用户名: 密码: 验证码:
过共晶AL-20%Si合金Si相形态的演变及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车发动机向着高速、大功率和低排放等方向的发展,对材料耐磨性能、机械性能以及尺寸稳定性的要求越来越高。过共晶Al-Si合金由于具有优良的铸造性能、低的密度、低的热膨胀系数、优良的导热性能、高的强度、较好的耐磨和耐腐蚀性能被广泛地应用在航空航天和汽车领域。在汽车领域,过共晶A1-Si合金作为传统铸铁的理想替代材料用以制作汽车发动机用活塞和缸套等耐磨零部件,不仅可以提高发动机的工作效率,而且可以减轻汽车重量、提高燃油利用率和减少尾气排放。然而,过共晶Al-Si合金铸造组织中,初生Si为粗大不规则的块状、五瓣星状和板片状,共晶Si为粗大的针片状,它们在基体上的分布严重割裂了基体的连续性,并且尖端导致局部的应力集中,明显降低了合金的力学性能和耐磨性能,限制了过共晶A1-Si合金的工业化应用。为进一步开发过共晶A1-Si合金的性能潜力,扩大工业化的应用范围,开展过共晶A1-Si合金中初生Si和共晶Si形态演变的研究具有现实意义。
     目前,国内外常用的过共晶Al-Si活塞合金的含Si量为17%-22%。该范围的合金相比较高Si含量的Al-Si合金具有窄的结晶温度间隔,具有优良的流动性,从而使合金具有良好的铸造性能。因此,本论文选用Al-20%Si合金为研究对象,研究了能够同时细化和变质初生Si和共晶Si的单一变质剂或细化处理技术,包括稀土变质剂、添加合金元素、原位自生γ-A1203颗粒、熔体的热速处理技术和热扩散处理技术,为过共晶Al-Si合金广泛地工业化应用提供理论依据和科学指导。
     过共晶A1-20%Si合金中加入单一的稀土元素Ce和Er后,发现稀土Ce和Er不仅能够细化初生Si,而且能够变质共晶Si组织。随着稀土Ce含量从0.3%增加到1.0%,初生Si的形态从粗大不规则块状、板片状和五瓣星状转变成边缘和端部钝化的块状,且较均匀地分布在合金基体上,其平均尺寸从192μm减小到大约为33μm;共晶Si由原始铸态时的粗大针片状细化为细小的纤维状组织和粒状组织;当加入0.5%Er时,初生Si细化为端部和边缘钝化的细小块状,平均尺寸减小到41μm,共晶Si变质为细小的珊瑚状纤维组织。但是,当添加量为0.8%时出现了初生Si和共晶Si的粗化现象;α-Al的二次枝晶间距发生了先减小后增大的现象。
     已有的研究都集中在合金元素的添加对Al-Si合金中析出相以及对合金性能的影响,而没有研究合金化处理对过共晶Al-Si合金中Si相形貌和尺寸的影响。本论文通过向过共晶Al-20%Si合金中加入Mg、Ni和Mn元素进行合金化处理,发现加入2.0%Mg使初生Si细化成平均尺寸大约为29μm的细小规则块状,共晶Si细化为具有多分支的细小纤维组织;添加1.5%Ni可以使初生Si细化成细小的规则块状组织,分布趋于更加的均匀,平均尺寸减小到42μm,共晶Si细化为细小多分枝的纤维组织;加入0.1%Mn时,初生Si的形貌和尺寸发生了突变,其形貌由尺寸较大的块状和板片状转变成了细小块状和少部分长度小于50μm,宽度小于10μm的片状初生Si,其平均尺寸减小到39.7μm,共晶Si细化为细小的粒状和纤维状组织。
     将去结晶水的NH4Al(SO4)2无机盐加入到Al-20%Si合金熔体中,通过搅拌和保温后能够原位反应生成微米尺度的γ-Al2O3颗粒。原位自生的γ-Al2O3颗粒通过非均质形核和抑制生长有效地细化Al-20%Si合金中的初生Si和共晶Si组织。原位自生γ-Al2O3质量分数达到0.8%时,初生Si被细化成边缘钝化的细小块状组织,其平均尺寸减小为40μm。然而,进一步使生原位自生的γ-Al2O3颗粒质量分数到1.0%时,出现了粗化现象,其平均尺寸为41μm。随着原位生成γ-A1203颗粒质量分数的增加,共晶Si的片层间距减小,长度变短,尖端和边缘钝化,由原来的粗大针片状向细小的棒状和粒状转变,而非细小纤维状组织。
     熔体热速处理技术既能细化初生Si相,也能细化共晶Si组织。当熔体经过1050℃的过热处理后,初生Si的平均尺寸减小到38μm,共晶Si以细小的粒状均匀分布在金属基体上。
     合理的热扩散处理工艺条件下能够获得端部和边缘钝化的初生Si和细小的纤维状共晶Si。610℃经过15min的热扩散处理能够获得边缘钝化的小块状和细小的近球状初生Si,平均尺寸大约为11μm;共晶Si以细小的颗粒状和纤维状从液相中重新析出并包围了球状的a-A1组织。580℃经过40min的热扩散处理获得了平均尺寸为35μm的近球状初生Si;共晶Si以细小的纤维状从熔化的液相中重新析出。550℃经过90min的热扩散处理后,初生Si未发生明显的钝化和球化,形态以相互交叉的类树枝状存在;共晶Si细化为平均粒径为1.8μm的细小粒状和球状。
     室温力学性能和摩擦磨损性能的测试表明,Al-20%Si合金中初生Si和共晶Si组织的细化处理够使合金的抗拉强度从92MPa提高到变质后的159MPa,提高了42%;断后延伸率从变质前的0.49%提高到变质后的1.72%,提高了72%;合金的摩擦系数和体积磨损率减小,分别减小了27%和45%,该结果揭示Si相的细化能够提高合金的抗拉强度和耐磨性能。
With the development of automotive engine toward high speed, high power and low emission, the requirement of wear resistance, mechanical properties and dimensional stability of materials is higher and higher. Hypereutectic aluminum-silicon (Al-Si) casting alloys have been widely employed in aerospace, automotive and general engineering industries due to their excellent casting and mechanical properties, such as reduced density, low thermal expansion coefficient, good thermal conductivity, high strength, high wear resistance and good corrosion resistance. In automotive field, the hypereutectic Al-Si alloys are recognized as attractive candidate materials, which would replace the traditional use of cast iron for manufacturing pistons, cylinder liners and other wear resistance parts. These components not only increase the efficiency of engines, but also play an important significance in reducing the weight of the automobile, improving the utilization of fuel oil and cutting exhaust emission. However, primary Si crystals reveal several morphologies, such as star-like(five-folded), polygonal and plate-like shape. Moreover, the morphology of eutectic Si is also complex, including coarse acicular and flake shape during conventional casting processes. Generally, the mechanical properties and friction performance of hypereutectic Al-Si alloys is worse due to the presence of coarse primary Si and eutectic Si. Additionally, the presence of the sharp corners and ledges of coarse primary Si and eutectic Si aggravate the localized stress concentration at the sharp corners and ledges, which limits the further application in industries. Therefore, it is very useful to study modifiers or the refinement methods in order to expand the application field of hypereutectic Al-Si alloy.
