用户名: 密码: 验证码:
辊材堆焊锤击消除应力机理及随焊锤击系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧辊作为轧机的关键部件,在轧钢过程中消耗量极大。堆焊技术近年来在轧辊修复中得到广泛应用。经过堆焊修复的轧辊具有寿命长、使用效果好等特点,可使废旧轧辊重新利用,节约生产成本。但是堆焊产生的残余应力严重影响了修复轧辊的使用性能,使轧辊易产生剥落、裂纹等失效形式。随焊锤击工艺可以有效消除修复轧辊中的残余应力,提高轧辊表面疲劳强度,减少轧辊表面冷硬层材质不均匀和微型缺陷,从而提高修复轧辊的使用性能。
     电磁锤装置是实现随焊锤击工艺的关键部件,分参数检测模块、锤击参数控制电路、执行机构等三个部分。
     选用两种不同焊丝和堆焊试件进行试验,采用小孔法测量残余应力。首先,通过单因素试验分析了锤击力、锤击温度、锤击频率和锤头面积对残余应力的影响;其次,通过光学显微镜和扫描电镜对未锤击试件和锤击试件的显微组织进行分析和对比;利用正交试验法对随焊锤击工艺参数进行优化;最后,采用最优锤击参数,针对轧辊材料进行随焊锤击试验。
     研究工作及结论如下:(1)研制了针对轧辊堆焊的电磁式随焊锤击系统,试验表明运行良好。(2)经过不同规范的锤击处理,焊缝及附近的残余应力得到了不同程度的降低,在焊缝处应力降低的幅值最大,距离焊缝越远,应力降低的幅值越小。(3)焊缝金相组织分析表明:锤击处理可以细化晶粒,增加焊缝的强韧性,提高焊缝的硬度。(4)通过正交试验的极差分析得出了电磁锤随焊锤击工艺的最优方案;通过多元一次回归分析得出了残余应力与锤击参数之间的数学模型。(5)针对轧辊材料的随焊锤击试验表明,随焊锤击工艺可显著降低堆焊焊道的残余应力,改善其金相组织。
As a key part of mill, roll has been consumpted significantly in the process of rolling. Surfacing welding technology has been widely used to repair roll in recent years. The roll has a long life and more effective characteristics after repair, so that through the repair of used roller, saving the cost of production. But the welding residual stress had made a serious impact on the performance of repaired roll, the form of failures include spalling and crack. The craft of weling with trailing peening can improve the performance of roll repairing by: effectively eliminate the existence of residual stress in roll, improve fatigue strength of roll surface chilled layer and reduce non-uniform and micro-defects in the material of roll surface chilled layer.
     Electromagnetic hammer device is the key component which to achieve with hammering, including parameter detection module, hammering parameters control circuit, implementation part.
     Different welding wire and specimen are selected in the test, orifice method is adopted to measure stress value. First of all, single factor analysis of hammering force, hammering temperature, hammering frequency and size of hammer on the impact of residual stress; followed by Microstructure analysis and comparison of test samples by optical microscope and scanning electron microscopy; Finally, the use of orthogonal test to the welding with trailing peening process parameters were optimized.
     Through the test concluded that: (1) Electromagnetic trailing peening system for welding roll is developed, experiments show that a good run. (2) In the different norms to deal with the hammer, the weld residual stress has been reduced to varying degrees, the largest amplitude is found on welding seam, the farther away from welding seam, to reduce the stress of the smaller amplitude. (3) From the weld structure can be seen: hammer can be refined grains and increase the weld strength of the weld and to improve hardness. (4) Through range analysis of orthogonal test The optimal program of welding with trailing peening process is obtained; through a multiple regression analysis to verify that resulted in residual stress and a mathematical model is built between residual stress and peening parameters. (5) The test with the optimal program on the material of roll concluded that welding with trailing peening process can be essential to reduce the surfacing weld residual stress significantly and improve its microstructure.
引文
[1]曹勇.应用现代强度理论分析轧辊的失效问题[D].河北:燕山大学机诫工程学院,2001.
    [2]刘以宽,汪光然,严加高.轧辊失效分析[J].轧钢,1993,(1):30-34.
    [3] Judd R R. Surface Deterioration of Grat in Iron Work Rolls In the First Stand of Hot Strip Mill Finishing Train[J].Iron and Steel Engineering, 1979(1).
    [4]王斯谷.φ610mm×1700mm冷轧辊断裂分析[J].湖南冶金,1995(5):21-23.
    [5]邹鸿承,戴蜀娟,娄彦良等.φ660粗轧机工作辊断裂失效分析[J].华中理工大学学报,1999(4):93-98.
    [6]倪庆知.冷轧工作辊表面剥落分析[J].大型铸锻件,1982(4):129-132.
