用户名: 密码: 验证码:
典型贝类壳体生物耦合特性及其仿生耐磨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损是指相互接触的物体在相对运动过程中,表层材料不断损失、转移或产生残余变形,并最终导致材料破坏或设备失效的现象,其广泛存在于众多工程领域。据统计,约有80%的机械零部件由于磨损而失效,约30-50%的世界一次能源由摩擦磨损所消耗。磨损不仅消耗材料,浪费能源,并直接影响到机械器件的寿命和可靠性。因此,减摩抗磨问题已成为众多工程领域研究的热点与难点,越来越得到国内外高度重视。大自然为我们提供了优异的生物耐磨仿生蓝本,这些生物体为适应生存环境和满足生存需要,进化出形态、结构与组成材料等多因素耦合的生物耐磨功能系统,体现出对生存环境最佳的适应性和协调性。本文以具有良好耐磨特性的典型贝类壳体为研究对象,运用耦合仿生理念,从形态、结构与材料多个角度入手,深入探索其生物耐磨耦合机制,从而为开发新型仿生耐磨器件提供重要信息,同时为完善耦合仿生理论提供基础资料。
     作为一种典型的天然生物矿化材料,贝壳的构成具有令人佩服的特殊的组装方式,体现出强韧性的最佳匹配。此外,贝壳通常具有多种复杂的体表形貌,表现出良好的耐磨料磨损和抗冲蚀磨损特性。本文以分别营埋栖、底栖匍匐和附着匍匐三种不同生活方式的典型贝类毛蚶(Scapharca subcrenata)、脉红螺(Rapana venosa)和石鳖(Acanthochiton rubrolineatus)为研究对象,通过多种试验手段分别对其生物学特性、力学特性和磨损特性进行了系统的研究;并利用ANSYS大型通用有限元软件,分别对基于毛蚶与石鳖壳体的单元仿生模型及耦合仿生模型的磨料磨损及冲蚀磨损过程进行了三维数值模拟分析,初步揭示了典型贝类壳体生物耦合耐磨特征机制与规律。
     在生物耦合特征分析中,借助体视显微镜、扫描电镜及X射线衍射仪分别对三种贝壳的表面形貌、微观结构及组成材料进行了系统研究。结果表明,毛蚶壳体具有复杂的表面形貌,在左壳表面存在放射肋与小结节组成的复合结构;且在三种贝壳微观结构中普遍存在具有应力缓释效应的交叉叠片结构以及孔状管道结构。显微硬度试验结果表明,贝壳的显微硬度与其对应的微观结构密切相关,且存在各向异性。毛蚶次表层即棱柱层与脉红螺珍珠层的交叉叠片结构硬度最高,石鳖珍珠层的复杂交叉条纹结构也表现出相对较高的显微硬度,说明交叉纹片结构是贝壳抵抗外力破坏的一种有效晶体结构。压缩试验结果表明,贝壳层面方向的承载能力均高于横断面的承载能力,且压缩强度与对应的微观结构同样具有相关性。
     在磨损试验研究中,采用分离耦元试验法及个别耦元去除法,利用磨料磨损试验机分别考察了形态、结构、材料等耦元对毛蚶及脉红螺壳体磨料磨损性能的影响。通过对磨损试验结果进行对比分析,揭示了各耦元对毛蚶壳体耐磨性能的贡献度,即有机质材料为主耦元,棱纹形态为次主耦元,棱纹与小结节组成的复合结构为一般耦元;并分别对其耐磨机理进行了分析。论文同时对毛蚶与脉红螺壳体磨料磨损的各向异性机理进行了研究。磨料磨损试验结果表明,毛蚶壳体具有最优的耐磨料磨损特性;而冲蚀磨损试验结果也表明,石鳖体表具有良好的抗冲蚀磨损特性。本文同时对这三种贝类壳体结构与功能的适应性进行了探索性分析。
     根据毛蚶壳体耐磨料磨损生物耦合特性,分别建立了形态单元仿生模型、形态-结构与形态-材料二元耦合仿生模型,并利用ANSYS/CFX专业流体计算软件分别对这几种模型的磨料磨损流场进行了数值模拟。通过对比分析磨损过程中各模型流体域与固体域的力学性能参数,对不同模型的耐磨性能进行评估。结果表明,形态-结构二元耦合仿生模型相对于形态单元仿生模型,始终表现出最优的耐切削与抗冲击性能,即棱纹与小结节组成的复合结构可以有效降低流体速度,减小流体作用力,削弱磨料粒子对壁面的剪应力,使固体域接触应力显著降低,从而使模型表现出良好的耐磨料磨损性能。形态-材料二元耦合仿生模型由于表面发生塑性形变而使单向流固耦合模拟结果可靠性降低,论文进一步对其磨损机理及模型优化进行了探讨分析。
     利用ANSYS/LS-DYNA显式动力分析软件,对仿石鳖壳板的构形单元仿生模型和构形-凹槽形态及构形-凸包形态二元耦合仿生模型的动态冲蚀磨损过程进行了三维数值模拟,对比分析了不同耦元对靶材抗冲蚀性的影响规律。三种模型在整体水平上抗冲蚀性顺序依次为凸包弧形板、凹槽弧形板和光滑弧形板。在弧形板峰部,凹槽的应力分散效应即抗冲蚀性能明显优于凸包;而在翼区,凸包的抗冲蚀性能显著优于凹槽,说明石鳖壳板在进化过程中优化出了最佳的形态组合,即壳板峰部分布有粗大的纵肋(肋间相对形成凹槽),而翼区则分布有大量的凸包,从而可以有效抵抗强烈的海砂冲蚀。
     通过对三种典型贝类壳体的生物耦合耐磨特性进行研究,进一步证明耦合仿生比单元仿生更接近于生物真实的作用机理,将产生更好的仿生效能。因此,对耦合仿生进行深入研究将加快仿生从形似到神似的进程,具有重要的理论价值与实践意义。
Abrasion could be described as a process of wearing down or rubbing away by means offriction between the contact bodies during relative motion. Abrasion exists extensively inengineering field, and causes serious material and equipment failure. According to thestatistics, the failure of80%of mechanical parts or more is due to wear and tear, and30-50%of global energy consumption is attributed to friction and abrasion. Abrasion not onlyconsumes material, but also wastes energy, and directly affects the life and reliability ofmechanical parts. Thus, the abrasion becomes a problem to be urgently conquered nowadays,and perhaps such solutions could be learned from the nature. Biological creatures live inharmony with nature upon the