     In present, the typical hypereutectic Al-Si alloys containing17-22%Si are used to produce poiston in the world include. In contrast, the thermal expansion coefficient is lower and solid-liquid region is narrower on hypereutectic Al-20%Si alloy than Al-Si alloy of high Si content. In addition, it well known that the morphology of primary and eutectic Si in unmodified hypereutectic Al-Si is similar. In this paper, investigating a modifier (refiner) or refining technology which can simultaneously refine or modify primary Si and eutectic Si of hypereutectic Al-20%Si and provides some theoretical basis for industrial applications. The major research efforts of the present study are as follows:
     The pure Ce and Er can not only refine primary Si phase, but also can modify eutectic Si structure. The size of primary Si decreases from192μm to33μm and the morphology transfers from star-like(five-folded), polygonal and plate-like shape to fine blocky shape with increasing the concentration of Ce from0.3to1.0%. Moreover, Ce can obviously modify eutectic Si structure and make a transition from the coarse flake-like and acicular shape to fine fibrous structure and discrete particles with increasing the concentration of Ce. Element Er can significantly refine primary Si that the morphology transfers from the coarse star-like, platelet-like and polygonal shape to fine blocky shape and its size decreases to41μm when the addition of Er is0.5%. However, a further increase in the amount of addition Er up to0.8%leads to coarsening of primary Si. Er can obviously modify eutectic Si structure and make a transition from the coarse flake-like and acicular shape to fine fibrous structure with increasing Er content to0.5%. The eutectic Si structure becomes coarser when the concentration of Er further increases up to0.8%.
     A number of articles have been published in the literature which reported addition alloying elements can lead to the formation of different eutectic phases and improve the mechanical properties of Al-Si alloy. However, a few studies in the literature have reported the effects on the morphology of primary Si and eutectic Si in Al-20%Si alloy. In the present works, the effects on addition elements of Mg、Ni and Mn are investigated. When2.0%Mg are added into Al-20%Si alloy, the primary Si can be significantly refined from coarse irregular five-folded, polygonal and plate-like shape to fine blocky shape, and the average size of primary Si is about29μm. The eutectic can be modified into fine fibrous structure. In addition,1.5%Ni can effectively refine the primary into fine blocky shape and tend to uniform distribution. The average size of primary Si decreases to42μm. The eutectic Si transform into fine fibrous structure. After0.1%Mn is added into Al-20%Si alloy, the morphology of most primary Si significantly refine into fine blocky shape, and some primary Si transform into flake-like shape of50μm in length and10μm in width. The average size is39.7μm. The eutectic Si refine into fine granular and fibrous structure. The results show that the alloying element Mg is the best effective modifier in Al-20%Si alloy.
     The in-situ chemical reaction can happen and generate γ-Al2O3particles in Al-20%Si alloy by adding inorganic salt NH4Al(SO4)2powder. The result shows in-situ γ-Al2O3particles can refine both primary Si from coarse polygon, platelet-like and star-like shape to fine blocky shape with smooth edges and corners and eutectic Si structure from the coarse acicular structure to fine flake-like eutectic Si structure in hypereutectic Al-20%Si alloy. The size of primary Si crystals significantly reduces with increasing concentration of γ-Al2O3particles and reaches to the smallest value when the content of γ-Al2O3particles is0.8%. However, in-situ γ-Al2O3has no further effect on the size of primary Si crystals when the concentration increases up to1.0%. In addition, the size and interflake spacing of eutectic Si apparently reduce with increasing concentration of in-situ γ-Al2O3particles.
     Microstructure analysis shows increasing melt superheat temperature can not only remarkably refine size, but also can change morphology of primary and eutectic Si phases, and can decrease wear rate of the alloy. By using thermal rate treatment technology on Al-20%Si alloy melt at1050℃, the average size of primary Si is decreased from192μm to38μm, and the morphology of eutectic Si is transformed from coarse needle-like plate shape to fine grnaular structure.
