用户名: 密码: 验证码:
激光快速成形制备钛表面HA涂层及其成骨相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯钛等金属材料具有良好的机械性能和生物相容性,但其不具有生物活性,无法与植入区骨组织形成化学结合,其固位只能依靠机械嵌合;以羟基磷灰石为代表的磷酸钙陶瓷具有较好的生物活性,能够与植入区骨组织形成稳定的化学结合,然而其机械性能差,无法承受生理载荷。表面涂层技术可以将二者的优势结合在一起,目前在纯钛等金属表面制备磷酸钙涂层的技术较多,然而均存在结合强度低、物相活性差等问题。激光熔覆技术能够使涂层与基材之间发生冶金结合,提高涂层的结合强度,但是其涂层内部物相的生物活性及稳定性较差。本课题将激光快速成形技术应用于纯钛表面磷酸钙生物活性陶瓷涂层的制备研究,以CaHPO_4·2H_2O和CaCO_3混合粉末为原料,探讨了原料粉末钙磷比、激光功率、扫描速度和热处理条件对涂层生成物相的影响规律;在优化的工艺条件下,在纯钛表面制备出了HA涂层;并对该涂层材料的机械、理化和生物学性能进行了评价,探索出了一种纯钛表面HA涂层制备的新方法,为HA涂层材料的进一步制备研究及应用奠定实验基础。
     研究方法:
     1.通过分组设计,进行涂层的成形制备,利用X射线衍射和能谱分析技术,分析原料粉末钙磷比值、激光功率、扫描速度和热处理条件对涂层内部物相的影响规律。
     2.在优化的条件下制备出纯钛表面HA涂层,利用X射线衍射、能谱分析、扫描电镜等技术及力学实验对其微观组织结构、元素分布、物相组成和机械性能进行表征。
     3.采用静态浸泡实验方法,以经表面处理后的纯钛为对照组,对涂层材料在模拟体液中的溶解和沉积行为进行研究。
     4.采用成骨细胞与材料共培养技术和动物骨内植入实验,研究涂层材料与成骨相关的生物学性能。
     研究结果
     1. CaHPO_4·2H_2O和CaCO_3混合原料粉末的钙磷比对激光快速成形技术制备的涂层物相具有显著的影响,其中钙磷比为2.0时可以在纯钛表面生成含HA、α-TCP和TTCP生物活性物相的涂层。
     2.在激光的低功率区,即450 w~550 w的范围内,涂层中的HA成分分解较少,同时所含的生物活性物相保持了较高的水平;而激光的扫描速度对涂层生成物相无显著性影响。
     3.获得了制备磷酸钙涂层的优化工艺参数,即原料粉末钙磷比为2.0、激光功率450 w、扫描速度200 mm/min、搭接率35 %、送粉速率2.0 g/min、光斑直径3.0 mm;在上述优化参数下,在纯钛表面制备出了含HA、α-TCP和TTCP生物活性物相的涂层;该涂层的微观表面凹凸不平,内部含有微孔,涂层与基材之间形成了冶金结合;从基材到涂层表面存在渗P的基材层(Ti_3P层)、CaTiO_3层和陶瓷层等三层结构;其中,Ti_3P层硬度最高,达到了1263.0±35.3 HV_(0.1),而陶瓷层硬度最低,达到了482.2±20.3HV0.1。
     4.随着涂层热处理条件的不同,涂层内部的物相也发生变化,当热处理温度为800℃、保温时间6 h时,涂层内部的物相全部转变为HA;热处理后,涂层与基材之间的结合强度达到了24.50±0.72 MPa。
     5. HA/Ti涂层在模拟体液中会释放出一定量的Ca、P离子,但对模拟体液的pH值没有显著影响,同时可以诱导HA颗粒在涂层的表面发生沉积。
     6. HA/Ti涂层能够促进成骨细胞的早期黏附、增殖和ALP活性,成骨细胞在涂层表面呈立体、多向性伸展。
     7. HA/Ti涂层能够促进植入区的骨再生和骨改建,并能够与再生骨形成紧密的结合。
     结论
     在优化的工艺条件下,激光快速成形技术结合热处理技术可以在纯钛表面制备出HA涂层,该涂层与基材间形成了良好的结合,并具有较好的生物活性,能够促进成骨细胞的早期黏附和增殖,进而促进了骨组织的早期形成和改建,而且能与再生骨组织形成紧密的骨结合。
Pure titanium and titanium alloys possess excellent mechanical properties and biocompatibility, but no bioactivity. As the implant material, they cannot induce the chemical integration with the host bone tissue, and their fixation only relys on the mechnical interlocking. The Ca-P ceramic possess excellent bioactivity, therefore they can induce the steady chemical integration with the host bone tissue. However, the Ca-P ceramics is not strong to bare the physical load. Coatings technology has the ability to take advantage of both Ti and Ca-P ceramic. Until now, many methods have been applied in preparation of Ca-P coatings on titanium and titanium alloys, but there are some problem need to resolve, such as low bonding strength and poor-bioactive phase. Laser cladding series technology can produce a sound metallurgical bonding between Ca-P coatings and metallic substrate, however the bioactive phase is less and poor stability. In this study, the Laser Rapid Forming (LRF) technology was applied to fabricate the Ca-P coatings on the pure titanium with mixed powder of CaHPO_4·2H_2O and CaCO_3 as raw material. The effect of technological parameter, such as the ratio of Ca to P in raw material, the laser power, the scanning velocity and the heat-treat condition, on the phase composition of coatings were studied. Under the optimized process, the HA coatings on the pure titanium was obtained. The mechanical properties, the physical and chemical properties and the biological properties of the HA coatings were evaluated. At the end, a new method was formed to fabricate the HA coatings on pure titanium and the experimental basis was built for the further research and application of this fabricating methods.