combination of multiple factors, e.g. surface morphologies,complex structures and component materials, and achieve the optimum adaptation to thesurroundings based on such biological coupling functions. So in the current study, threetypical molluscan shells Scapharca subcrenata, Rapana venosa and Acanthochitonrubrolineatus were selected to study their biological coupling and bionic anti-wear properties.The paper tries to provide reference information for the development of innovated anti-wearcomponents as well as for the complement of the coupling bionic theory.
     Molluscan shells are fascinating examples of highly ordered hierarchical structure andcomplex organic-inorganic biocomposite material. The selected shells S. subcrenata, R.venosa, and A. rubrolineatus are typical molluscan species respectively belonging toimmersed, demersal crawling and attached crawling life forms, and involving the threerepresentative species of mollusca including Bivalvia, Gastropoda and Polyplacophora. Theseshells have specific living behaviors and exhibit exceptional wear resistant properties. In thispaper, more experimental methods were applied to study their biological, mechanical andwearing properties. And the large finite element analysis software ANSYS was further usedto simulate the abrasive and erosive process of the built uni-bionic models and thedual-bionic coupled models. The biological coupling and bionic anti-wear properties of thesethree typical molluscan shells thus were preliminarily revealed in this paper. During the biological coupling analysis, the stereomicroscope, SEM and X-ray diffractionwere respectively used to investigate the surface morphologies, microstructures and phasecompositions of the shells. Observations showed that the surface morphology of the left shellof S. subcrenata is much complicated distributed with radial riblets coupled with nodules.The crossed lamellar structure was found generally existing in the three shells displayedhighly ordered hierarchical structure. In S. subcrenata and A. rubrolineatus, the specificwell-developed pore canal tubules were also discovered. According to the phase components,aragonite is the most extensive phase present in the molluscan shells, which could effectivelyresist the external damage. Micro-Vikers hardness test demonstrated that the micro-hardnessof each layer closely relates to its corresponding microstructures and shows anisotropy. Thecrossed lamellar structure in the sub-layer of S. subcrenata and the nacre layer of R. venosashowed the highest micro-hardness, and the similar structure in the chiton also displayedrelatively high micro-hardness. Compressive test indicated that the bearing capacity of thelayered section of the shells is higher than that of the transverse section. The compressivestrength of the shell also corresponds to its microstructures.