     The edges and angles of primary Si are passivated and the eutectic Si is fine fine coral-like fibrous structure using the reasonable technological parameters of heat diffusion treatment. The edges and angles of primary Si are passivated when Al-20%Si alloy is treated at610℃for15min, and the average size of primary is about11μm. The granular and fibrous eutectic Si precipitates from liquid of low point eutectic structure and surround the spherical a-Al. After Al-20%Si alloy is treated at580℃for40min, the primary Si transform into near-spheroidal sturcture, and the diameter is about35μm. The eutectic Si precipitates from remelting liquid and the morphology is fine fibre. However, if the emperature of heat diffusion treatment reduces to550℃holding for90min, the edges and angles of primary Si is no obvious passivation and the morphology is similar to cross dendrite. However, the eutectic Si happens to fuse and granulate during the process of heat diffusion treatment at550℃for90min. The morphology of eutectic Si refine into fine granular and spherical structure, and the diameter of eutectic is about1.8μm.
     The properties tests show that the plasticity and strength of hypereutectic Al-20%Si alloy are improved with the refinement of Si phases. The ultimate tensile strength increases by42%from92MPa to159MPa and the elongation increases by72%from0.49%to1.72%, respectively. Wear resistance test shows that friction efficient decreases by27%and wear rate decreases by45%. The results reveal that refinement or modification primary and eutectic Si can obviously improve mechanical properties and wear resistance.
引文
[1]王新宇.重型商用车驾驶室轻量化分析与优化:[吉林大学博士学位论文],长春:吉林大学,2012.
    [2]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制:[吉林大学博士学位论文],长春:吉林大学,2007.
    [3]于洪江.耐热过共晶A1-Si合金的成分设计与制备:[沈阳工业大学硕士学位论文],沈阳:沈阳工业大学,2009.
    [4]朱宏敏.汽车轻量化关键技术的应用及发展.应用能源技术,2009,(2):10-12.
    [5]Ive Rivero Paz B S. The effect of key microstructure features on the machining of an aluminum-silicon casting alloy:[dissertation], Texas State:Texas State University-San Marcos,2010.
    [6]Elsebaie O. Effects of strontium-modification, iron-based intermetallics and aging conditions on the impact toughness of Al-(6-11)%Si alloys:[dissertation], Chicoutimi: University of Quebec Chicoutimi,2010.
    [7]Li Z, Samuel A M, Samuel F H. Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys, Journal of Material Science,2003,38: 1203-1218.
    [8]Barresi J, Kerr M J, Wang H, et al. Effect of magnesium, iron and cooling rate on mechanical properties of Al-7Si-Mg foundry alloys, AFS Transactions,2000,108: 563-570.
    [9]Hwang J Y, Doty H W, Kaufman M J. The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys, Materials Science and Engineering A,2008,488:496-504.
    [10]Ye H. An overview of the development of Al-Si alloy based material for engine applications. Journal of Materials Engineering and Performance,2003,12(3):288-297.
    [11]Sigworth G. The Modification of Al-Si casting alloys:important practical and theoretical aspects, International Journal of Metalcasting,2008,2(2):19-42.
    [12]Liu X C. Influence of Mg content on the mechanical properties of cast hypereutectic Al-Si alloy:[dissertation], Montreal:University of Montreal,2009.
    [13]陆文华,李隆盛,黄良余.铸造合金及其熔炼.北京:机械工业出版社,2010.
    [14]卢绍龙.工艺条件对过共铝硅合金凝固组织的影响:[西安建筑科技大学硕士学位论文],西安:西安建筑科技大学,2009.
    [15]张道.新型变质剂及Ni对过共晶铝硅合金组织和性能的影响:[湖南科技大学硕士 学位论文],湘潭:湖南科技大学,2012.
    [16]孔凡校.过共晶铝硅活塞合金的研究:[重庆大学硕士学位论文],重庆:重庆大学,2007.
    [17]任意.过共晶铝硅合金复合变质工艺及机理研究:[江苏科技大学硕士学位论文],镇江:江苏科技大学,2010.
    [18]Kang H S, Yoon W Y, Kim K H, et al. Microstructure selections in the undercooled hypereutectic Al-Si alloys. Materials Science and Engineering A,2005,404:117-123.
    [19]胡慧芳,李华基.A1-24%Si合金中五星柱状初生Si的生长机制.中国有色金属学报,2010,20(10):2003-2008.
    [20]李庆林,兰晔峰,王富寿,等.热扩散处理对A1-24%Si合金中初晶硅形态的影响.材料热处理学报,2010,31(12):29-32.
    [21]Lu Dehong, Jiang Yehua, Guan Guisheng, et al. Refinement of primary Si in hypereutect-tic Al-Si alloy by electromagnetic stirring. Journal of Materials Processing Technology, 2007,189:13-18.
    [22]Liao H C, Su N Y. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6%Si alloys modified with strontium.Materials Science and Engineering A,2002,335:62-66.
    [23]Alireza Hekmat-Ardakan, Frank Ajersch. Thermodynamic evaluation of hypereutectic Al-Si (A390) alloy with addition of Mg. Acta Materialia,2010,58:3422-3428.
    [24]Zhang Wenda, Liu Yun, Yang Jing. Effects of Sc content on the microstructure of as cast Al-7 wt.%Si alloys. Materials Characterization,2012,66:104-110.
    [25]李庆林,兰晔峰,王强强.热扩散处理对A1-Si合金共晶硅的细化及其摩擦性能的影响.金属热处理,2010,35(12):90-93.
    [26]Wang Shouren, Ma Ru, Wang Yingzi, et al. Growth mechanism of primary silicon in cast hypoeutectic Al-Si alloys. Transactions of Nonferrous Metals Society of China,2012,22: 1264-1269.
    [27]Zhang X H, Su G C, Ju C W, et al. Effect of modification treatment on the microstructure and mechanical properties of Al-0.35%Mg-7.0%Si cast alloy. Materials and Design, 2010,31:4408-4413.
    [28]Elmadagli M, Perry T, Alpas A T. A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys. Wear,2007,262:79-92.
    [29]Prasada Rao A K, Karabi Das, Murty B S. et al. Effect of grain refinement on wear properties of Al and Al-7Si alloy. Wear,2004,257:148-153.
