用户名: 密码: 验证码:
电冶熔铸钢基复合材料组织及磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用电冶熔铸工艺成功制备了钢基复合材料。研究了以GCr15轴承钢为基体,分别添加不同含量的WC、TiC、SiC颗粒后所得复合材料的组织,重点分析了其磨损性能,探索了不同成分材料的磨损机理。
     WC/钢复合材料中,WC颗粒含量较低的复合材料在高温下溶解严重,基体形成不连续网状复式碳化物沿晶界分布,基体中由于快速冷却析出了许多细小的原位WC颗粒;WC颗粒含量较高的复合材料中保持了一定量的原始颗粒,在基体中均匀分布;大颗粒WC颗粒周围形成了厚达数微米的反应层,界面结合强度大为提高。
     TiC/钢复合材料中,原始TiC颗粒很好的保留在基体中;而SiC/钢复合材料中SiC几乎全部溶解于基体,但在基体中存在大量原位析出的SiC小晶粒。
     磨损试验中发现,所有复合材料的耐磨性均比基体材料有不同程度的提高,含大颗粒WC复合材料的耐磨性比含小颗粒WC复合材料的耐磨性要好,颗粒含量、大小、间距对材料的磨损性能都有影响;通过对磨痕形貌的观察,认为基体材料GCr15的磨损机理以粘着磨损和磨粒磨损为主,加入硬质颗粒后,以磨粒磨损为主,而且随硬质颗粒含量的增加,粘着逐步减轻。
Steel matrix composites have been produced by electroslag melting and casting technique. The microstructure of composites with different content hard particles in GCrlS matrix was researched. The wear resistance and mechanism were analyzed.
    In the composites with lower content WC particles, the higher solution of WC particles makes cemented carbide compound along the grain boundary and small in-situ WC particles are found in the matrix. In the composites with higher content WC particles, the source WC particles are kept partly and distributed in the matrix uniformly. The interface between large WC particles and steel matrix forms the reaction layer of several mms which enhances the toughness of interface highly.
    In the composites reinforced by TiC particles, the source particles are kept unchanged. While all of SiC particles dissolve in the matrix and many small in-situ SiC particles are found in the matrix.
    We also have found that the wear resistance of all the composites is obviously improved to different extent. The resistance of composites with large hard particles is better than the composites with small hard particles. The wear resistance of the composites is influenced by the contents, the sizes and the distance of the hard particles obviously. The SEM imagines of worn surface show that the wear mechanism of GCrl5 matrix is adhesive wear and abrasive wear, the wear mechanism of composites reinforced by hard particles is mainly abrasive wear. The adhesive wear is decreased with the increase of the content of hard particles accordingly.
引文
[1] 陈华辉编著,现代复合材料,北京:中国物资出版社;1998
    [2] 王荣国主编,复合材料概论,哈尔滨;哈工大出版社;1999
    [3] G.皮亚蒂编,赵渠森等译,复合材料进展,北京;科学出版社;1984
    [4] 吴人洁.金属基复合材料的现状与展望.金属学报,1997,33(1):78-82.
    [5] 张静,潘复生,陈万志.铁基复合材料的现状与发展.材料导报,1995,(1):67-71.
    [6] Lbrabim I.A. ,et al. Particle reinforced metal matrix composites.Mter.Sci, 1991,26:1137-1156
    [7] Lloyd D J. Partible Reinforced Aluminum and Magnesium Matrix Composites.International Materials Reviews, 1994,39(1): 1~22
    [8] 欧阳柳章.外加颗粒增强金属基复合材料的现状及展望.中国铸造装备与技术,2000,(1):3-7
    [9] 王俊.颗粒增强技术及复合材料的发展概况.铸造技术,1998,(3):37-41
    [10] 张淑英.颗粒增强金属基复合材料的研究进展.材料导报,1996(2):66-71
    [11] 曹阳,李国俊,陈复民.金属基复合材料的摩擦学研究进展.机械工程材料,1992,16(4):1-3.
    [12] D W A Rees. Deformation and fracture of metal matrix particulate composites under combined loadings. Composites Part A, 1998,29 (1): 171-182.
    [13] S C Baxter, M I Hossain, L L Graham. Micro mechanics based random material property fields for particulate reinforced composites. Internation Journal of Solids and Structures, 2001, 38(9): 9209-9220.
    [14] 吴洁君,王殿斌,桂满昌.SiC_η增强铝基复合材料的铸造缺陷分析.金属学报.1999,35(1):103-105.