     In the abrasion test, the methods of separate testing and selective removing of the individualcoupling element were used to respectively investigate the effects of coupling elements e.g.morphology, structure and material on the abrasive properties of the shells of S. subcrenataand R. venosa by the rotary-disk type abrasive wear tester. Through comparative analysis, theimportance degree of different coupling elements during the abrasive process of the shell of S.subcrenata was revealed, that is the organic material could be classified as the main couplingelement, riblet morphology could be considered as the hypo-main coupling element, and thecomplicated structure composed with riblets and nodules could be regarded as the normalcoupling element. The wear-resistant mechanisms of each coupling element were alsoanalyzed. At the same time, the abrasion anisotropies of the shells of S. subcrenata and R.venosa were studied and analyzed. The experimental results demonstrated that the wearresistant property of the shell of S. subcrenata is the best, while that of the R. venosa isrelatively not prominent. The tentative erosion test preliminarily indicated that the bodysurface of the chiton exhibits strong erosion-resisting merits. The relationship between thestructure and the function of the three shells were also explored in this paper. According to the biological coupling anti-wear property of the shell of S. subcrenata, thesurface morphology uni-bionic model, the morphology-structure and themorphology-material dual-bionic coupled models were independently constructed, and thecomputational fluid dynamic software ANSYS/CFX was applied to simulate the abrasiveprocess of the models. The simulation results showed that the anti-cutting and anti-erosionproperty of the morphology-structure coupled model was generally better than that of themorphology uni-bionic model. It means that the complicated structure composed with ribletsand nodules could effectively decrease the velocity and the forces of the fluid, weaken thewall shear stress of the model, and in final reduce the contact stresses of the solid domain.The morphology-material coupled model probably underwent deformation during theabrasion process and caused the incorrect result of one-way coupling simulation. Theabrasion mechanism and the model optimization were further proposed in the paper.
     The explicit dynamic software ANSYS/LS-DYNA was used to simulate the erosive processof the configuration uni-bionic model and configuration-groove/convex morphologydual-bionic coupled model imitating the shell surface of chition. The mechanism of erosionof each model was comparatively analyzed. The overall erosion resistance of the threemodels was sorted as convex-curved plate, groove-curved plate and smooth-curved plate.However, in the peak of the curved plate, the stress dispersion effect of groove is much betterthan that of convex, whereas the stress dispersion effect of convex is better than that ofgroove at the pterion region. The simulation results indicated that the shell plate of chitonevolved an optimum combination of morphologies with thick riblets distributed in the peak(grooves are thus formed between the riblets) and convexes scattered around the pterionregion, and thus endow the chition with exceptional wear resistance.The study on biological coupling anti-wear properties of typical molluscan shells furtherproved that coupling bionics is more nearly to the real function mechanism of the biologicalcreatures and thus produce better efficiency. Therefore, the further study on coupling bionicswould greatly promote the process from similar in appearance to similar in spirit andundoubtedly would be of great theoretical value and practical significance.
引文
[1] Bhushan B.摩擦学导论[M].葛世荣译.北京:机械工业出版社,2007.
    [2]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001.
    [3] Holinski R, Hesse D. Changes at interfaces of friction components during braking [J].Proceedings of the Institution of Mechanical Engineers Part D-Journal of AutomobileEngineering,2003,217:765-770.
    [4] Osterle W,帅平,云济.制动装置的摩擦和磨损引起化学成分和金相组织的改变[J].国外机车车辆工艺,2003,(4):19-23.
    [5] Lee G Y, Dharan C K H, Ritchie R O. A physically-based abrasive wear model forcomposite materials [J]. Wear,2002,252(4):322-331.
    [6]张长军,张晓峰.基于拉宾诺维奇公式的复合材料磨料磨损模型[J].长安大学学报(自然科学版),2004,24(3):88-91.
    [7]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312.
    [8]马颖,任峻,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.
    [9]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [10] Finnie I, McFadden D H. On the velocity dependence of the erosion of ductile metalsby solid particles at low angles of incidence [J]. Wear,1978,48(1):181-190.
    [11] Bitter J G A. A study of erosion phenomena: part I [J].Wear,1963,6(l):5-21.
    [12] Tiliy G P. A two stage mechanism of ductile erosion [J]. Wear,1973,23(l):87-96.
    [13]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006.
    [14] Dowson D, Wright V. Bio-tribology, in The Rheology of Lubricants [M]//DavenportT C. Barking: Applied Science Publishers, c1973:81-88.
    [15] Dowson D. Bio-tribology [J]. Faraday Discuss,2012,156:9-30.
    [16]周仲荣.关于我国生物摩擦学研究的思考[J].机械工程学报,2004,40(5):7-10.
    [17]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报,2006,51(20):2353-2359.
    [18] Dai Z D, Tong J, Ren L Q. Researches and Developments of Biomimetics inTribology [J]. Chinese Science Bulletin,2006,51(22):2681-2689.
    [19]佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报,2001,21(4):315-320.
    [20]解芳,张林先,刘佐民.生物摩擦学与仿生摩擦学的研究现状及展望[J].南阳理工学院学报,2012,4(2):81-85.
    [21]陈东辉.典型生物摩擦学结构及仿生[D].长春:吉林大学生物与农业工程学院,2007.
    [22] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta,1997,202(1):1-8.
    [23] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial [J].Advanced Materials,2002,14:1857-1860.
    [24] Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: aninspiration for biomimetics [J]. Progress in Materials Science,2009,54:137-178.
    [25] Hideki T. A current of product development for competitive swimsuits [J]. JSMENews,2004,15(2):1-10.
    [26]李安琪,任露泉,陈秉聪,等.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报,1990,6(3):8-14.