    [30]Kori S A. Studies on the grain refinement and modification of some hypoeutectic Al-Si alloys:[dissertation], Kharagpur:Indian Institute of Technology,2000.
    [31]Alireza Hekmat-Ardakan, Liu Xichun, Frank Ajersch, et al. Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents. Wear,2010,269: 684-692.
    [32]Abouei V, Shabestari S G, Saghafian H. Dry sliding wear behaviour of hypereutectic Al-Si piston alloys containing iron-rich intermetallics. Materials Characterization,2010, 61:1089-1096.
    [33]Kapranos P, Kirkwood D H, Atkinson H V, et al. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy. Journal of Materials Processing Technology,2003,135: 271-277.
    [34]Shailesh Kamble B E. Effect of primary silicon crystals on the fluidity of hypereutectic aluminum-silicon alloys in lost foam casting:[dissertation], Toronto:Ryerson University, 2003.
    [35]戴洪尚.超高硅铝合金中硅相的细化与界面性质研究:[山东大学博士学位论文],济南:山东大学,2009.
    [36]陈俊桃.高硅铝硅合金的变质及性能研究:[重庆大学硕士学位论文],重庆:重庆大学,2011.
    [37]Dixon C F, Skelly H M. Al-Si alloys prepared by spinning. Melt Internation Journal of Power Metallugrical,1995,1(4):28-33.
    [38]冯京.过共晶铝硅合金组织细化、均匀性研究:[北京有色金属研究总院硕士学位论文],北京:北京有色金属研究总院,2013.
    [39]张凤巍.过共晶A1-Si合金对A1-Si合金的变质作用:[湘潭大学硕士学位论文],湘潭,湘潭大学,2009.
    [40]Behanam Golbahar. Effect of grain refiner-modifier interaction on the performance of A356.2 alloy:[disseration], Chicoutimi:University of Quebec at Chicoutimi,2008.
    [41]Liu Xiangfa, Wu Yuying, Bian Xiufang. The nucleation sites of primary Si in Al-Si alloys after addition of boron and phosphorus. Journal of Alloys and Compounds,2005, 391(1-2):90-94.
    [42]Mohamed Ibrahim Abd El Aal, Hyoung Seop Kim. Wear properties of high pressure torsion processed ultrafine grained Al-7%Si alloy. Materials and Design, 2014,53: 373-382.
    [43]Shi Weixi, Gao Bo, Tu Ganfeng, et al. Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al-15%Si alloy. Journal of Rare Earths, 2010,28: 367-370.
    [44]胡汉起.金属凝固原理.北京:机械工业出版社,2000.
    [45]胡慧芳.A1-25%Si合金Si相形态、变质及性能研究:[重庆大学博士学位论文],重 庆:重庆大学,2010.
    [45]Yilmaz F. Elliott R. Halo formation in Al-Si alloys. Metal Science,1984,18(7):362-365.
    [46]Kobayashi K, Shingu P H, Ozaki R. Crystal growth of the primary silicon in an Al-16 wt%Si alloy. Journal of Materials Science,1975,10:290-299.
    [47]Lu S Z, Hellawell A. Growth mechanism of silicon in Al-Si alloys. Journal of Crystal Growth,1985,73:316-328.
    [48]Lu Shu zu. Microstructural transitions of Al-Si alloys during eutectic solidificati-on:[dissertation], Michigan:Michigan Technological University,1986.
    [49]安阁英.铸件形成理论.北京:机械工业出版社,1989.
    [50]王渠东,丁文江,翟春泉,等.A1-Si合金中初晶Si的台阶生长.上海交通大学学报,1999,33(2):142-145.
    [51]祖方遒.变质元素对铸造Al-Si合金共晶结晶的作用及机制.铸造,2011,60(11):1073-1078.
    [52]Chen Peisheng. Mechanical properties and machining of aluminum-silicon alloys modified by bismuth or tin:[dissertation], Windsor:University of Windsor,2013.
    [53]Wang Jun, He Shuxian, Sun Baode, et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Materials Science and Engineering A,2002,338:101-107.
    [54]Li Peijie, Nikitin V I, Kandalova E G, et al. Effect of melt overheating, cooling and solidification rates on Al-16wt.%Si alloy structure. Materials Science and Engineering A, 2002,332:371-374.
    [55]Chen Zhongwei, Jie Wanqi, Zhang Ruijie. Superheat treatment of Al-7Si-0.55Mg alloy melt. Materials Letters,2005,59:2183-2185.
    [56]Ohmi T, Kudoh M. Control of primary silicon crystal size of semi-solid hypereu-tectic Al-Si alloy by slurry melt mixing process. Journal of Japan Institute of Metals,1994,58: 1311-1317.
    [57]Wang Jun, He Shuxian, Sun Baode, et al. Grain refinement of Al-Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology,2003,141:29-34.
    [58]孙玉杰.过共晶Al-Si合金熔体热处理工艺研究:[济南大学硕士学位论文],济南:济南大学,2012.
    [59]Li Q L, Xia T D, Lan Y F. et al. Effects of melt superheat treatment on microstructure and wear behaviour of hypereutectic Al-20%Si alloy. Materials Science and Technology, 2014,30(7):835-841.
    [60]Feng H K, Yu S R, Li Y L, et al. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy. Journal of materials processing technology,2008.208: 330-335.
    [61]Das A, Kotadia H R. Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy. Materials Chemistry and Physics,2011,125:853-859.
    [62]杨俊,程和法,黄笑梅,等.高能超声对A-1 20Si合金组织和力学性能的影响.特种铸造及有色合金,2010,30(8):769-771.
    [63]Lu Dehong, Jiang Yehua, Guan Guisheng, et al. Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Journal of Materials Processing Technology,2007,189:13-18.