     Methods:
     1. The coatings were fabricated by the different parameters and the phase compositions of coatings were analyzed by the means of XRD and EDS. The effects of the ratio of Ca to P in raw material, the laser power, the scanning velocity and the heat-treatment condition on the phase composition of the coatings were revealed.
     2. Under the optimized parameter, the HA coatings on pure titanium were fabricated and the microstructure, the distribution of elements, the phase composition and the mechanical properties were characterized by the means of XRD, EDS, SEM and mechanical tests.
     3. The static immersing test was performed to analyze the behaviors of the HA coatings in simulated body fluid (SBF). At the same time, the pure titanium was tested as control group, which were subjected to sand-blast and acid pickling beforehand.
     4. The osteoblasts were cultured on the surface of the HA coatings. The adherence and proliferation of the osteoblasts were investigated using MTT assay and the spreading was observed by the means of SEM. In addition, the titanium coated with the HA by LRF were implanted into the femur of the experimental rabbits. After the healing period of 4, 8 and 12 weeks, the interfaces between the host bone tissue and the surface of implants were observed and evaluated by histomorphometric methods. In the above tests, the surface-treated titanium was tested as control group.
     Results:
     1. The ratio of Ca to P in the mixed powder of CaHPO_4·2H_2O and CaCO_3 can affect remarkably the phase composition of the coatings fabricated by LRF. When the ratio was 2.0, the phase composition of the fabricated coatings was made up of HA,α-TCP and TTCP, which all possess bioactivity.
     2. In the lower range of laser power, from 450 w to 550 w, the less HA in the fabricated coatings was decomposed and the content of bioactive ingredient was high. On the other hand, the effect of the scanning velocity on the phase composition of coating was not remarkable.
     3. The optimized parameters were obtained as follow: the ratio of Ca/P was 2.0, the laser power was 450 w, the scanning velocity was 200 mm/min, the overlap rate was 35 %, the speed of powder feeding was 2.0 g/min, and the diameter of laser was 3.0 mm. The coatings fabricated by these parameters contained HA,α-TCP and TTCP. The surface of the coating was uneven and contained many micro pores. The metallurgical bonding between the coatings and the Titanium substrate was clearly observed. From the substrate to the surface of the coatings, there were three layers which were Titanium substrate penetrated by P (Ti_3P), CaTiO_3 layer (transitional layer) and ceramic layer. The hardness in the Ti3P layer was the highest at 1263.0±35.3 HV_(0.1), the hardness in ceramic layer was the lowest at 482.2±20.3HV0.1.
     4. Theα-TCP and TTCP in the coatings fabricated by the optimized LRF parameters can be transformed to HA under the condition of heating to 800℃and keeping for 6 h. After heat-treatment, the bonding strength between the coatings and the substrate was 24.50±0.72 MPa.
     5. After immersing in SBF, the coatings on the Titanium released some Ca and P ion and induced HA particles to deposit on the coatings surface.
     6. The coatings on the pure titanium improved the adherence, the proliferation and the ALP activity of osteoblast at the early stage. The osteoblast spread well on the coatings surface.
     7. The titanium implant with the coatings improved the regeneration and the reconstruction of the host bone tissue. At the same time, the coatings combined with the new bone tightly.
     Coclusion:
     Under the optimized process, LRF combined with heat-treatment, the HA coatings on pure titanium can be obtained. The coatings bond to the substrate well, and possess the excellent bioactivity which can improve the adherence and the proliferation of osteoblast, improve the regeneration and the reconstruction of the host bone tissue and can combine with the new bone tightly.