    [27] Jia X. Unsmooth cuticles of soil animals and theoretical analysis of theirhydrophobicity and anti-soil-adhesion mechanism [J]. Journal of Colloid and InterfaceScience,2006,295:490-494.
    [28] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair [J].Nature,2000,405:681-684.
    [29] Autumn K, Peattie A M. Mechanisms of adhesion in geckos [J]. Integrative andComparative Biology,2002,42:1081-1090.
    [30] Tian Y, Pesika N, Zeng H B, et al. Adhesion and friction in gecko toe attachment anddetachment [J]. Proceeding of the National Academy of Sciences of the United Statesof America.2006,103(51):19320-19325.
    [31]高峰,任露泉,黄河,等.沙漠蜥蜴体表抗冲蚀磨损的生物耦合特性[J].农业机械学报,2009,40(1):180-183.
    [32]温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1-5.
    [33] Meyers M A, Chen P Y, Lin A Y M, et al. Biological materials: structure andmechanical properties [J]. Progress in Material Science,2008,53:1-206.
    [34] Liu K S, Jiang L. Bio-inspired design of multiscale structures for function integration[J]. Nano Today,2011,6:155-175.
    [35] Meyers M A, Chen P Y, Lopez M I, et al. Biological materials: A materials scienceapproach [J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4:626-657.
    [36] Chen P Y, McKittrick J, Meyers M A. Biological materials: functional adaptations andbioinspired designs [J]. Progress in Material Science,2012,57:1492-1704.
    [37] Chen Q, Pugno N M. Bio-mimetic mechanisms of natural hierarchical materials: Areview [J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,19:3-33.
    [38] Hu Y Z, Ma T B. Tribology of nanostructured surfaces in Comprehensive nanoscienceand technology [M]//Andrews D, Scholes G, Wiederrecht G. London: Academic Press,c2011:383-418.
    [39]赵宇光,任露泉,姜启川,等.一种梯度耐磨材料制备工艺与组织特征[J].农业工程学报,1998,14(2):59-63.
    [40] Li S H, Zeng Q Y, Xiao Y L, et al. Biomimicry of Bamboo Bast Fiber withEngineering Composite Materials[J]. Materials Science and Engineering,1995,C3:125-130.
    [41] Jain S, Kumar R, Jindal U C. Mechanical Behaviour of Bamboo and BambooComposite [J]. Journal of Material Science,1992,27:4598-4604.
    [42] Tong J, Ren L Q, Li J Q, et al. Abrasive wear behaviour of bamboo [J]. TribologyInternational,1995,28(5):323-327.
    [43]孙俊杰,王智芹,王宝刚,等.竹材的力学性能及磨料磨损性能研究[J].农机化研究,2011,(7):162-166.
    [44] Tong J, Ma Y H, Chen D H, et al. Effects of Vascular Fiber Content on Abrasive Wearof Bamboo [J]. Wear,2005,259:78-83.
    [45] Yakou T, Sakamoto S. Abrasive Properties of Bamboo [J]. Japanese Journal ofTribology,1993,38:491-497.
    [46] Tong J, Arnell R D, Ren L Q. Dry sliding wear behaviour of bamboo [J]. Wear,1998,221:37-46.
    [47] Chand N, Dwivedi U K, Acharya S K. Anisotropic Abrasive Wear Behaviour ofBamboo (Dentrocalamus strictus)[J]. Wear,2007,262:1031-1037.
    [48] Chand N, Dwivedi U K. High Stress Aabrasive Wear Study on Bamboo [J]. Journal ofMaterials Processing Technology,2007,183:155-159.
    [49]许艺,周俊兵,宋凡.珍珠母的微结构与力学行为研究进展[J].力学进展,2008,38(3):283-302.
    [50] Hirvonen J P, Lappalainen R, Koskinen J, et al. Wear and Friction of Unio CrassusShell in Dry Sliding Contact with Steel [J]. Materials Research Society SymposiaProceedings,1994,330:133-137.
    [51]佟金,杨亚洲,马云海.软体动物绢丝丽蚌壳体的低载低速干滑动摩擦和磨损.中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C],北京:中国农业机械学会,2003.
    [52] Tong J, Wang H, Ma Y, et al. Two-body Abrasive Wear of the Outside Shell Surfacesof Mollusk Lamprotula fibrosa Heude, Rapana venosa Balenciennes and Dosiniaanus Philippi [J]. Tribology letters,2005,19(4):331-338.
    [53]闫志峰,柴兴旺,沈生龙,等.环文蛤贝壳角质层摩擦学特性研究[J].农业机械学报,2012,43(S1):339-343.
    [54]邓志华.文蛤贝壳层状结构及其性能研究[D].长春:吉林大学生物与农业工程学院,2011.