    [64]Mao W M, Li S S, Zhao A M. Effect of electromagnetic stirring on growth and morphology of primary silicon crystals of hypereutectic Al-Si alloys. Materials Science and Technology,2001,9:117-121.
    [65]Robles Hernandez F C, Sokolowski J H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. Journal of Alloys and Compounds,2006,426:205-212.
    [66]Griffiths W D, McCartney D G. The effect of electromagnetic stirring during solidificati-on on the structure of Al-Si alloys. Materials Science and Engineering A,1996,216: 47-60.
    [67]Dasgupta R. Property improvement in Al-Si alloys through rapid solidification processing. Journal of Materials Processing Technology,1997,72:380-384.
    [68]Van Rooyen M, Van der Pers N M, De Keijser Th H, et al. Structure refinement and improved mechanical properties of Al-20%Si Si by rapid solidification in conjunction with strontium modification. Materials Science and Engineering,1987,96:17-25.
    [69]Zhang Tibin. Enthalpy estimation of the nonequilibrium state in as-melt spun Al-Si and Al-Mn alloys and crystal growth as a nonequilibrium crystallization during rapid unidirectional solidification. Thermochimica Acta,1996,286(1):139-159.
    [70]Uzun O, Karaaslan T, Gogebakan M, et al. Hardness and microstructural characteristics of rapidly solidified Al-8-16wt%Si alloys. Journal of Alloys and Compounds,2004,376: 149-157.
    [71]Taek-Soo Kim, Suryanarayana C, Byong-Sun Chun. Effect of alloying elements and degassing pressure on the structure and mechanical properties of rapidly solidified Al-20%Si-5Fe-2X(X-Cr, Zr, or Ni) alloys. Materials Science and Engineering A,2000, 278:113-120.
    [72]Mohanty P S, Gruzleski J E. Grain refinement mechanisms of hypoeutectic Al-Si alloys. Acta Materialia,1996,44(9):3749-3760.
    [73]Limmaneevichitr C, Eidhed W. Novel technique for grain refinement in aluminum casting by Al-Ti-B powder injection. Materials Science and Engineering A,2003,355: 174-179.
    [74]Sterner Rainer R. US Patent 1940922,26, Dec,1933.
    [75]Liu X F, Zuo M, Jiang K. In:Hirsch J, Skrotzki B, Gottstein G (Eds.), Aluminum Alloys, ICAA, Aachen Germany,2008,115-120.
    [76]Song-Mao Liang, Rainer Schmid-Fetzer. Thermodynamic assessment of the Al-P system based on original experimental data. Calphad,2013,42:76-85.
    [77]Qin Jingyu, Zuo Min, Gu Tingkun, et al. The featured local structural units in liquid A180Sil5P5 alloy and their relationship with Si modification. Journal of Alloys and Compounds, 2010,492:525-528.
    [78]Turnbull D, Vonnegut B. Nucleation catalysis. Industrial and Engineering Chemistry, 1952,44(6):1292-1294.
    [79]Zhang Henghua, Duan Haili. Microstrueture and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P. Rare Metals,2008,27(10):59-64.
    [80]陈文松.过共晶A1-Si合金的变质处理.轻合金加工技术,1998,26(8):12-15.
    [81]赵永治,高泽生.过共晶Al-Si合金连续铸造中初晶硅细化的新方法.轻合金加工技术,1995,23(10):5-8.
    [82]Kyffin W J, Rainforth W M, Jones H. Effect of treatment variables on size refinement by phosphide inoculants of primary silicon in hypereutectic Al-Si alloys. Materials Science and Technology,2001,17:901-905.
    [83]Wu Yaping, Wang Shujun, Li Hui, et al. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy. Journal of Alloys and Compounds,2009,477: 139-144.
    [84]Zuo M, Liu X F, Sun Q Q, et al. Effect of rapid solidification on the microstrueture and refining performance of an Al-Si-P master alloy. Journal of Materials Processing Technology,2009,209 (15-16):5504-5508.
    [85]Bao Guoju, Zuo Min, Li Dakui, et al. The improvement of microstructures and mechanical properties of near eutectic Al-Si multicomponent alloy by an Al-8Zr-2P master alloy. Materials Science and Engineering A,2012,531:55-60.
    [86]Weiss J C, Loper C R. Primary silicon in hypereutectic aluminum-silicon casting alloys. AFS Trans.1987,32:51-62.
    [87]Chang J Y, Moon I G, Choi C S. Refinement of cast microstrueture of hypereutectic Al-Si alloys through the addition of rare earth metals. Journal of Materials Science,1998,33: 5015-5023.
    [88]Kim M. Electron back scattering diffraction (EBSD) analysis of hypereutectic Al-Si alloys modified by Sr and Sc. Metals and Materials Internation,2007,13(2):103-107.
    [89]Fatih Kilicaslana M, Woo-Ram Lee, Tae-Haeng Lee, et al. Effect of Sc addition on the microstructure and mechanical properties of as-atomized and extruded Al-20%Si alloys. Materials Letters,2012,71:164-167.
    [90]Shi W X, Gao B, Tu G F, et al. Effect of Nd on microstructure and wear resistance of hypereutectic Al-20%Si alloy. Journal of Alloys and Compounds,2010,508:480-485.
    [91]Xing Pengfei, Gao Bo, Zhuang Yanxin, et al. Effect of erbium on properties and microstructure of Al-Si eutectic alloy. Journal of Rare Earth,2010,28(6):927-930.
    [92]李贞宽,边秀房,韩娜.Ce对共晶Al-Si合金微观组织的影响.特种铸造及有色合金,2007,27(4):315-317.
    [93]欧阳志英.铸造铝硅合金熔体处理中添加元素的行为及相互作用研究:[上海交通大学博士学位论文],上海:上海交通大学,2006.