引文
[1] David F. Williams. Biocompatibility of Clinical Implant Materials, 1st ed. [M]. CRC Press, 1981.
    [2] Sheila MacNeil. Biomaterials for tissue engineering of skin [J]. Materials today, 2008, 11(5): 26-35.
    [3]李兆峰,黄伟九,刘明.人体用金属植入材料的研究进展[J].重庆工学院学报, 2006, 20(5): 42-46.
    [4]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理, 2005, 30 (3): 33-36.
    [5] Thomann U I, Uggowitzer P J. Wear-corrosion Behavior of Biocompatible Austenitic Stainless Steels [J]. Wear, 2000, 239(1): 48-58.
    [6]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报, 2002, 16(2): 12-15.
    [7]张文毓.生物体用金属材料研究进展[J].云南大学学报(自然科学版), 2005, 27(3A): 291-296.
    [8]启明.利用高温渗氮法生产适合作生体医用材料用的无镍不锈钢[J].金属, 2003, 73 (3): 46.
    [9] Buddy D. Ratner, Allan S. Hoffman, Fredrick J. Schoen, J.E. Lemons. Biomaterials Science, 2nd ed. [M]. Elsevier Academic Press, 2004.
    [10] J. Cawley, J.E.P. Metcalf, A.H. Jones, T.J. Band, D.S. Skupien. A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty [J]. Wear, 2003, 255(7-12): 999-1006.
    [11] Mitsuo Niinomi. Recent metallic materials for biomedical applications [J]. Metallurgical and Materials Transactions A, 2002, 33(3): 477-486.
    [12]陈孟诗,朱智敏,李宁.深冷处理对钴铬钼高熔铸造合金拉伸力学性能的影响[J].华西口腔医学杂志, 2004, 22(3): 252-254.
    [13]赵娟,朱智敏,陈孟诗.深冷处理技术对口腔中熔铸造合金耐磨性的影响[J].华西口腔医学杂志, 2003, 21(3): 184-188.
    [14]朱智敏,赵娟,黄旭.深冷处理技术对口腔中熔铸造合金耐腐蚀性的影响[J].华西口腔医学杂志, 2002, 20(5): 316-319.
    [15] V.M. Frauchiger, F. Schlottig, B. Gasser, M. Textor. Anodic plasma- chemical treatment of CP titanium surfaces for biomedical applications [J]. Biomaterials, 2004, 25(4): 593-606.
    [16] Thomas J. Webster, Jeremiah U. Ejiofor. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo [J]. Biomaterials, 2004, 25(19): 4731-4739.
    [17] Omayra Rivera-Denizard, Nannette Diffoot-Carlo, Vivan Navas, Paul A. Sundaram. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide [J]. Journal of Materials Science: Materials in Medicine, 2008, 19(1): 153-158.
    [18]王桂生,朱明.外科植入物用钛合金研究进展和标准化现状[J].稀有金属, 2003, 27(1): 43-48.
    [19]闫玉华,殷湘蓉.人工关节的研究现状和发展趋势[J].生物骨科材料与临床研究, 2004, 1(4): 39-43.
    [20]张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志, 2000, 17(2): 206-208.
    [21] Long M, Rack H J. Titanium alloys in total joint replacement a materials science perspective [J]. Biomaterials, 1998, 19: 1621-1639.
    [22]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺, 2002, 10(1): 100-106.
    [23] Gordin D M, Gloriant T, Nemtoi G, et al. Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial [J]. Materials Letters, 2005, 59(23): 2936-2941.
    [24] D. Herein, T. Braun and R. Schl?gl. On the nature of the so-called iron-graphite [J]. Carbon, 1997, 35(1): 17-29.
    [25] Al-Abdullat Y, Tsutsumi S, Nakajima N, Ohta M, Kuwahara H, Ikeuchi K. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank’s solution for new biomaterial applications [J]. Materials Transaction, 2001, 42(8): 1777-1780.
    [26] Jürgen Vormann. Magnesium: nutrition and metabolism [J]. Molecular Aspects of Medicine, 2003, 24(1-3): 27-37.
    [27] Kuwahara Hideyuki, Al-Abdullat Yousef, Mazaki Naoko, Tsutsumi Sadami, Aizawa Tatsuhiko. Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution [J]. Materials Transactions, 2001, 42(7): 1317-1321.
    [28]耿芳,谭丽丽,张炳春,郑丰,杨柯.多孔镁作为新型骨组织工程材料的研究探索[J].材料导报, 2007,21(5): 76-78.