    [55] Jia X, Ling X M, Tang D H. Microstructures and Friction-Wear Characteristics ofBivalve Shells [J]. Tribology International,2006,39:657-662.
    [56] Stempflé P, Brendlé M. Tribological Behaviour of Nacre-Influence of theEnvironment on the Elementary Wear Process [J]. Tribology International,2006,39:1485-1496.
    [57] Stempflé P, Djilali T. Thermal-induced wear mechanisms of sheet nacre in dry friction[J], Tribology Letters,2009,35:97-104.
    [58] Stempflé P, Pantalé O, Njiwa R K, et al. Friction-induced sheet nacre fracture: effectsof nanoshocks on cracks location [J], International Journal of Nanotechnology,2007,4(6):712-729.
    [59] Stempflé P, Pantalé O, Djilali T, et al. Evaluation of the real contact area in three-bodydry friction by micro-thermo analysis [J]. Tribology International.2010,43:1794-1805.
    [60] Stempflé P, Bourrat X, Rousseau M, et al. Nanotribology of nacre: anisotropicdissipation in a multiscale hybrid material [J], Tribology International,2013,63:250-264.
    [61] Stempflé P, Bourrat X, Njiwa R K, et al. A multiscale tribological study of nacre:Evidence of wear nanomechanisms controlled by the frictional dissipated power. The15th Nordic Symposium on Tribology, June12-15,2012[C]. Trondheim: Norway,c2012.
    [62]崔相旭,张宁,王煜明,等.穿山甲鳞片成分与结构及其减粘脱土分析[J].农业工程学报,1990,6(3):15-22.
    [63]马云海,佟金,周江,等.穿山甲鳞片表面的几何形态特征及其性能[J].电子显微学报,2008,27(4):336-340.
    [64] Tong J, Ren L Q, Chen B C. Chemical Constitution and Abrasive Wear Behavior ofPangolin Scales [J]. Journal of Materials Science Letters,1995,14(20):1468-1470.
    [65] Tong J, Ma Y H, Ren L Q, et al. Tribological Characteristics of Pangolin Scales inDry Sliding [J]. Journal of Materials Science Letters,2000,19(7):569-572.
    [66] Tong J, lv T B, Ma Y H, el al. Two-body Abrasive Wear of the Surface of PangolinScales [J]. Journal of Bionic Engineering,2007,4(2):77-84.
    [67] Arnold E N. History and function of scale microornamentation in lacertid lizards [J].Journal of Morphology,2002,252:145-169.
    [68] Rechenberg I, El Khyari A R. The sandfish of the Sahara: A model for friction andwear reduction [EB/OL]. Berlin: Technical University of Berlin,2007[2007-08-14].http://www.bionik.tu-berlin.de/institut/safiengl.html.
    [69] Baumgartner W, Saxe F, Weth A, et al. The Sandfish's Skin: Morphology, Chemistryand Reconstruction [J]. Journal of Bionic Engineering,2007,4(1):1-9.
    [70]张占立,杨继昌,丁建宁,等.蛇腹鳞表面的超微结构及减阻机理[J].农业机械学报,2007,38(9):155-158.
    [71]胡友耀,丁建宁,杨继昌,等.蛇类表皮的生物摩擦学性能研究[J].润滑与密封,2006,11(总第183期):56-59.
    [72] Hazel J, Stone M, Grace M S, et al. Nanoscale Design of Snake for ReptationLocomotions via Friction Anisotropy[J]. Journal of Biomechanics,1999,32:477-484.
    [73]张昊,戴振东,杨松祥等.蛇腹鳞的结构特点及其摩擦行为[J].南京航空航天大学学报,2006,40(3):360-363.
    [74] Abdel-Aal, H A, El Mansori M, Mezghani S. Multi-Scale Investigation of SurfaceTopography of Ball Python (Python regius) Shed Skin in Comparison to Human Skin[J]. Tribology Letters,2010,37(3):517-527.
    [75] Abdel-Aal H A, Vargiolu R, Zahouani H, et al. A study on the frictional response ofreptilian shed skin [J]. Journal of Physics Conference Series,2011,311,012-016.
    [76] Abdel-Aal H A, El Mansori M. Python Regius (Ball Python) shed skin: Biomimeticanalogue for function-targeted design of tribo-surfaces In Biomimetics-MaterialsStructures and Processes Examples Ideas and Case Studies [M]//Bruckner D,Gebeshuber I C, Gruber P. Berlin: Springer, c2011.
    [77] Abdel-Aal H A, Vargiolu R, Zahouani H, et al, Preliminary investigation of thefrictional response of reptilian shed skin [J]. Wear,2012,290-291:51-60.
    [78] Abdel-Aal F. On Surface Structure and Friction Regulation in Reptilian LimblessLocomotion [J], Journal of the Mechanical Behavior of Biomedical Materials,22:115-135.
