, L. Heng. AquaCrop-FAO’s crop water productivity model. Expo Zaragoaz, June, 2008.
    139. Stewart J. I., R. M. Hagan, W. O. Pruitt. Production function sand predicted irrigation programs for Principal crops as required for water resources planning and increased water use efficiency. Final Report, U.S. Department of Interior. Washington D. C., 1976, 80.
    140. Stewart J. I., R. M. Hagan. Functions to predict effects of crop water deficits. J. lrrig. Drain. Div., 1973, 99(4): 421~439.
    141. Turner N. C. Drought resistance and adaptation to water deficits in crop Plant. New York: John wiley and Sons, 1979, 343~372.
    142. University of Cordoba. Research on sustainable irrigation (including advanced modelling on irrigation scheduling), including deficit irrigation. NOSTRUM-DSS & INECO JOINT EVENT“IWRM through coordination, dissemination, and exploitation of research outcomes”. 2007.
    143. Unlu M., R. Kanber, U. Senyigit, H. Onaran, K. Diker. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey. Agricultural Water Management, 2006, 79(1): 43~71.
    144. USDA-SCS. National Engineering Handbook, Section 4-Hydrology. Washington D C: U. S. Department of Agriculture, Soil Conservation Service, 1985.
    145. Van Keulen H. Simulation of water use and herbage growth in arid regions. In: Penning de Vries F. W. T., H. H. Van Laar. Simulation Monographs. Wageningen: Netherlands PUDOC, 1982, 176.
    146. Van Keulen H. Bioeconomic capability of west-African dryland. CABO-DLO research report, 1991, 102.
    147. Vaux H. J., Pruitt W. O. Crop-water production functions. In: Hillel D. Advances in Irrigation. NewYork: Academic Press, 1983, 61~97.
    148. Xu Y. L. A Preliminary Analysis on the Climate Change Responses of PRECIS Scenario Simulation. Internal document of Britain Hadely center. 2001.
    149. Yang J. C., J. H. Zhang, Z. L. Huang, Q. S. Zhu, L. Wang. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci, 2000, 40: 1645~1655.
    150. Zhao W. Z., G. D. Cheng. Review of several problems on the study of eco-hydrological process in arid zones. Chin. Sci. Bull., 2002, 47: 353~360.
    151. Zornitsa P., E. Stoianka, S. L. Pereira. Model validation, crop coefficients and yield response factors for maize irrigation scheduling based on long-term experiments. Biosystems Engineering, 2006, 95(1): 139~149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700