    [29] Longchuan Li, Jiacheng Gao, Yong Wang. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid [J]. Surface and Coatings Technology, 2004, 185(1): 92-98.
    [30] Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai, George Dias. Magnesium and its alloys as orthopedic biomaterials: a review [J]. Biomaterials, 2006, 27(9): 1728-1734.
    [31] Wanpeng Cao, Larry L. Hench. Bioactive materials [J]. Ceramics International, 1996, 22(6): 493-507.
    [32] Larry L. Hench. Bioceramics [J]. Journal of American Ceramic Society,1998, 81(7): 1705-1728.
    [33] J.R. Davis. Hand Book of Materials for Medical Devices, 1st ed. [M]. ASM International, 2003.
    [34] A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A.H.S. Rebelo, J.M.F. Ferreira. Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system-Preparation and in vitro characterization [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 83B(2): 546-553.
    [35] Sophie Verrier, Jonny J. Blaker, Maquet Verinique, Larry L. Hench, Aldo R. Boccaccini. PDLLA/Bioglass? composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment [J]. Biomaterials, 2004, 25(15): 3013-3021.
    [36] Bromer H., Deutscher K., Blencke B., Pfeil E., Strunz V. Properties of the bioactive implant material‘Ceravital’[J]. Science of Ceramics, 1977, 9: 219-225.
    [37] T. Kokubo, Y. Nagashima, M. Tashiro. Preparation of Apatite Containing Glass- Ceramics by Sintering and Crystallizationof Glass Powders [J]. Yogyo-Kyokai-Shi, 1982, 90: 151.
    [38] Fred H. Albee. Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis [J]. Annals of Surgery, 1920, 71(1): 32-39.
    [39] K. de Groot. Bioceramics consisting of calcium phosphate salts [J]. Biomaterials, 1980, 1(1): 47-50.
    [40] Michael Jarcho. Calcium phosphate ceramics as hard tissue prosthetics [J]. Clinical Orthopaedics & Related Research, 1981, (157): 259-278.
    [41] Lacout J L. Calcium Phosphate as Bioceramics [A]. Biomaterials-Hard Tissue Repair and Replacement [C]. Amsterdam: Elsevier Science Publishers, 1992: 81-95.
    [42] M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira, J. Takahashi. Heterogeneous fluoridated apatites synthesized with a three-step fluoride supply system [J]. Biomaterials, 1998, 20(14): 1303-1307.
    [43] Wojciech Suchanek, Masahiro Yoshimura. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants [J]. Journal of Materials Research, 1998, 13: 94-117.
    [44] Linhart W, Briem D, Amling M, Rueger JM, Windolf J. Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial [J]. Unfallchirurg, 2004, 107(2): 154-157.
    [45]方芳,阎玉华.β-TCP陶瓷的生物降解过程及机理探讨[J].硅酸盐通报, 2003, 22(4): 75-77.
    [46] K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits [J]. Biomaterials, 2002, 28(2): 248-252.
    [47] Ducheyne P, Bianco P, Radin S, Schepers E. Bioactive materials: mechanisms and bioengineering considerations [M]. In: Ducheyne P, Kokubo T, van Blitterswijk CA, editors. Bone-bioactive biomaterials. Leiderdorp, The Netherlands: Reed Healthcare Communications, 1993. p. 1-12.
    [48] Robert B. Heimann. Materials science of crystalline bioceramics: A review of basic properties and applications [J]. CMU Journal, 2002, 1(1): 23-46.
    [49] Renlong Xin, Yang Leng, Jiyong Chen, Qiyi Zhang. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo [J]. Biomaterials, 2005, 26(33): 6477-6486.
    [50] R. Shu, R. McMullen, M. J. Baumann, L. R. McCabe. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts[J]. Journal of Biomedical Materials Research Part A, 2003, 67A(4): 1196-1204.
    [51] K. Gomi, B. Lowenberg, G. Shapiro, J.E. Davies. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro [J]. Biomaterials, 1993, 17(3): 293-299.
    [52] Takatoshi Okuda, Koji Ioku, Ikuho Yonezawa, Hideyuki Minagi, Giichiro Kawachi, Yoshinori Gonda, Hisashi Murayama, Yasuaki Shibata, Soichiro Minami, Shimeru Kamihira, Hisashi Kurosawa, Tohru Ikeda. The effect of the microstructure ofβ-tricalcium phosphate on the metabolism of subsequently formed bone tissue [J]. Biomaterials, 2007, 28(16): 2612-2621.
    [53] R. Detsch, H. Mayr, G. Ziegler. Formation of osteoclast-like cells on HA and TCP ceramics [J]. Acta Biomaterialia, 2008, 4(1): 139-148.