    [79] Adams M J, Briscoe B J, Wee T K. The differential friction effect of keratin fibers [J].Journal of Physics D: Applied Physics,1990,23:406-414.
    [80] Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines [J]. Science in China Series E: Technological Sciences,2009,52(2):273-284.
    [81] Ren L Q, Liang Y H. Biological couplings: classification and characteristic rules [J].Science in China Series E: Technological Sciences,2009,52(10):2791-2800.
    [82]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2011.
    [83]高峰,黄河,任露泉.新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验[J].吉林大学学报(工学版),2008,38(3):586-590.
    [84]高峰.沙漠蜥蜴耐冲蚀磨损耦合特性的研究[D].长春:吉林大学生物与农业工程学院,2008.
    [85] Han Z W, Zhang J Q, Ge C, et al. Anti-Erosion Function in Animals and itsBiomimetic Application [J]. Journal of Bionic Engineering,2010,7(Suppl.):50-58.
    [86]张俊秋.耦合仿生抗冲蚀功能表面试验研究与数值模拟[D].长春:吉林大学生物与农业工程学院.2011.
    [87] Wang X J, Cong Q, Zhang J J. Multivariate coupling mechanism of NOCTUIDAEmoth wings’ surface superhydrophobicity [J]. Chinese Science Bulletin,2009,54(4):569-575.
    [88]弯艳玲,丛茜,王晓俊.蜻蜓翅膀表面疏水性能耦合机理[J].农业机械学报,2009,40(9):205-208.
    [89] Han Z W, Wu L Y, Qiu Z M. Microstructure and structural color in wing scales ofbutterfly Thaumantis diore [J]. Chinese Science Bulletin,2009,54(4):535-540.
    [90]邱兆美,韩志武.蝴蝶鳞片微观结构与模型分析[J].农业机械学报,2009,40(11):193-196,207.
    [91] Han Z W, Niu S C, Shang C H, et al. Light trapping structures in wing scales ofbutterfly Trogonoptera brookian [J]. Nanoscale,2012,4(9):2879-2883.
    [92] Liang G Q, Wang J C, Chen Y. The Study of Owl’s Silent Flight and Noise Reductionon Fan Vane with Bionic Structure [J]. Advances in Natural Science,2010,3(2):192-198.
    [93] Chen K, Liu Q P, Liao G H, et al. The Sound Suppression Characteristics of WingFeather of Owl (Bubo bubo)[J]. Journal of Bionic Engineering,2012,9(2):192-199.
    [94]陈坤,刘庆平,廖庚华,等.利用雕鸮羽毛的消音特性降低小型轴流风机的气动噪声[J].吉林大学学报(工学版),2012,42(01):79-84.
    [95] Huang H, Zhang Y, Ren L Q. Particle Erosion Resistance of Bionic Samples Inspiredfrom Skin Structure of Desert Lizard, Laudakin stoliczkana [J]. Journal of BionicEngineering,2012,9(4):465-469.
    [96]黄河.基于沙漠蜥蜴生物耦合特性的仿生耐冲蚀试验研究[D].长春:吉林大学生物与农业工程学院,2012.
    [97] Han Z W, Zhang J Q, Ge C, et al. Erosion Resistance of Bionic Functional SurfacesInspired from desert scorpions [J]. Langmuir,2012,28,2914-2921.
    [98] Gao K, Sun Y H, Ren L Q, et al. Design and analysis of ternary coupling bionic bits[J]. Journal of Bionic Engineering,2008,5(Suppl.):53-59.
    [99]徐良.硬岩钻进用仿生耦合金刚石取心钻头研究[D].长春:吉林大学生物与农业工程学院,2009.
    [100]王传留,孙友宏,刘宝昌,等.仿生耦合孕镶金刚石钻头的试验及碎岩机理分析[J].中南大学学报(自然科学版),2011,42(5):1321-1325.
    [101]李小洋,孙友宏,王传留,等.仿生耦合孕镶金刚石钻头底唇面非光滑形态的优化[J].探矿工程(岩土钻掘工程),2012,39(5):75-77.
    [102]韩志武,董立春,王玉洁,等.齿面微观形态对齿轮耐磨性能影响的试验研究[J].摩擦学学报,2008,28(6):503-506.
    [103]宋起飞,刘勇兵,周宏,等.激光制备仿生耦合制动毂的摩擦磨损性能[J],吉林大学学报(工学版),2007,37(5):1069-1073.
    [104] Zhao Y, Ren L Q, Tong X, et al. Frictional Wear and Thermal Fatigue Behaviours ofBiomimetic Coupling Materials for Brake Drums[J]. Journal of Bionic Engineering,2008,5(Suppl.):20-27.
    [105]孙娜.不同仿生耦合单元体对蠕墨铸铁摩擦磨损性能的影响[D].长春:吉林大学生物与农业工程学院,2010.