    [7]徐嘉鹏.170冷轧机轧辊断裂分析[J].理化检验-物理分册,1993(29):43-44.
    [8]邹家祥.轧钢机现代设计理论[M].北京:冶余工业出版杜,1991.
    [9]任登义,魏星,王育福.铸铁轧辊轴颈磨损修复工艺设计[J].焊接技术,1998(1):18-19.
    [10]王贤敏.590轧辊开裂及热处理工艺的探讨[J]:金属热处理,1996(7):26-27.
    [11]廖乾初,崔佩慵.研究热轧轧辊磨损过程的模拟实验及其扫描电镜原位观察技术[J].钢铁,1990,25(9):46-50.
    [12] Sauer W.Thermal camber model for hot and cold rolling[J].Steel Research,1996,67(1):18-21.
    [13]孔祥伟,史静,徐建忠,等.热带钢轧机轧辊磨损预测[J].东北大学学报(自然科学版),2002,23(8):790-792.
    [14]肖刚,胡秋.轧辊磨损及其预报[J].润滑与密封,2002(5):60-62.
    [15]刘成俊,范培根.熔融堆焊修复板坯连铸辊[J].重庆工业高等专科学校学报,2001,16(2):44-45.
    [16]宋阳,朱世根,渠彬等.轧辊表面修复与强化的技术途径[J].机械设计与制造,2005,(8):113.
    [17]专家访谈,董祖钰教授级高工谈堆焊技术的发展[J].中国表面工程,2005,18(3):50.
    [18]丁洁,申茜辉.轧辊堆焊工艺[J].焊接技术,2005,34(2):64.
    [19]汪选国,武永宇.45Cr4NiMoV轧辊堆焊焊条堆焊工艺及性能研究[J].武汉理工大学学报(交通科学与工程版),2006,30(2):272.
    [20]聂斌英.热轧工作辊堆焊修复选材与工艺[J].机械工程材料,2004,28(7):43.
    [21]张正华,陈冰泉,黄永溪等.Cr3轧辊局部堆焊修复工艺研究[J].电焊机,2007,37(8):35-38.
    [22]王银军,王孝建,董汉君等.轧辊短流程堆焊修复工艺的实践[J].中国设备工程,2007(4):23-35.
    [23]倪振航,唐新,夏杨.热轧槽钢轧辊堆焊修复技术的研究[J].安徽冶金科技职业学院学报,2006,16(增刊):28-30.
    [24]霍立兴.焊接结构工程强度[M].北京:机械工业出版社,1995.
    [25]霍立兴.焊接结构的断裂行为[M].北京:机械工业出版社,2000.
    [26]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [27] Maddox S J, Improving the Fatigue Strength of Welded Joints by Peening[J].Metal Construction,April,1985.
    [28]颜海涛.电磁锤随焊锤击对焊接应力及显微组织的影响[D].河北:河北农业大学机电工程学院,2006.
    [29]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报,2000,21(2):55-58.
    [30]王严岩.锤击处理消除焊接接头残余应力的研究[C].第七届全国焊接学术会议论文集,第五册,1993,50-54.
    [31]任登义,魏星.铸铁冷焊锤击力的测定及锤击效果的分析[J].焊接,1998(l):12-15.
    [32] Xu wenli,Fan Chenglei,Fan Hongyuan et al. New development in welding thin-shin aluminum alloy structures with high strength [J]. China Welding,2004,13(1):27-30.
    [33]王新洪.白口铸铁焊补应力场的数值模拟[D].济南:山东工业大学,1997.
    [34]刘雪松,徐文立,方洪渊.钛合金薄板焊接应力的随焊锤击控制[J].焊接学报,2004,25(2):84-86.
    [35]邹增大.锤击处理消除白口铸铁焊接残余应力的数值分析[J].山东工业大学学报,1999,29(3):201-205.
    [36]邹增大,王新洪,曲仕尧.锤击消除焊接接头残余应力的数值模拟[J].中国机械工程1999,10(4):466-468.
    [37] Morris J L. Extent of peening weld deposits for stress relief [J].Welding Journal,1948:148-158.
    [38] Harrison J D. Further techniques for improving the fatigue strength of welded joints [J].British Welding Journal,1966,(11):642-647.
    [39]任登义,张元彬,邹增大.局部冷焊锤击力的测定及锤击效果探讨[J].机械工程学报,1999(6):66-69.
    [40] Maddox S J. Fatigue of steel welds hammer peened under load [J].Welding in the World,1998,41(4):243-349.
    [41] LE Kopsov. The influence of hammer peening on fatigue in high-strength Steel [J].Welding Journa1,1991,13(6):479-482.
    [42] R.Bell,D,V Militaru. Effect of peening and grinding on the fatigue strength of fillet welded joints [J].British Welding Jouma1,1969,3(3):13 -21.