    [54] M Jarcho, CH Bolen, MB Thomas, J Bobick, JF Kay, Doremus. Hydroxyapatite synthesis and characterization in dense polycrystalline form [J]. Journal of Materials Science, 1976, 11: 2027-2035.
    [55] Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs [J]. Biomaterials, 1992, 13(5): 308-312.
    [56] Klein C, de Groot K, Chen W, et al. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues [J]. Biomaterials, 1994, 17(22): 2131-2137.
    [57] Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models [J]. Biomaterials, 1996, 193(2): 509-517.
    [58] Huipin Yuan, Zongjian Yang, Yubao Li, Xingdong Zhang, J. D. De Bruijn, K. De Groot. Osteoinduction by calcium phosphate biomaterials [J]. Journalof Materials Science: Materials in Medicine, 1998, 9(12): 723-726.
    [59] LeGeros R Z. Properties of osteoconductive biomaterials: calcium phosphates [J]. Clinical Orthopaedics and Related Research, 2002, (395): 81-98.
    [60] Florence Barrère, Chantal M. van der Valk, Remco A. J. Dalmeijer, Gert Meijer, Clemens A. van Blitterswijk, Klaas de Groot, Pierre Layrolle. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants [J]. Journal of Biomedical Materials Research Part A, 2003, 66A(4): 779-788.
    [61] Damien Le Nihouannen, Guy Daculsi, Afchine Saffarzadeh, Olivier Gauthier, Séverine Delplace, Paul Pilet, Pierre Layrolle. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles [J]. Bone, 2005, 11(7): 509-512.
    [62] Racquel Zapanta LeGeros. Calcium phosphate-based osteoinductive materials [J]. Chemical Reviews, 2008, 108(11): 4742-4753.
    [63] Marshall R. Urist. Bone: formation by autoinduction [J]. Science, 1965, 150(698): 893- 899.
    [64] Reddi A H. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials [J]. Tissue Engineering, 2000, 6(4): 351-359.
    [65] Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral [J]. The Journal of Bone and Joint Surgery American, 1991, 73(5): 692-703.
    [66] Judica?l Toquet, Ramin Rohanizadeh, Jérome Guicheux, Séverine Couillaud, Norbert Passuti1, Guy Daculsi, Dominique Heymann.Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic [J]. Journal of Biomedical Materials Research, 1999, 44(1): 98-108.
    [67] K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits [J]. Biomaterials, 2002, 23(2): 407-412.
    [68] Lijia Cheng, Feng Ye, Ruina Yang, Xiaofeng Lu, Yujun Shi, Li Li, Hongsong Fan, Hong Bu. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula [J]. Acta Biomaterialia, 2010, 6(4): 1569-1574.
    [69] C. Mauli Agrawal. Reconstructing the human body using biomaterials [J]. Journal of Materials, 1998, 50(1): 31-35.
    [70] Min Wang. Developing bioactive composite materials for tissue replacement [J]. Biomaterials, 2003, 24 (13): 2133-2151.
    [71] S. Ramakrishna, J. Mayer, E. Wintermantel, Kam W. Leong. Biomedical applications of polymer-composite materials: a review [J]. Composite Science and Technology, 2001, 61(9): 1189-1224.
    [72] S.L. Evans, P.J. Gregson. Composite technology in load-bearing orthopaedic implants [J]. Biomaterials, 1998, 19(15): 1329-1342.
    [73] M. S. Abu Bakar, M. H. W. Cheng, S. M. Tang, S. C. Yu, K. Liao, C. T. Tan, K. A. Khor, P. Cheang. Tensile properties, tension–tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants [J]. Biomaterials, 2003, 24 (13): 2245-2250.
    [74] D.J. Wilson, N.P. Rhodes, R.L. Williams. Surface modification of a segmented polyetherurethane using a low-powered gas plasma and itsinfluence on the activation of the coagulation system [J]. Biomaterials, 2003, 24(28): 5069-5081.
    [75] R.G. Richards, M. Wieland, M. Textor. Advantages of stereo imaging of metallic surfaces with low voltage backscattered electrons in a field emission scanning electron microscope [J]. Journal of Microscopy, 2000, 199(2): 115-123.
    [76] Tammar S. Meiron, Abraham Marmur, I. Sam Saguy. Contact angle measurement on rough surfaces [J]. Journal of Colloid and Interface Science, 2004, 274 (2): 637-644.
    [77] Jianhua Wei, Masao Yoshinari, Shinji Takemoto, Masayuki Hattori, Eiji Kawada, Baolin Liu, Yutaka Oda. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 81(1): 66-75.