    [94]Choi H S, Konishi H, Li X C. Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al-20%Si Alloy. Materials Science and Engineering A,2012,541:159-165.
    [95]Choi H S, Li X C. Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al-20Si-4.5Cu alloy with addition of AI2O3 nanoparticles. Journal of Materials and Science,2012,47:3096-3102.
    [96]孙淑红.复合变质处理制备(大)过共晶铝硅合金:[昆明理工大学硕士学位论文],昆明:昆明理工大学,2004.
    [97]Chen Chong, Liu Zhongxia, Ren Bo, et al. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20%Si alloy. Transactions of Nonferrous Metals Society of China,2007,17:301-306.
    [98]Jiang Q C, Xu C L, Lu M, et al. Effect of new Al-P-Ti-TiC-Y modifier on primary silicon in hypereutectic Al-Si alloys. Materials Letters,2005,59:624-628.
    [99]Xu C L, Wang H Y, Yang Y F, et al. Effect of Al-P-Ti-TiC-Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al-20%Si alloy. Materials Science and Engineering A,2007,452-453:341-346.
    [100]Xu C L, Jiang Q C, Yang Y F, et al. Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al-Si alloy. Journal of Alloys and Compounds,2006,422:L1-L4.
    [101]Liu Xiangfa, Wu Yuying, Bian Xiufang. The nucleation sites of primary Si in Al-Si alloys after addition of boron and phosphorus. Journal of Alloys and Compounds,2005, 391:90-94.
    [102]Yu Lina, Liu Xiangfa, Ding Haimin, et al. A new nucleation mechanism of primary Si by like-peritectic coupling of A1P and Al4C3in near eutectic Al-Si alloy. Journal of Alloys and Compounds,2007,429:119-125.
    [103]Yu Lina, Liu Xiangfa, Ding Haimin, et al. A new nucleation mechanism of primary Si by peritectic-like coupling of A1P and T1B2 in near eutectic Al-Si alloy. Journal of Alloys and Compounds,2007,432:156-162.
    [104]戬家齐,李伟,盛险峰.Ba-P复合变质对铝硅合金初晶硅的细化作用.热加工工艺,1997,5:16-18.
    [105]黄兴波.稀土、钡、磷对铝合金的复合变质作用.特种铸造及有色合金,1999,(1):39-40.
    [106]赖华清,赖俊传,毛高波.过共晶铝硅合金变质工艺研究.湖北汽车工业学院学报,1998,12(3):57-62.
    [107]Srirangam P, Kramer M J, Shankar S. Effect of strontium on liquid structure of Al-Si hypoeutectic alloy using high-energy X-ray diffraction. Acta Materialia,2011,59: 503-513.
    [108]Yilmaz F, Atasoy O A. Growth structures in aluminium-silicon alloys Ⅱ. The influence of strontium. Journal of Crystal Growth,1992,118:377-380.
    [109]Liu Gang, Li Guodong, Cai Anhui, et al. The influence of strontium addition on wear properties of Al-20wt% Si alloys under dry reciprocating sliding condition. Materials and Design,2011,32:121-126.
    [110]Lu L, Nogita K, Dahle A K. Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys. Materials Science and Engineering A,2005,399:244-253.
    [111]胥锴,刘徽平,袁帮谊,等.过共晶铝硅合金变质处理的研究进展.热加工工艺,2009,38(3):31-35.
    [112]Zuo Min, Zhao Degang, Teng Xinying, et al. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloy. Materials and Design,2013,47:857-864.
    [113]Wang Aiqin, Zhang Lijun, Xie Jingpei. Effects of cerium and phosphorus on microstructures and properties of hypereutectic Al-21%Si alloy. Journal of Rare Earths,2013,31(5):522-525.
    [114]Song Xigui. Bian Xiufang, Qi Xiaogang, et al. Effect of AlP master alloy on grain refinement of primary silicon in eutectic Al-Si alloy. Journal of University of Science and Technology Beijing,2004,11(1):81-84.
    [115]Lu S Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys :impurity induced twinning. Metallurgical and Materials Transactions A,1987,18: 1721-1733.
    [116]Sathyapal Hegde K. Narayan Prabhu. Modification of eutectic silicon in Al-Si alloys. Journal of Materials Science,2008,43:3009-3027.
    [117]Kazuhiro Nogita, McDonald Stuart D, Arne K. Dahle Eutectic modification of Al-Si alloys with rare earth metals. Materials Transactions,2004,452:323-326.
    [118]Li Bao, Wang Hongwei, Jie Jinchuan, et al. Microstructure evolution and modification mechanism of the ytterbium modified Al-7.5%Si-0.45%Mg alloys. Journal of Alloys and Compounds,2011,509:3387-3392.
    [119]Zhang Wenda, Liu Yun, Yang Jing, et al. Effects of Sc content on the microstructure of As-Cast Al-7 wt.%Si alloys. Materials Characterization,2012,66:104-110.
    [120]Wattanachai Prukkanona, Nakorn Srisukhumbowornchai, Chaowalit Limmaneevichitr. Modification of hypoeutectic Al-Si alloys with scandium. Journal of Alloys and Compounds,2009,477:454-460.
    [121]Chandrashekharaiah T M, Kori S A. Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys. Tribology International,2009, 42:59-65.
    [122]Alireza Hekmat-Ardakan, Liu Xichun, Frank Ajersch, et al. Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents. Wear,2010,269: 684-692.
    [123]Dwivedi D K. Wear behaviour of cast hypereutectic aluminium silicon alloys. Materials and Design,2006,27:610-616.
    [124]Mohamed A M A, Samuel A M, Samuel F H, et al. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design,2009,30:3943-3957.
    [125]Hosch T, Napolitano R E. The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al-Si eutectic alloys. Materials Science and Engineering A,2010,528:226-232.