    [43] J.W Knight. Improving the fatigue strength of fillet welded joints by grinding and peening [J].Welding Research Intemational,1978,8(6):519-539.
    [44]夏王旭.锤击法提高焊接接头疲劳强度新技术途径探讨[J].焊接,1991(12):2-6.
    [45]夏首秦.锤击强化对焊缝焊趾疲劳强度的影响[J].汽车研究与开发,1996,(2):40-45.
    [46]宋建明.宝钢板坯连铸导辊的带极堆焊[J].冶金设备,1998,(5):43-45.
    [47] Garmo E P,Jonassen F,Meriarn J L. The effect of peening upon residual welding stress [J].Welding Journal,1946 , 25(10) :616-623.
    [48] Calaari P L,Crum F J,Place G W. An investigation on peening [J]. Welding Journal,1953,32(8):387-402.
    [49]张建华,郝建军,马跃进.铸铁焊补工艺[J].工程机械与维修,2001(7):96-97.
    [50]李臻,郑修麟.经锤击后的16Mn钢对焊件的疲劳寿命估算[J].焊接学报,1997,18(3):151-158.
    [51]苏彦江,林德深,余传禧.锤击处理延长焊接接头疲劳寿命的研究[J].兰州铁道学院学报(自然科学版),2000,19(3):28-30.
    [52]任登义,邹增大,张元彬.钢轧辊局部冷焊实用工艺设计与分析[J].焊接技术,1998(3):13-14.
    [53]徐文立,黎明,刘雪松等.动态低应力小变形无热裂随焊锤击焊接技术研究[J].材料科学与工艺,2001,9(1):6-10.
    [54] Xu wenli,Tian xitang,Liu xuesong et al. A new method for welding aluminum alloy LY12CZ sheet with high strength [J].China Welding,2001,10(2):129-134.
    [55]徐文立,田锡唐,刘雪松.随焊锤击对LY12CZ焊接接头显微组织的影响[J].哈尔滨工业大学学报,2001,33(4):442-446.
    [56]徐文立,李世萍,郭绍庆等.动态低应力小变形无热裂焊接方法的研究[J].哈尔滨工业大学学报,2002,34(3):297-301.
    [57]徐文立,代宝昌,方洪渊等.随焊锤击对LY12CZ焊接接头疲劳性能的影响[C].第三届中国北方焊接学术会议论文集,2002.
    [58]徐文立,代宝昌,刘雪松等.随焊锤击对高强铝合金焊接接头应变分布的影响[J].焊接学报,2003,24(2):27-30.
    [59]徐文立.随焊锤击控制铝合金薄板焊接应力变形及接头质量的研究[D].哈尔滨:哈尔滨工业大学,2001.
    [60]方洪渊,董志波,徐文立.随焊锤击防止薄板焊接热裂纹的工艺研究[J].焊接,2002(3):17-20.
    [61]张伏.随焊锤击设备及工艺研究[D].保定:河北农业大学,2004.
    [62]张正原,胡娓.电磁阀设计中电磁力自动计算方法[J].现代机械,2001,(3):20-23.
    [63]陈炳和.计算机控制系统基础[M].北京:北京航空航天大学出版社,2001.
    [64]余永权.ATMEL89系列单片机应用技术[M].北京:北京航空航天大学出版社,2004:229-234.
    [65]余永权,李小青,陈林康.单片机应用系统的功率接口技术[M].北京:北京航空航天大学出版社,1992:30-31.
    [66]何立民.MCS-51系列单片机应用系统设计系统配置与接口技术[M].北京:北京航空航天大学出版社,1999:354-355.
    [67]马家辰,孙玉德,张颖. MCS-51单片机原理及接口技术[M].辽宁:哈尔滨工业大学出版社,2003:239-241.
    [68]张有德,赵志英,涂时亮.单片微型机原理、应用与实验[M].上海:复旦大学出版社,1999:214-215.
    [69]李宏.电力电子设备用器件用集成电路应用指南[M].北京:机械工业出版社,2001:450-506.
    [70]陈历明,田学隆,肖守中等.运动员心音信号遥测系统的USB接口解决方案[J].医疗卫生装备,2004(2):14-15.
    [71] EZ-USB Technical Reference Manual,Version 1.9 [M].Cypress Semiconductor Corporation,2000.
    [72] EZ-USB Series 2100 Getting Started Development Kit [M]. Cypress Semiconductor Corporation,2001.
    [73]南京沁恒电子有限公司.USB总线接口芯片CH372中文手册[M].http://wch.cn.2005,12.
    [74]李华.MCS-51系列单片机实用接口技术[M].北京:北京航空航天大学出版社,2004,14-15.
    [75]宫严.双自由度双余度步进电机驱动控制系统[D].西安:西北工业大学,2003.