    [78] Molly M. Stevens, Julian H. George. Exploring and Engineering the Cell Surface Interface [J]. Science, 2005, 310 (5751): 1135-1138.
    [79] B.O. Arronson, J. Lausmaa, B. Kasemo. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials [J]. Journal of Biomedical Materials Research, 1997, 35 (1): 49-73.
    [80] Takao Hanawa. In vivo metallic biomaterials and surface modification [J]. Materials Science and Engineering A, 1999, 267 (2): 260-266.
    [81] Qing Zhao, Guang-Jie Zhai, D.H.L. Ng, Xiao-Zhong Zhang, Zhi-Qing Chen. Surface modification of Al2O3 bioceramic by NH2+ ion implantation [J]. Biomaterials, 1999, 20(6): 595-599.
    [82] Zhen-Mei Liu, Zhi-Kang Xu, Jian-Qin Wang, Jian Wu, Jun-Jie Fu. Surface modification of polypropylene microfiltration membranes by graftpolymerization of N-vinyl-2-pyrrolidone [J]. European Polymer Journal, 2004, 40(9): 2077-2087.
    [83] Fu Zhang, E.T. Kang, K.G. Neoh, Peng Wang, K.L. Tan. Surface modification of stainless steel by grafting of poly (ethylene glycol) for reduction in protein adsorption [J]. Biomaterials, 2001, 22 (12): 1541-1548.
    [84] Sameer R. Paital, Narendra B. Dahotre. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies [J]. Materials Science and Engineering R, 2009, 66 (1-3): 1-70.
    [85] Kevin A. Thomas, John F. Kay, Stephen D. Cook, Michael Jarcho. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials [J]. Journal of Biomedical Materials Research, 1987, 21(12): 1395-1414.
    [86]郑学斌,丁传贤.等离子喷涂HA/Ti复合涂层研究(Ⅰ.结构、组成和力学性能) [J].无机材料学报, 2000, 15(5): 897-902.
    [87] Heimann R B, Kurzweg H, Ivey D G, et al. Microstructural and in vitro chemical investigations into plasma-sprayed bioceramic coatings [J]. J Biomed Mater Res, 1998, 43(4): 441-450.
    [88] Khor K A, Gu Y W, Pan D, et al. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings [J]. Biomaterials, 2004, 140(3): 263- 268.
    [89] A.M. Ektessabi. Surface modification of biomedical implants using ion-beam-assisted sputter depositon [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 127-128: 1008-1014.
    [90] Lo WJ, Grant DM, Ball MD, et al. Physical, chemical and biologicalcharacterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy [J]. Biomed Mater Res, 2000, 50(4): 536-545.
    [91] Laxmidhar Besra, Meilin Liu. A review on fundamentals and applications of electrophoretic deposition (EPD) [J]. Progress in Materials Science, 2007, 52(1): 1-61.
    [92] M. Shirkhanzadeh. Bioactive calcium phosphate coating prepared by electrodeposition [J]. Journal of Materials Science Letters, 1991, 10(23): 1415-1417.
    [93] Wei M, Ruys A J, Milthorpe B K, et al. Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach [J]. Journal of Sol-Gel Science and Technology, 2001, 2: 39-48.
    [94]陈晓明,李世普,韩庆荣.在非水溶液体系中电泳沉积Ti6Al4V/BG/HAP梯度涂层[J].硅酸盐学报, 2001, 29(6): 565-568.
    [95]倪军,肖秀峰,刘榕芳.电泳沉积HA-Ti-Y2O3/ZrO2复合涂层的研究[J].材料保护, 2005, 38(2): 7-10.
    [96]倪军,刘榕芳,肖秀峰.电泳沉积HA/Ti复合涂层的结合强度和热稳定性[J].稀有金属材料与工程, 2006, 35(1): 119-122.
    [97] Bauerle Dieter. Laser Processing and Chemistry, 3rd ed. [M]. Springer, 2000.
    [98] Rajiv K. Singh, J. Narayan. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model [J]. Physical Review B, 1990, 41 (13): 8843- 8859.
    [99] P.R. Willmott, J.R. Huber. Pulsed laser vaporization and deposition [J]. Reviews of Modern Physics, 2000, 72 (1): 315-328.
    [100] Cotell C M. Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films [J]. Applied Surface Science, 1993, 470(2): 149-154.
    [101] GarcJa-Sanz, J F, B M M, et al. Hydroxyapatlte coatings:a comparative study between plasma-spray and pulsed laser deposition techniques [J]. Journal of Materials Science Materials in Medicine, 1997, 8: 861-865.
    [102] H.X. Li, V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song. Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation [J]. Journal of Alloys and Compounds, 2008, 462 (1-2): 99-102.