    [126]Sha Meng, Wu Shusen, Wang Xingtao, et al. Effects of cobalt content on microstructure and mechanical properties of hypereutectic Al-Si alloys. Materials Science and Engineering A,2012,535:258-263.
    [127]Dasgupta R. Property improvement in Al-Si alloys through rapid solidification processing. Journal of Materials Processing Technology,1997,72:380-384.
    [128]Hu Xiaowu, Jiang Fugang. Ai Fanrong, et al. Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC 12 aluminum alloy. Journal of Alloys and Compounds,2012,538:21-27.
    [129]Xing Pengfei, Gao Bo, Zhuang Yanfei. On the modification of hypereutectic Al-Si alloys using rare earth Er. Acta Metallugrica Sinica,2010,23(5):327-333.
    [130]Zhang Henghua, Duan Haili, Shao Guangjie, et al. Modification mechanism of cerium on the Al-18Si alloy. Rare Metals,2006,25(1):11-15.
    [131]徐国富,杨军军,金头男,等.微量稀土Er对A1-5Mg合金组织与性能的影响.中国有色金属学报,2006,15(6):768-774.
    [132]Kurz W, Fisher D J. Fundamentals of Solidification. USA:Transaction Technology Publications,1984.
    [133]Chang J Y, Kim G H, Moon I G, et al. Rare earth concentration in the primary Si crystal in rare earth added Al-21%Si alloy. Scripta Materialia,1998,39(3):307-314.
    [134]郑学斌.Er对A356合金铸态及半固态组织的变质作用研究:[北京工业大学硕士学位论文],北京:北京工业大学,2010.
    [135]Dahle A K, Nogita K, McDonald S D. Eutectic modification and microstructure development in Al-Si Alloys. Materials Science and Engineering:A,2005,413-414: 243-248.
    [136]Uzun O, Yilmaz F, Kolemen U, et al. Sb effect on micro structural and mechanical properties of rapidly solidified Al-12Si alloy. Journal of Alloys and Compounds,2011, 509:21-26.
    [137]Mandal A, Makhlouf M M. Development of novel hypereutectic alumininum-silicon magnesium alloy for die casting. Transactions of the Indian Institute of Metals,2009, 62(4-5):357-360.
    [138]Ahlatci H. Production and corrosion behaviours of the Al-12Si-XMg alloys containing in situ Mg2Si particles. Journal of Alloys and Compounds,2010,503:122-126.
    [139]Spigarelli S, Cabibbo M, Evangelista E, et al. Evaluation of the creep properties of an Al-17Si-1Mg-0.7Cu alloy. Materials Letters,2002,56:1059-1063.
    [140]Vadim S Z. Casting aluminum alloys. Mscow:Elsevier Science,2007.
    [141]贾祥磊,陈大辉,朱秀荣,等.Cu对A-1 Si-Cu-Ni合金组织和力学性能的影响.特种铸造及有色合金,2010,30(9):871-873.
    [142]AFarkoosh R, Javidani M, Hoseini M. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys:Thermodynamic assessment and experimental investigation for alloy design. Journal of Alloys and Compounds,2013,551:596-606
    [143]Lin Chong. Wu Shusen, Gu Zhong, et al. Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al-Si alloys with high Fe content. Transactions of Nonferrous Metals Society of China,2013,23(5):1245-1252.
    [144]Anton Gorny. Jeyakumar Manickaraj. Cai Zhonghou, et al. Evolution of Fe based inter-metallic phases in Al-Si hypoeutectic casting alloys:Influence of the Si and Fe concentrations, and solidification rate. Journal of Alloys and Compounds,2013,577: 103-124.
    [145]蔡成.Mn含量对A356合金组织和性能的影响:[燕山大学硕士学位论文],秦皇岛:燕山大学,2012.
    [146]DongYun, Zheng Runguo, Lin Xiaoping, et al. Investigation on the modification behav-ior of A356 alloy inoculated with a Sr-Y composite modifier[J]. Journal of Rare Earth, 2013,31(2):204-208.
    [147]陈忠伟,介万奇.Mg含量对A1-Si-Mg铸造合金微观组织与力学性能的影响.材料科学与工程学报,2004,22(5):647-650.
    [148]李洪涛,银建民,王汝耀.Ni、Cu在Al-Si-Cu-Mg合金中的作用.洛阳工学院学报,1986,(1):15-21.
    [149]张运,武建军,齐向前.合金成分对A1-Mn-Mg合金力学性能的影响.热加工工艺,2010,39(6):29-31.
    [150]Jiang Lan, Cui yanzhou, Shi yujuan, et al. Preparation and mechanical properties of in situ Al2O3/Al composites by adding NH4AlO(OH)HCO3. Transactions of Nonferrous Metals Society of China,2011,21:2181-2185.
    [151]Ouyang Liuzhang, Luo Chengping, Sui Xiandong, et al. Fabrication and microstructure of in situAl2O3 decomposed from Al2(SO4)3 reinforced aluminum matrix composites. Materials Letters,2003,57:1712-1715.
    [152]田福泉,付高峰,姜澜,等.硫酸铝氨原位分解制备A1203颗粒增强铝基复合材料.材料与冶金学报,2006,5(1):46-49.
    [153]Nadella R, Eskin D G, Du Q, et al. Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science,2008,53:421-480.
    [154]Zhang J, Kang S B, Yu H S, et al. Effect of fine-grained raw material addition on microstructure refinement and tensile properties in horizontal continuous casting Al-12%Si alloy billets. Materials and Design,2011,32:3566-3569.
    [155]王慧源,刘生发,韩辉,等.镁合金晶粒细化及机理研究进展.铸造技术,2008,29(12):1734-1738.
    [156]Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metallurgial Transactions,1970,1(6); 1970-1987.
    [157]陈忠华.过共晶铝硅合金熔体处理及变质研究:[合肥工业大学硕士学位论文],合肥:合肥工业大学,2010.