    [106] Zhou H, Guo Q C, Lin P Y, et al. Influence of H13steel unit on wear behavior ofvermicular cast iron [J]. Applied Surface Science,2008,255(5):3394-3399.
    [107] Guo Q C, Zhou H, Wang C T, et al. Effect of medium on friction and wear propertiesof compacted graphite cast iron processed by biomimetic coupling laser remeltingprocess [J]. Applied Surface Science,2009,255(12):6266-6273.
    [108] Liang Y H, Huang H, Li X J, et al. Fabrication and Analysis of the Multi-CouplingBionic Wear-Resistant Material[J]. Journal of Bionic Engineering,2010,7(Suppl.):24-29.
    [109]刘维民,薛群基.摩擦学研究及发展趋势[J].中国机械工程,2000,11(1-2):77-80.
    [110]刘洪志.磨损与磨损可靠性[J].中国制造业信息化.2009,38(17):65-67,70.
    [111] Gebeshuber I C. Biotribology inspires new technologies [J]. Nanotoday,2007,2(5):30-37.
    [112] Tian X M, Han Z W, Li X J, et al. Biological coupling anti-wear properties of threetypical molluscan shells Scapharca subcrenata, Rapana venosa and Acanthochitonrubrolineatus [J]. Science in China Series E: Technological Sciences,2010,53(11):2905-2913.
    [113] Lin A, Meyers M A. Growth and structure in abalone shell [J]. Materials Science andEngineering A,2005,390(1):27–41.
    [114] Paula S M D, Silveira M. Studies on molluscan shells: contributions from microscopicand analytical methods [J]. Micron,2009,40(7):669-690.
    [115] Stempflé P, Pantalé O. Rousseau M, et al. Mechanical properties of the elementalnanocomponents of nacre structure [J]. Materials Science and Engineering: C,2010,30(5):715-721.
    [116] Heinemann F, Launspach M, Gries K, et al. Gastropod nacre: Structure, properties andgrowth-biological, chemical and physical basics [J]. Biophysical Chemistry,2011,153:126-153.
    [117] Zhang R, Lu Z Z, Li J J. Abrasive Wear of Geometrical Surface Structures ofScapharca subcrenata and Burnt-end Ark against Soil [J]. Advantage in Naturalscience,2010,3(2):213-217.
    [118]卢智利.蚶类表面形貌磨料磨损行为的试验与仿真研究[D].长春:吉林大学生物与农业工程学院,2011.
    [119]江亲瑜,李宝良,孙晓云.凸轮机构磨损数值仿真软件研制[J].润滑与密封,2000,25(4):2-4.
    [120]林敏.基于计算接触力学的磨损仿真分析[D].广州:广东工业大学建设学院,2006.
    [121]汪选国,严新平,李涛生,等.磨损数值仿真技术的研究进展[J].摩擦学学报,2004,24(2):188-192.
    [122]赵维涛,陈孝珍.有限元法基础.北京:科学出版社,2009.
    [123] Crow C T. Review-Numerical models for dilute gas-particle flows [J]. Journal ofFluids Engineering, Transactions of the ASME,1982,104:297-303.
    [124] Durst F, Milojevic D, Schonung B. Eulerian and Lagrangian Predictions of ParticulateTwo-Phase Flows: A Numerical Study [J]. Applied Mathematical Modelling,1984,8(4):101-115.
    [125]杨敏官,刘栋,康灿,等.离心泵叶轮内部伴有盐析流场的分析[J].农业机械学报,2006,37(12):83-86.
    [126]蔡英亚张英魏若飞.贝类学概论(修订版)[M].上海:上海科学技术出版社,1995.
    [127]任露泉,梁云虹.生物耦元及其耦联方式[J].吉林大学学报(工学版),2009,39(6):1504-1511.
    [128] Ren L Q, Liang Y H. Biological couplings: Function, characteristics andimplementation mode [J]. Science in China Series E: Technological Sciences,2010,53(2):379-387.
    [129]陈士勇,王令充,嵇晶,等.双壳类贝壳的应用研究进展[J].中国海洋药物杂志,2011,30(1):58-64.
    [130] Yang W, Zhang G P, Zhu X F, et al. Structure and mechanical properties ofSaxidomus purpuratus biological shells [J]. Journal of the Mechanical Behavior ofBiomedical Materials,2011,4:1514-1530.
    [131] Yang W, Zhang G P, Zhu X F, et al. Structure and mechanical properties ofSaxidomus purpuratus biological shells [J]. Journal of the Mechanical Behavior ofBiomedical Materials,2011,4:1514-1530.
    [132]材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990.
    [133]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1998.
    [134]沈新荣.抗磨肋条减少颗粒两相流对壁面磨损的机理研究[D].杭州:浙江大学航空航天学院,1998.
    [135]佟金,荣宝军,马云海,等.仿生棱纹几何结构表面的土壤磨料磨损[J].摩擦学学报,2008,28(3):193-197.
