用户名: 密码: 验证码:
基于FGH95镍基高温合金粉末的激光修复基础工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆修复技术是基于激光快速成形技术发展起来的一项先进的激光再制造技术。这项技术是将激光快速成形的原理引入零件的修复之中,可根据受损部位的形状直接进行快速修复,最终实现受损零件外形尺寸重现和高性能修复。FGH95镍基高温合金粉末晶粒细小、组织均匀、无宏观偏析、屈服强度高、疲劳性能好,是制造航空发动机涡轮盘的最佳材料。
     本文以FGH95为研究对象,进行受损零件激光熔覆修复的基础试验研究,重点研究了修复部位与基体的界面结合规律,分析了工艺参数对修复样件显微硬度的影响及修复过程中缺陷产生和防止,所完成的主要有:
     (1)分析了激光熔覆修复的成形机制,分别从传热、对流、传质三方面对激光熔覆修复的熔凝过程进行分析。
     (2)进行了FGH95的激光熔覆修复工艺试验研究,分析了不同工艺参数对修复实体表面形貌的影响。研究发现,当激光电流I=300A、离焦量f=+8mm、扫描速度V=180mm/min和扫描间距L=1.0mm时,能够获得表面形貌理想的熔覆实体。
     (3)研究了修复样件熔合区的微观组织结构,并重点分析了不同工艺参数下熔合区界面的熔合规律。研究发现,样件组织致密,微观组织从下到上分别为细小胞状晶、粗大树枝晶、细小枝晶和胞状晶。
     (4)研究了激光熔覆修复样件的显微硬度分布规律及不同工艺参数对样件显微硬度的影响。随着距样件表面的距离增加,显微硬度逐渐下降。
     (5)分析了修复过程中熔合区界面缺陷的产生原因及防止措施。
Laser Cladding Repairing(LCR) is an advanced laser repairing technology that has been developed based on Laser Rapid Prototyping(LRP). LCR introduces the principle of LRP into the repairing processing of components, that the impairment can be repaired through cladding the same powder materials to the damaged surface according to the outline of damaged components, and the original outline dimension and properties can be reproduced. FGH95,which is one of Nicked-based alloy powder materials, has become the best material of aero-engine turbine disc due to its good performance, such as fine grain size, homogeneous microstructure ,non-macrosegregation, high yield strength and good fatigue property.
     In this paper, the LCR experiment with FGH95 powder was performed. The fusion mechanism of interface between the repairing part and the substrate was studied. The effect of processing parameters on the micro-hardness of samples and the cause and prevention measures of the ill bonding in the repairing processing were analyzed. The main works were as following:
     (1) The mechanism of LCR was intensive studied. Heat conduction, convection and mass transfer in the melting processing of LCR were analyzed respectively.
     (2) A series of based experiments of LCR with FGH95 were performed. And the effect of processing parameters on surface morphology of repairing components was analyzed. The results indicated that good surface morphology of repairing part could be achieved on the laser cladding condition which were laser current I=300A, defocus distance f=+8mm, scan rate v=180mm/min and scan line spacing h=1.0mm.
     (3) The micro-structure of the fusion zone of the repairing specimen was studied. And the fusion mechanism of interface of the fusion zone was analyzed. It was found that compact micro-structure was made up of tiny cell-like crystal, coarse dendrite, small dendrite and cell-like crystal from bottom to top.
     (4) The distribution of micro-hardness and the effect of processing parameters on the micro- hardness of the samples were studied. With increasing the distance away from the surface, the value of micro-hardness decreased gradually.
     (5) The cause and prevention of the ill bonding in the repairing processing were analyzed.