    [158]谢敏.熔体过热处理对过共晶A1-Si-Mg合金中Mg2Si相的影响:[江西理工大学硕士学位论文],赣州:江西理工大学,2011.
    [159]Yin F S, Zheng Q, Sun X F, et al. Effect of melt treatment on carbides formation in a cast nickel-base superalloy M963. Journal of Materials Processing Technology,2007, 183(2-3):440-444.
    [160]Cai Yingwen, Zhang Guilin, Li Jinshan, et al. Effect of melt heat treatment on the solid/liquid interface morphology of directional solidification. Science and Technology of Advanced Materials,2001,2(1):169-172.
    [161]Wang Changshuai, Zhang Jun, Liu Lin, et al. Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment. Journal of Alloys and Compounds,2010,508(2):440-445.
    [162]Manov V, Popel P, Brook-Levinson E, et al. Influence of the treatment of melt on the properties of amorphous materials:ribbons, bulks and glass coated microwires. Materials Science and Engineering A,2001,304-306:54-60.
    [163]Du Songzhao, Li Cancan, Pang Siyuan, et al. Influences of melt superheat treatment on glass forming ability and properties of A184Ni10La6 alloy. Materials and Design,2013, 47:358-364.
    [164]Qin Q D, Zhao Y G, Liang Y H, et al. Effects of melt superheating treatment on microstructure of Mg2Si/Al-Si-Cu composite. Journal of Alloys and Compounds,2005, 399(1-2):106-109.
    [165]Wang Jun, He Shuxian, Sun Baode, et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Materials Science and Engineering A,2002,338(1-2): 101-107.
    [166]坚增运,王有超,常芳娥,等.熔体过热处理对过共晶Al-Si合金凝固组织的影响.西安工业大学学报,2007,(7):348-351
    [167]Wang Hongwei, Li Bao, Jie Jinchuan, et al. Influence of thermal rate treatment and low temperature pouring on microstructure and tensile properties of AlSi7Mg alloy. Materials and Design,2011,32(5):2992-2996.
    [168]张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响:[西北工业大学博士学位论文],西安:西北工业大学,2006.
    [169]陈小华Al-Si合金的熔体处理结构研究:[重庆大学硕士学位论文],重庆:重庆大学,2006.
    [170]陶静梅Al-Si系合金的熔体温度处理及其凝固过程研究:[重庆大学硕士学位论文],重庆:重庆大学,2004.
    [171]Bian Xiufang, Wang Weimin. Thermal-rate treatmentand structure transformation of Al-13wt.%Si alloy melt. Materials Letters,2000,44(1):54-58.
    [172]阂乃本.晶体生长的物理基础.上海:上海科学技术出版社,1982.
    [173]Ogris E, Wahle A, Luchinger H, et al. On the silicon spheroidization in Al-Si alloys. Journal of Light Metals, 2002,2:263-269.
    [174]葛良琦Al-20%Si合金中初生硅形态控制技术研究:[南京理工大学硕士学位论文],南京:南京理工大学,2010.
    [175]Muzaffer Zeren. Effect of copper and silicon content on mechanical roperties in Al-Cu-Si-Mg alloys. Journal of Materials Processing Technology,2005,169:292-298.
    [176]Wang G Q, Bian X F, Wang W M, et al. Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys, Materials Letter,2003,57:4083-4087.
    [177]Mohameda A M A, Samuel F H, Alkahtani S. Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al-Si-Cu-Mg cast alloys. Materials Science and Engineering A,2012,543:22-34.
    [178]Hassan S B, Aigbodion V S. The effect of thermal ageing on microstructure and mecha-nical properties of Al-Si-Fe/Mg alloys. Journal of Alloys and Compounds,2009,486: 309-314.
    [179]刘启阳,李庆春,朱培钺.共晶合金中第二相粒状化学动力学.金属科学于工艺,1987,6(1):65-77.
    [180]Chirita G, Stefanescu I, Soares D, et al. Influence of vibration on the solidification behaviour and tensile properties of an Al-18wt%Si alloy. Materials and Design,2009, 30:1575-1580.
    [181]Ferrarini C F, Bolfarini C, Kiminami C S, et al.Microstructure and mechanical property-es of spray deposited hypoeutectic Al-Si alloy. Materials Science and Engineering A, 2004,375-377:577-580.
    [182]Hosch T, Napolitano R E. The effect of the flake to fiber transition in Si morphology on the tensile properties of Al-Si eutectic alloys. Materials Science and Engineering A, 2010,528:226-232.
    [183]Chandrashekharaiah T M, Kori S A. Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys. Tribology International,2009,42: 59-65.
    [184]石为喜,高波,涂赣峰,等.Nd变质过共晶A1-17.5%Si合金的微观组织和断口形貌.中国有色金属学报,2011,21(4):719-726.
    [185]刘扭参,李俊青,刘忠侠.过共晶铝硅合金的摩擦磨损性能研究.铸造技术,2009,30(11):1448-1451.
    [186]Tuti Yasmin, Asad A. Khalid M M, et al. Tribological (wear) properties of aluminum-silicon eutectic ase alloy under dry sliding condition. Journal of Materials Processing Technology,2004,153-154:833-838.
    [187]Chen M, Meng-Burany X, Perry T A, et al. Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys. Acta Materialia,2008,56:5605-5616.
    [188]Dheerendra Kumar Dwivedi. Wear behaviour of cast hypereutectic aluminium silicon alloys. Materials and Design,2006,27:610-616.
    [189]Wang A G, Hutchings I M. The number of particle contacts in two-body abrasive wear of metals by coated abrasive papers. Wear,1989,129:23-35.
    [190]Evans A G, Wilshaw T R. Quasi-static solid particle damage in brittle I:obsevvation, an-alysis and implications, Acta Metallurgical,1976; 24:939-956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700