    [103] Won-Hoon Song, Youn-Ki Jun, Yong Han, Seong-Hyeon Hong. Biomimetic apatite coatings on micro-arc oxidized titania [J]. Biomaterials, 2004, 25(17): 3341-3349.
    [104] Jifeng Sun, Yong Han, Xin Huang. Hydroxyapatite coatings prepared by micro-arc oxidation in Ca- and P-containing electrolyte [J]. Surface and Coatings Technology, 2007, 201 (9-11): 5655-5658.
    [105] E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield. Magnetron co-sputtered silicon-containing hydroxyapatite thin films-an in vitro study [J]. Biomaterials, 2005, 26 (16): 2947-2956.
    [106] J.G.C. Wolke, J.P.C.M. van der Waerden, H.G. Schaeken, J.A. Jansen. In vivo dissolution behavior of various RF magnetron-sputtered Ca-P coatings on roughened titanium implants [J]. Biomaterials, 2003, 24 (15): 2623-2629.
    [107] H.Q. Nguyen, D.A. Deporter, R.M. Pilliar, N. Valiquette, R. Yakubovich. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowthand osteoconductivity of porous-surfaced Ti alloy implants [J]. Biomaterials, 2004, 25(5): 865-876.
    [108] Long-Hao Li, Hae-Won Kim, Su-Hee Lee, Young-Min Kong, Hyoun-Ee Kim. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating [J]. Journal of Biomedical Materials Research, 2005, 73A (1): 48-54.
    [109] Montenero A, Gnappi G, Ferrari F. Sol-gel derived hydroxyapatite coating on titanium substrate [J]. Journal of Materials Science, 2000, 35(11): 2791- 2797.
    [110] Kim H, Koh Y, Li L, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method [J]. Biomaterials, 2004, 76(2): 219-222.
    [111]苏冰,于旭东,张文光,等. Ti6Al4V表面HAP/TiO2生物活性复合涂层的表征及结合强度分析[J].功能材料, 2005, 36(7): 1075-1079.
    [112]张亚平,高家诚.激光熔覆生物陶瓷复合涂层[J].材料研究学报, 1994, 8(1): 93-96.
    [113]高家诚,张亚平.激光合成HA生物陶瓷涂层的热力学动力学研究[J].功能材料, 1998, 29(6): 635-638.
    [114]张亚平,文静.激光熔覆生物陶瓷涂层生物相容性的研究[J].材料科学与工程, 1999, 17(3): 20-22.
    [115]张亚平,文静. Y2O3对激光涂覆生物陶瓷涂层的影响[J].金属热处理, 1999, (10): 9-11.
    [116]李慧中,陈明飞.激光涂覆生物陶瓷涂层的组织形貌、成分及显微硬度观察[J].陶瓷工程, 1999, 33(6): 10-12.
    [117]王迎春,李飞群,李延民,等.激光熔覆原位合成制备生物陶瓷涂层[J].激光技术, 2004, 28(6): 572-574.
    [118]刘其斌,郑敏,朱维东,等.钛合金表面宽带激光熔覆梯度生物陶瓷复合涂层[J].功能材料, 2005, 36(1): 50-53.
    [119]郑敏,樊丁,李秀坤,等.激光熔覆工艺参数对生物陶瓷涂层组织性能的影响[J].热加工工艺, 2008, 37(7): 79-82.
    [120]郑敏,樊丁,李秀坤,等.激光熔覆钛基生物陶瓷涂层的制备及其界面研究[J].稀有金属材料与工程, 2009, 38(11): 2004-2007.
    [121] Zheng M, Fan D, Li X, et al. Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid [J]. Journal of Alloys and Compounds, 2010, 352(32): 3488-3495.
    [122]严晓东.口腔修复体用激光立体成形钛锆合金粉末的研制及其性能研究[D].第四军医大学硕士学位论文, 2005.
    [123]王晓波.冠、桥及全口钛基托的激光立体成形制备研究[D].第四军医大学硕士学位论文, 2005.
    [124]吴江.应用激光快速成形技术制作全口义齿钛基托的实验研究[D].第四军医大学博士学位论文, 2007.
    [125]胡江.激光快速成形技术制作镍铬合金基底冠的可行性实验研究[D].第四军医大学硕士学位论文, 2007.
    [126]韩彦峰.激光快速成形技术制作纯钛基底冠的可行性实验研究[D].第四军医大学硕士学位论文, 2007.
    [127]朱娟芳.激光快速成形技术制作纯钛植入材料的实验研究[D].第四军医大学博士学位论文, 2007.