    [15] Zhang D L, Brindly C, The Microstructure of Alumium Alloy Metal Matrix Composites Manufactured by Squeeze Casting. Material Science,1993 (28):2267~2272
    [16] Labib A, Effect of Solidification Rate on the Microstructure of Two AI-Si-10vol% SiC Particle Composites Coatings. Materials Science and Engineering. 1993A160. 81~90
    [17] Nukmit, Flemings MC. In situ synthesis of TiC particles reinforced aluminium matrix composites. Matall Trans, 1995,A26(7): 1884-1887
    [18] 隋贤栋,罗承萍,欧阳柳章等.铸造SiCp/AI-Si复合材料中的“界面Si”行为.中国有色金属学报,1999,9(增刊1):20-24.
    [19] 朱明原,史文,杨森龙等.电磁搅拌作用对铝合金显微组织的影响.中国有
    
    色金属学报,1999,9(增刊1):29-34.
    [20] 李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望.铸造,2002,51(4):205-20824
    [21] 徐波,丁厚福,郑治祥.SiC颗粒增强铁基复合材料的现状及展望.合肥工业大学学报,2002,25(1):19-22
    [22] 王恩泽,徐学武,邢建东.颗粒增强钢基铸造复合材料研究.材料科学与工程,1996,14(4):195-199
    [23] 朱正吼,陈其善.铸造SiC/钢基复合材料中粒子分布特点.热加工工艺,1995,(2):8-9.
    [24] 孙国雄.颗粒增强金属基复合材料的制备技术和界面反应与控制.特种铸造及有色合金,1998,(4):12-17.
    [25] 许斌.改善碳化钨颗粒与高铬铸铁界面结合的效果与机理.热加工工艺,2002,(1):9-11.
    [26] Rohatgi P K. Solidification of Cast Metal-ceramic Particle Composites. International Metal Reviews, 1996 (3):115
    [27] Kang C G and Rohatgi P K. Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation.Metallurgica and Materials Transaction, 1996, 27B: 277~285
    [28] 李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望.铸造,2002,51(4):205-208.
    [29] 王箕,王建民.SiC增强铁基复合材料的试验[J].中国铸造装备与技术,1997,(6):27-29.
    [30] 宋延沛,李秉哲,王文焱等.WC颗粒增强铁基复合材料辊环的研究.机械工程学报,2001,11:99-102.
    [31] 蒋业华.周荣.渣浆泵用WC/铁基表面复合材料的研究.铸造,2002,51(3):170-172
    [32] 严有为.金属基原位(in situ)复合材料的研究现状及发展趋势(上).特种铸造及有色合金,1998(1):47-49
    [33] 王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展.铸造技术,2001,(2):42-45..
    [34] 朴东学.铸造金属基复合材料的现状及发展方向.铸造,2000(增刊):601-608
    [35] 牛建平,戴鹏芳.铸造金属基颗粒复合材料.机械工程材料,1993,17(5):1-3
    [36] 石雯,王玉玮,施廷藻.金属铸造颗粒复合材料的研究现状及发展.铸造,1992.7:27-30
    [37] 张丽英,黄倬等.喷射成形WC颗粒增强高速钢基复合材料中WC的颗粒行为.粉末冶金技术,1998,16(2):111-115.
    
    
    [38] 王恩泽.铸渗法制备颗粒增强钢基复合材料的研究.复合材料学报,1998,15(2):12-17.
    [39] 于思荣.铸造WC颗粒/中锰钢表面复合材料制作新工艺及理论研究.吉林工业大学学报,1996(4):17-19
    [40] Zhou X B,Dehosson J Th M. Reaction wetting of liquid metal on ceramic substrates. Acta Mater, 1996,44(2):421-426
    [41] Sui Xiao dong, Luo Cheng Ping,et al. The fabrication and properties of particle reinforced cast metal matrix composites. Mat.Proc.Tech, 1997,63:426
    [42] 杨滨,段先进,刘勇等.熔铸-原位反应喷射成形金属基复合材料制备新技术.中国有色金属学报,1999,9(增刊1):110-113.
    [43] Zhang Li Ying, Tian Haige, et al. WC particle-reinforced high speed steel composite fabricated by spray forming. J of USTB(English),1997,4(3): 14
    [44] 李俊,钱翰城,彭晓东.铸造金属基颗粒复合材料.机械,1996,23(3):44-46
    [45] 张丽英.超声雾化沉积WC颗粒增强高速钢复合材料的制备.北京科技大学学报,1997,19(6):595-598
    [46] 梅志,杨峰,严有为.原位合成TiC颗粒增强铁基复合材料的微观结构研究.材料工程,2000,(6):16-19.
    [47] 刘海峰,刘耀辉,于恩荣.原位合成VC颗粒增强钢基复合材料组织及形成机理.复合材料学报,2001,18(4):58-63.
    [48] 严有为,魏伯康,傅正义.原位TiC颗粒增强铁基复合材料及组织形成机理.金属学报,1999,35(10):1117-1120.