引文
[1] D.T.Pham, R.S.Gault. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 1998, (38): 1257~1287
    [2] K.P.Karunakaran, P.V.Shangmuganathan, S.J.Jadhav, et al. Rapid prototyping of metallic parts and moulds. Journal of Materials Processing Technology, 2000, 10(5): 371~381
    [3]胡晓东,赵万华,李涤尘,等.金属直接成型技术的发展与展望.工具技术, 2001, 35(10): 3~6
    [4]颜永年,单忠德.快速成形与铸造技术.北京:机械工业出版社, 2004: 2~3
    [5]刘伟军.快速成型技术及应用.北京:机械工业出版社, 2005: 3~5
    [6]郭戈,颜旭涛,唐果林.快速成形技术.北京:化学工业出版社, 2005: 13~15
    [7]杨伟东,颜永年,张人佶.基于RP直接制造金属型方法.新技术新工艺, 2002, 12(3): 29~31
    [8] J.P.Kruth, M.C.Leu. Progress in additive manufacturing and rapid prototyping. CIRP Annals, 1998, 47(2): 525~540
    [9] A.Simchi, F.Petzoldt, H.Pohl. On the development of direct metal laser sintering for rapid tooling. Journal of Materials Processing Technology, 2003, 14(1): 319~328
    [10]张剑峰,沈以赴,赵剑峰,等.激光烧结成形金属材料及零件的进展.金属热处理, 2001, 26(12): 1~4
    [11]林峰,汪建平.基于RP快速模具制造技术研究.轻工机械, 2006, 24(3): 70~72.
    [12] T.Wohlers. Wohlers Report 2008: Report details latest rapid prototyping progress. Annual Worldwide Progress Report, Wohlers Associates, Inc., Colorado, USA, 2008: 12~14
    [13]专题论坛.激光快速成形技术最新发展及应用.模具工程, 2006, 10(67): 33~35
    [14] E.Schlienger, D.Dimos, M.Griffith, et al. Near net shape production of metal components using LENS. Proceeding of the Third Pacific Rim International 8 Conference on Advanced Materials and Processing, Honolulu HI, 1998: 1581~1588
    [15] C.M. Cheah, C.K. Chua, C.W. Lee, et al. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology, 2005, 25(3-4): 308~320
    [16]李守卫.多组元金属粉末选择性激光烧结数值模拟及试验研究[硕士学位论文].南京:南京航空航天大学, 2006: 1~2
    [17]周建忠,刘会霞.激光快速制造技术及应用.北京:化学工业出版社, 2009: 15~17
    [18] G.K.Lewis, E.Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21(4): 417-423
    [19] W.Hofmeister, M.Wert, J.Smngeresky, et al. Investigation of solidification in the laser engineered net shaping (LENS) process. JOM, 1999, 51(7): 7
    [20] W.M.Steen. Laser surface cladding. Laser surface treatment of metals, 1988, 12(1): 365~369
    [21] J.A.Fokes. Developments in laser surface modification and coating. Surface and Coating Technology, 1994, 23(3): 65~71
    [22] M.Gaumann, C.Bezencon, P.Canalis, W.Kurz. Single-crystal laser deposition of superalloys: Processing-microstructure maps. Acta Materialia, 2001, 49(6):1051~1062
    [23] N.Wang, S.Mokadem, M.rappaz, W.Kurz. Solidification cracking of superalloy single- and bi-crystals. Act Materialia, 2004, (52): 3173~3182
    [24] F.G.Arcella, D.H.Abbott, M.A.House. Titanium Alloy Structures for Airframe Application by the Laser Forming Process. American Institute of Aeronautics and Astronautics, 2001, 4(65): 1~10
    [25] Michelle Griffith. The LENSTM Success Story. Sandia Technology, 2006, (16): 9~10