    [128]关泰红.梯度生物活性涂层材料激光快速成形制备技术及其理化性能初步研究[D].第四军医大学硕士学位论文, 2009.
    [129]高阳.激光快速成形技术制备生物活性陶瓷涂层及其生物学性能研究[D].第四军医大学博士学位论文, 2010.
    [130] Mangal Roy, B. Vamsi Krishna, Amit Bandyopadhyay, Susmita Bose. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants [J]. Acta Biomaterialia, 2008, 4(2): 324-333.
    [131] F. Lusqui?os, J. Pou, J. L. Arias, M. Boutinguiza, B. León, M. Pérez-Amor, F. C. M. Driessens. Alloying of hydroxyapatite onto Ti-6Al-4V by high power laser irradiation [J]. Journal of Materials Science: Materials in Medicine, 2002, 13(6): 601-605.
    [132] F. Lusqui?os, A. De Carlos, J. Pou, J. L. Arias, M. Boutinguiza, B. León, M. Pérez-Amor, F. C. M. Driessens, K. Hing, I. Gibson, S. Best, W. Bonfield. Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties [J]. Journal of Biomedical Materials Research Part A, 2003, 64A(4): 630-637.
    [133]王忠柯,潘清跃.激光表面熔覆层凝固组织特征形成过程[J].激光技术, 2000, 24(1): 64-66.
    [134]王迎军,宁成云,陈楷等.等离子喷涂生物活性梯度涂层材料的残余应力与结合强度[J].无机材料报, 1998, 13(4): 529-533.
    [135]郑学斌,周霞明,张叶方等.等离子喷涂HA/ZrO2复合涂层[J].无机材料学报, 1999, 14(6): 956-962.
    [136]王勇.钛合金表面激光合成与熔覆稀土生物陶瓷复合涂层的研究[D].重庆大学博士学位论文, 2002, 50-77.
    [137]刘其斌,郑敏,朱维东等.宽带激光熔覆梯度生物活性陶瓷复合涂层组织与性能[J].应用激光, 2004, 24(6): 350-354.
    [138] Wennerberg A, Albrektsson T, Lausmaa J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25-and 75-mm-sized particles of Al2O3 [J]. J Biomed Mater Res, 1996, 30: 251-260.
    [139] Vercaigne S, Wolke JGC, Naert I, Jansen JA. A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: part 1 [J]. Clin Oral Impl Res, 2000, 11: 305-313.
    [140] M. Yoshinaria, Y. Odaa, T. Inoueb, K. Matsuzakab, M. Shimono. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants [J]. Biomaterials, 2002, 23(4): 2879-2885.
    [141] Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bone bioactivity [J]. Biomaterials, 2006, 27 (15): 2907-2915.
    [142] Kasemo B, Lausmaa J. Biomaterial and implant surfaces: a surface science approach [J]. Int J Oral Maxillofac Implants, 1988, 3(4): 247-259.
    [143] Lim J Y, Hansen J C, Siedlecki C A, et al. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability [J]. Biomacromolecules, 2005, 6(6): 3319-3327.
    [144] Malmsten M. ellipsometry studies of the effects of surface hydrophobicith on protein adsorption [J]. Colloeds Surf B, 1995, 3: 297-308.
    [145] Tangpasuthadol V, Pongchaisirikul N, Hoven V P. Surface modification of chitosan films: Effects of hydrophobicity on protein adsorption [J]. Carbohydrate Research, 2003, 15(4): 278-284.
    [146] J H N, J B K, K O, et al. Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion [J]. Tissue Engineering, 2001, 7(1): 55-71.
    [147] Wolff C, Lai C S. Fluorescence energy transfer detects changes in fibronectin structure upon surface binding [J]. Arch Biochem Biophys, 1989, 268(2): 536-545.
    [148] Kato S, Kidoaki S, Matsuda T. Substrate-dependent cellular behavior of Swiss 3T3 fibroblasts and activation of Rho family during adhesion and spreading processes.[J]. J Biomed Mater Res A, 2004, 68(2): 314-324.
    [149] Juin P, Pelletier M, Oliver L, et al. Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system [J]. J Biol Chem, 1998, 273(28): 17559-17564.
    [150] Xynos I D, Edgar A J, Buttery L D K, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass? 45S5 dissolution [J]. Journal of Biomedical Materials Research, 2001, 55(2): 151-157.
    [151] Wood W, Martin P. Structures in focus-filopodia [J]. Int J Biochem Cell Biol, 2002, 34(7): 726-730.
    [152] Andersson A, BDckhed F, von Euler A, et al. Nanoscale features influence epithelial cell morphology and cytokine production [J]. Biomaterials, 2003, 123(2): 73-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700