    [49] Terry B S, Chinyamakobvu O S. In situ production of Fe-TiC composites by reactions in liquid iron alloys. Mater.Sci.Lett., 1991,(10);628-629.
    [50] Srivatasan T S, Ibraim I A, Mohamed F A, et al., Processing Techniques for Particulate-reinforced Metal Matrix Composites. Material Science.1991 (26): 5965~5978
    [51] Nukim T, Fleming M C. In situ synthesis of TiC Particulate Reinforced Aluminum Matrix Composites. Metall Trans. 1995, 26 (7):1884~1887
    [52] Lui Z, Fredriksson H. On the Reaction Between Fe-Ti and Fe-C liquids under Microgravity. Metall Trans. 1996, 27A(2): 407~414
    [53] Lui Z, Fredriksson H. On the Kinetics of Carbide Precipitation during Reaction between Graphite and Fe-Ti liquids under Microgravity. Metall Trans.1997, 28A(3):707~719
    [54] Chrysanthou A, Davies N M, Li J et al. Reaction synthesis of Carbide-reinforced cast iron. Mater. Sci. Lett., 1996 (15): 473~474
    [55] 陈希春,冯涤,傅杰等.电渣冶金的最新进展.钢铁研究学报,2003,15(2):62-67
    
    
    [56] 郭景杰,张铁军,苏彦庆等.电磁技术在铸造中的应用与研究.特种铸造及有色合金,2002,(3):37-39
    [57] 李朝霞,郑贤淑,曹志强等.电磁铸造铝合金大板坯的变形研究.铸造,2000(8):460-463
    [58] Holzgruber W, Holzgruber H. Innovative Electroslay Remelting Technologies.MPT International, 2000,23(2);46-48
    [59] 尤显卿,郑玉春,黄曼平等.电冶熔铸碳化钨钢结硬质合金的显微组织研究.矿冶工程.2003,23(2):87-90
    [60] Anon. High Quality Billets by Electroslay Rapid Remelting. Steel Times International, 1997,21 (7);20-25.
    [61] D.斯科特(英).上海市机械工程学会摩擦学学组译.工业摩擦学.北京:机械工业出版社.1982.
    [62] 王永国等.硬质覆层材料的磨损性能研究.机械工程材料.2002,26(4):30-34.
    [63] 张清主编.金属摩擦和金属耐磨性手册.北京:冶金工业出版社,1991.
    [64] Gordo G, Velasco F, Anton N, Torralba J M. Wear mechanisms in high speed steel reinforced with (NbC)p and (TaC)p MMCs. Wear, 2000 (239):251-259.
    [65] Sahin Y, Murphy S. The effect of sliding speed and microstructure on the dry wear properties of metal-matrix composites. Wear, 1998 (214):98-106.
    [66] Velasco F, Gordo E, Isalel R. Mechanical and wear behavior and high speed steel reinforced with TiCN particle. International Journal of Refractory Metal &Hard Material. 2001, (19): 319-323.
    [67] Pagounis E, Talvitie M, Lindroos VK. Influence of reinforcement volume fraction and size on the microstructure and abrasive wear resistance of hot isostatic pressed white iron matrix composite. Metall Mater Trans.1996,27A(12);4171-4181
    [68] Hans berns, Brigit Wewers. Development of an abrasion resistant steel composite with in situ TiC particles. Wear, 2001(251),1386-1395.
    [69] Velasco F, Gordo E, Isalel R. Mechanical and wear behavior and high speed steel reinforced with TiCN particle. International Journal of Refractory Metal &Hard Material.2001, (19): 319-323.
    [70] Hans Berns, Sinasio, Franco D. Effect of coarse hard particle on high temperature sliding abrasion of new metal matrix composites. Wear, 1997,(203-204): 608-614.
    [71] 肖志喻,李元元,夏伟等.SiC/钢基复合材料摩擦磨损特性研究.机械工程材料,1998,22(3):17-19.
    [72] 严有为,魏伯康,傅正义等.TiC颗粒含量尺寸对原位TiC/Fe复合材料耐
    
    磨性的影响.摩擦学学报,1999,19(3):193-197.
    [73] 鲍崇高,王恩泽.颗粒体积分数对Al_2O_3钢基复合材料高温抗磨性的影响.复合材料学报,2001,18(2):61-64.
    [74] 严有为,魏伯康,傅正义.淬火处理对原位TiCp/Fe复合材料组织及耐磨性的影响.摩擦学学报,2000,20(1):6-9.
    [75] 陈文华等.密度对铁基冶金材料多元共渗层耐磨性能的影响.热加工工艺,1997,(5):38-39.