    [136]张金波.自由式磨料磨损下棱纹形仿生结构表面摩擦学行为[D].长春:吉林大学生物与农业工程学院,2009.
    [137]潘家正.湍流减阻新概念的实验探索[J].空气动力学学报,1996,14(3):304-310.
    [138] Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a ribletsurface [J]. Experiments in Fluids,2001,30(2):153-166.
    [139]刘博,姜鹏,李旭朝,等.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报,2008,22(7):14-17,21.
    [140] Okumura K, De Gennes P G. Why is nacre strong? Elastic theory and fracturemechanics for biocomposites with stratified structures [J]. European PhysicalJournal E,2001,4:121-127.
    [141] Neves N M, Mano J F. Structure/mechanical behavior relationships incrossed-lamellar sea shells [J]. Materials Science and Engineering: C,2005,25(2):113–118.
    [142]梁艳,赵杰,王来,等.贝壳的力学性能和增韧机制[J].机械强度,2007,29(3):507-511.
    [143] Zmitrowicz A. Models of Kinematics Dependent Anisotropic and HeterogeneousFriction [J]. International Journal of Solids and Structures,2006,43:4407-4451.
    [144]戴雄杰.摩擦学基础[M].上海.上海科学技术出版社,1984.
    [145] Asmund Huser, Oddmund Kvernvold. Prediction of sand erosion in process and pipecomponents[C]. Proc1st North American Conference on Multiphase Technology,1998,31:217-227.
    [146]徐姚,张政,程学文,等.旋转圆盘上液固两相流冲刷磨损数值模拟研究[J].北京化工大学学报,2009,29(3):12-16.
    [147]李智.井下水力喷射压裂工具结构优化设计研究[D].西安:西安石油大学机械工程学院,2011.
    [148]李金明,王家序,肖科.螺旋槽水润滑橡胶合金轴承沙砾侵蚀磨损研究[J].润滑与密封,2012,37(8):43-48,80.
    [149] Liu X B, Cheng L J. Boundary layer effects on solid particle motion and erosivewear [J]. Journal of Hydrodynamics,1996,11(4):9-17.
    [150] Liu X B. Studies of solid-liquid two-phase turbulent flows and wear in hydraulicturbomachinery [J]. Journal of Hydrodynamics,1996,11(6):606-609.
    [151]刘小兵,程良骏.固液两相流和颗粒磨损的数值模拟[J].水利学报,1996,(11):20-27.
    [152] Liu X B, Zhang J C. Numerical prediction of silt abrasive erosion in hydraulicturbine [J]. Journal of Hydrodynamics,1999,14(1):103-110.
    [153]欧顺冰.含沙水中混流式水轮机三维内流场的数值模拟[D].成都:西华大学能源与环境学院,2012.
    [154]丁源,吴继华. CAX工程应用丛书:ANSYS CFX14.0从入门到精通[M].北京:清华大学出版社,2013.
    [155]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社.
    [156]代真,沈士明.液固两相流中金属冲刷腐蚀的研究[J].四川化工,2006,9(4):30-33,43.
    [157]邢建东,高义民,张国赏.不锈钢与碳钢的液固两相流冲刷腐蚀磨损研究[J].西安交通大学学报,2004,38(5):469-473.
    [158]牟军.金属及陶瓷材料冲蚀研究的进展[J].材料科学与工程,1994,12(2):9-16.
    [159] Shimizu K, Noguchi T, Seitoh H, et al. FEM analysis of the dependency on impactangle during erosive wear [J]. Wear,1999,233-235:157-159.
    [160] Shimizu K, Noguchi T, Seitoh H, et al. FEM analysis of erosive wear [J]. Wear,2001,250(1):779-784.
    [161] Aquaro D, Fontani E. Erosion of Ductile and Brittle Materials [J]. Meccanica,2001,36(6):651-661.
    [162] Wang Y F, Yang Z G. Finite element model of erosive wear on ductile and brittlematerials [J]. Wear,2008,265(5):871-878.
    [163]廉晓庆,蒋明学,白顶有.基于ANSYS/LS-DYNA的磨料冲击行为分析[J].硅酸盐通报,2010,29(2):409-412.
    [164]王泽鹏,胡仁喜,康士廷,等. ANSYS13.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2011.
    [165]陈斌,吴晓金,吴新燕,等.贝壳的层状微结构与仿生陶瓷/聚合物复合材料的研究[C].全国首届青年复合材料学术交流会论文集,2007.
    [166]李伟光.抗固体粒子冲蚀磨损CrNx镀层的性能研究[D].哈尔滨:哈尔滨工程大学材料科学与化学工程学院,2009.
    [167]王丽.基于有限元法的陶瓷喷砂嘴冲蚀磨损机理研究[D].济南:山东轻工业学院机械工程学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700