    [26]薛蕾,陈静,张凤英,张霜银,黄卫东.飞机用钛合金零件的激光快速修复.稀有金属材料与工程. 2006,35(11): 1817~1821
    [27]熊忠琪,邓琦林,周春燕,等.磨损零件的激光熔覆修复实验研究.电加工与模具,2009,(1): 60~63
    [28]葛志军,邓琦林,宋建丽,等.激光熔覆修复铜合金零件的工艺研究.电加工与模具, 2007,(1): 39~40
    [29]邓琦林,熊忠琪,周春燕,等.激光熔覆修复技术的基础试验研究.电加工与模具, 2008,(6): 36~39
    [30]曾大文,谢长生.激光熔覆温度场和流场数值模拟研究现状和发展趋势.材料科学与工程, 1997,15(4): 1~8
    [31] T.R.Anthony, J.Appl. Surface rippling induced by surface-tension gradients during laser surface melting and alloying. Phys., 1977,9(48): 3888~3894
    [32] Jianglong Liu. The Study on relationship between composition of laser alloying and convection in the molten pool. Key Materials Engineering, 1990,(47): 487~498
    [33] A.Paul, T.Debroy. Free surface flow and heat transfer in conduction mode laser welding. Metallurgical and Materials Transactions B, 1988, (6): 851~858
    [34]刘江龙.金属热处理学报.激光合金化得微观成分不均匀性的探讨. 1990,11(1): 32~41
    [35]葛新石,叶宏.传热和传质基本原理.北京:化学工业出版社, 2007: 551~553
    [36]王家金.激光加工技术.北京:中国计量出版社, 1992: 161~162
    [37] X.Wang, J.P.Kruth. A simulation model for direct selective laser sintering of metal powders. Computational structures technology, 2000,5(5): 57~71
    [38]邓琦林.激光烧结陶瓷粉末生成三维零件的研究[博士学位论文].南京:南京航空航天大学, 1997: 23
    [39]廖月明,朱派龙,王续跃,等.激光成形熔覆工艺及制备刀具材料.电加工与模具. 1997,(6): 32~34
    [40] M.Labudovic, D.Hu, R.Kovacevic. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 2003,22(38): 35~49
    [41] S.Vanlanduit, P.Guilaume. An automatic scanning algorithm for high spatial resolution laser vibrometer measurement. Mechanical Systems and Signal Processing, 2004,2(18): 79~88
    [42]曾大文,谢长生.激光熔覆二维准稳态流场及温度场的数值模拟.金属学报, 1999, 5(6): 604~610
    [43]郭庚辰.液相烧结粉末冶金材料.北京:化学工业出版社,2003: 56
    [44]张剑锋.Ni基金属粉末激光直接烧结成形及关键技术研究[博士学位论文].南京:南京航空航天大学, 2002: 26
    [45]陈光,傅恒志.非平衡凝固新型金属材料,科学出版社,北京, 2004: 143~145
    [46] J.Lipton, J.P.Kruth, W.Trivedi. Rapid dendrite growth in undercooled alloys. Acta Metall, 1987, (35): 957~964
    [47]张安峰,朱刚贤.CO2激光、Nd:YAG激光和准分子激光熔覆特性的比较.金属热处理. 2008, 33(6): 14~18
    [48]国家自然科学基金委员会编著.金属材料科学.北京:科学出版社, 2006: 134~139
    [49]谢道彪.GH4169高温合金对接板的组织和性能研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2007: 2
    [50]王相庆.DLMS技术致密度提高及微观缺陷消除的试验研究[硕士学位论文].南京:南京航空航天大学, 2007: 33
    [51]杨毅.激光直接快速成形金属零件的机理及工艺研究[硕士学位论文].衡阳:南华大学,2006: 68
    [52]潘琰峰,沈以赴,顾冬冬,等.316不锈钢粉末直接激光烧结的球化效应.中国机械工程, 2005, 16(17): 1573~1576.
    [53]张剑锋,黄因慧,张建华,等.Ni基16Cr4B4Si粉末激光成形试验研究.应用激光, 2001, 21(4): 233~236
    [54] H.H.Zhu, L.Lu. Development and characterization of direct laser sintering Cu based metal powder. Journal of Materials Processing Technology, 2003, 140(3): 314~317
    [55]吴鹏,沈以赴.316不锈钢藕状多孔结构的选区激光烧结制备.稀有金属材料与工程, 2007, 36(6): 1070~1073
    [56]雷旭霞.陶瓷、硬质合金刀具激光强韧化机理及技术研究[硕士学位论文].大连:大连理工大学, 2000: 3
    [57]京玉海,罗丽萍,朱江峰.机械制造基础(上册).北京:清华大学出版社, 2004: 6~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700