    [76] 蒋业华.颗粒体积分数对WC/铁基表面复合材料冲蚀磨损性能的影响.铸造,2002,51(7);428-430
    [77] 李力军,杨瑞林.新型铸造WC颗粒复合耐磨材料的研究.硬质合金,1998,15(4):208-212
    [78] 许大庆.铁基颗粒复合材料的组织与抗冲蚀性能.特种铸造及有色合金,1998(6):8-10
    [79] 尤显卿,任昊,郑玉春等.电渣熔铸WC/钢复合材料的磨损性能研究.特种铸造及有色合金,2003,(6)19-21.
    [80] 尤显卿,任昊,斯廷智.电冶 WC/钢复合材料组织及耐磨性研究.铸造,2003,52(12),1170-1172.
    [81] Berns H, Koc:h S. Influence of abrasive particles on wear mechanism and wear resistance in sliding abrasion tests at elevated temperatures. Wear. 1999,233 (6):424~430
    [82] Sheikh-Ahamed J Y, Bailyey J A. The wear characteristics of some cemented tungsten carbide in machine particleboard. Wear. 1999, 225 (1):256~266
    [83] Voyer J, Marple B R. Sliding wear behavior of high velocity oxy-fuel and high power plasma spray-processed tungsten carbide-based cermet coatings.Wear. 1999, 229(2):135~145
    [84] Kiourtsidis, Grigoris E, Skolianos, Stefanos M, Wear behavior of artificially aged AA2024/40 μ mSiCp composites in comparison with conventionally wear resistant ferrous materials. Wear. 2002, 253 (6):946~956
    [85] Vardavoulias M, Durand J M, Jeandin M. Role of reinforcing ceramic particles in the wear behaviour of polymer-based model composites. Wear.1995, 253 (2):833~839
    [86] Albertin E, Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear.2001,250 (5): 492~501
    [87] Martin B, Vincent L, Wright C S. Fretting wear and cracking in sintered
    
    metal matrix composites. Wear. 2001, 248 (1-2): 65~74
    [88] Liao H, Normand B, Coddet C. Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings. Wear. 2000, 124(2-3):235~242
    [89] Sheikh-Ahamed J Y, Bailey J A. The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear, 1999,225 (1):256~266
    [90] Taha, Mohamed A. Practicalization of cast metal matrix composites (MMCCs). Materials and Design, 2001,22(6): 431~441
    [91] Shangguau D, Ahuja S. An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liqui Interface.METTRAN.1992 (234):669
    [92] Hashim J, Looney L, Hashmi M S J. Particle distribution in cast metal atrix composites, Part Ⅰ. Journal of Materials Processing Technology, 2002,123 (2):251~257
    [93] Hashim J, Looney L, Hashmi M S J. Particle distribution in cast metal matrix composites, Part Ⅱ, Journal of Materials Processing Technology.2002, 123 (2): 258~263
    [94] Joshua Pelleg. Reactions in the matrix and interface of the Fe-WC metal matrix composite system. Material Science & Engineering, 1999,A269: 225-241.
    [95] 王溪,胡汉起.WC_η/Fe-Ni钢基复合材料的界面.钢铁研究学报,1998,10(4):46-49.
    [96] 杨瑞成,王军民,王夏冰等.颗粒复合材料中硬质相(WC)与钢基体的相互作用及其影响.金属热处理,1998,(12):7-9.
    [97] 游兴河.WC在WC/钢基复合材料中的溶解行为.复合材料学报,1994,(3):29-35.
    [98] 丁厚福.WC溶解对钢结硬质合金组织的影响.材料科学与工艺,1997,5(1):86-88.
    [99] 储少军,王淑生,素示林等.ESR前后硬质合金中人WC形貌变化的分形研究.钢铁研究学报,2001,13(1):54-59.
    [100] 游兴河.WC系钢结硬质合金断裂过程和断裂机制的研究.粉末冶金技术.1988,3:141-146.
    [101] Fest E.A.Interfacial phenomena in metal-matrix composites.Composites, 1994,25.(2):75-86
    [102] 杨瑞成,聂福荣,师瑞霞等.WC/钢基合金的强韧化因素分析.甘肃工业大学学报,2001,27(1),22-26.
    [103] 高彩桥,编著.摩擦金属学.哈尔滨工业大学出版社,1988
    
    
    [104] 温诗铸.摩擦学原理.清华大学出版社,1990
    [105] Hans Berns, Sinasio, Franco D. effect of coarse hard particle on high temperature sliding abrasion of new metal matrix composites. Wear, 1997,(203-204): 608-614.
    [106] Dogan O N, Hawk J A, Wilson R D, Govier R D. Wear of titanium carbide reinforced metal matrix composite. Wear, 1999 ,(225-229):725-769.
    [107] Dogan O N, Hawk J A, Tylczalt J. H. Wear of cast chromium steel with TiC reinforcement. Wear,2001, (250):462-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700