    [76] S.J.Bailey. Lessening the Gap Between Incremental and Continuous motion Control [J].Control Engineering,Feb 1987:72-76.
    [77] Haag S,Cmmings M,Dawkins J.Management Information Systems for the Information Age [M].Columbus:Mc Graw-Hill Companies,Inc,1998.
    [78]雷升印,周元志.X5045芯片在单片机系统中应用的研究[J].武汉理工大学学报,2003,25(3):28-31.
    [79]刘红玲,秦敬辉.X5043/X5045及其应用[J].彭城职业大学学报,2003,18(2):18-22.
    [80]姜伟光,郝磊.X5045电路及其应用[M].国外电子元器件,2002,5.
    [81]白明.井下监控分站单片机系统的抗干扰技术[J].煤矿安全,2003,34(10):28-29.
    [82]罗乾显,赵红,潘建国.霍尔互感器在电力电子技术中的巧妙应用[J].基础自动化,1997(5):63-64.
    [83]林国荣,张友德.电磁干扰及控制[M].北京:电子工业出版社,2003:33-42.
    [84]刘光斌.单片机实用抗干扰技术[M].北京:人民邮电出版社,2003.
    [85]张友德,赵志英,涂时亮.单片微型机原理、应用与实验[M].上海:复旦大学出版社,1995:235-239.
    [86]闫玉德,俞虹.MCS-51单片机原理与应用(C语言版)[M].北京:机械工业出版社,2003.
    [87]赵晓顺.基于USB接口的智能温湿度检测仪的研制[D].河北:河北农业大学机电工程学院,2006.
    [88]宋其新,舒丹.单片机软件抗干扰技术[J].矿业研究与开发,1996,16(3):54-56.
    [89]张萱.单片机软件抗干扰技术的探讨[J].浙江万里学院学报,2003,16(2):93-96.
    [90]谢小辉,崔长利.“看门狗”技术在单片机系统抗干扰设计中的应用[J].电测与仪表,1996:6-8.
    [91]高能,艾红.单片机抗干扰技术[J].辽宁师专学报,2000,3(1):32-35.
    [92]达争尚,何俊华,孟凡文等.实时控制系统的单片机抗干扰设计[J].测控技术,2003,22(6):66-68.
    [93]焦馥杰.焊接结构分析基础[M].上海:上海科学技术出版社,1989.
    [94]王维容.关于焊接残余应力测试方法的研究[J].焊接学报,1989,10(3):181-187.
    [95]姜光伟,李燕强.焊接应力的形成与消除[J].中国科技信息,2005, (16):162.
    [96]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1985.
    [97]束德林.金属力学性能[M].北京:机械工业出版社,1994.
    [98]李炯辉.钢铁材料金相图谱[M].上海:上海科学技术出版社,1981.
    [99]吕德林.焊接金相分析[M].北京:机械工业出版社,1987.
    [100]赵振东.焊后热处理对2.25Cr-1Mo钢堆焊处显微组织及剥离开裂的影响[J].国外金属热处理,1999(1):20-24.
    [101] Veprek S,The search for novel,superhard materials [J].J.Vac.Sci.Technol.A 1999,17(5):2401-2420.
    [102]吴会强,冯吉才,何景山等.焊接工艺对高铌Ti3Al合金电子束焊接接头显微组织和显微硬度的影响[J].中国有色金属学报,2004,14(8):1313-1317.
    [103]黄开志.显微硬度工作基准装置测量不确定度评定[J].宇航计测技术,2004,4(4):28-32.
    [104]束倩茜,戴嘉维.硬质薄膜显微硬度测量中的载荷选择[J].电子显微学报,2002,21(5):635-636.
    [105]郭士文,D,O.Northwood.纳米级超显微硬度法对镉变形行为的研究[J].东北大学学报,1999,20(2):169-172.
    [106] S.S.Campos , E.V.Moralesl , H.-J.Kestenbach.Detection of interphase precipitation in microalloyed steels by microhardness measurements [J].Materials Characterization,2004,52(4):379-384.
    [107]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000.
    [108]阮诗新.一些回归分析方法的实现、改进与应用[D].长春:吉林大学,2005.
    [109]蔡艳,杨海澜,徐忻等.基于偏最小二乘回归方法的CO2焊飞溅模型[J].焊接学报,2004,25(5):125-130.
    [110]徐文立,刘雪松,方洪源等.薄板高强铝合金LY12CZ焊接工艺参数的优化[J].焊接学报,2004,25(2):39-42.
    [111] Liu xuesong,Fan Hongyuan,Xu wenli et al. Numerical simulationof controlling in titanium alloy sheets welding residual stress by trailing peening [J]. Acta metallurgica sinica,2004,17(3):311-316.
    [112]苏金明,傅荣华,周建斌等.统计软件SPSS for Windows实用指南[M].北京:电子工业出版社,2000:418-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700