用户名: 密码: 验证码:
规则多孔铜的定向凝固制备技术及其孔隙结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-气体共晶定向凝固是一种利用气体(氢气)在金属固、液两相中存在溶解度差制备规则多孔金属的革命性新工艺,也称为‘'Gasar"或“藕状多孔材料”。采用定向凝固制备的规则多孔铜,除具有传统的烧结型或发泡型多孔金属的性能特点(低密度、高比模量和比强度以及冲击能量吸收能力)外,还具有自身特殊的性能特点,比如小的应力集中、高的机械性能、良好的导热能力等,因此具有广阔的应用前景和重要的潜在应用价值。
     制备装置是研究规则多孔金属的前提和必要条件。本论文根据Gasar工艺原理,结合设备特点(在真空负压下熔炼,在高压下吸收氢气达到饱和,凝固析出氢气成孔),设计了规则多孔金属制备装置。装置采用倾包法,使熔炼与凝固分开,便于控制。装置中,为保证水冷铜盘的冷却能力,冷却水流速控制在6m/s左右,冷却水进出水温差控制在10℃左右;铸型、熔炼坩埚和加热电阻材质选用石墨;铸型下移的抽拉速度在0.1-10mm/min范围内变动;增加隔热挡板用以提高固-液界面温度梯度。
     分析了实际试样中无孔层、边沿大孔和顶部大孔、以及弧形区域,总结了规则多孔铜的实际结构特点,得到了实际规则多孔结构的模型。
     通过控制相关工艺参数得到不同结构的规则多孔铜,对规则多孔铜的气孔结构进行了研究。研究表明工艺参数对规则多孔铜气孔结构有影响,具体表现为:(1)气体压力对气孔结构的影响:当使用纯氢时,气孔率随着氢气分压的增大而减小;当氩气分压一定时,气孔率会随着氢气分压的增大而减小;气体总压一定时,气孔率会随着氢气分压的增大而增大。气体总压力是决定气孔平均直径的最主要因素,随着总压力的增大,气孔平均直径减小。气孔尺寸分布均匀性随氢气压力的增加而增加;在氢气和氩气混合气氛下,随着氩气分压增大气孔尺寸分布均匀性先增加后减小。(2)铸型温度对气孔结构的影响:气孔率随铸型温度的增加而增加;由于不可避免产生侧向散热,气孔生长方向与试样中心轴存在一夹角,随着铸型温度升高,夹角减小,气孔间的平行度增加。(3)抽拉速率对气孔结构的影响:气孔率随下移速率升高略有减小,这种变化过小,可以认为抽拉速率对气孔率无影响,气孔率主要由气体压力决定。在气体压力一定时,气孔平均孔径随下移速率的增加而减小。
     规则多孔铜的理想结构是进行相关推演和计算的依据。本论文分别对正五边形、正六边形、正七边形、正八边形的气孔率、气孔生成吉布斯自由能和气孔结构的演化进行了分析、计算和推演,结果表明正六边形结构是符合规则多孔材料的最理想结构。在处于稳态生长的试样中,能够找到正六边形排列的气孔结构,进一步证实了正六边形是Garsar材料的理想气孔结构。
     由于采取措施保证了沿轴向自上而下的单向传热,此时从试样中心散出的热量大于从边壁散出的热量,固-液界面形态要保持凹界面或平界面是不可能的,只能是凸界面。定向凝固时晶体沿热流方向凸向上生长,凸向液相。由于气泡生长不会产生分叉,气泡凸向生长时,其生长只能以三种方式进行,即收缩生长气泡变小、平行生长气泡不变、膨胀生长气泡变大。比较三种生长方式的界面能,发现相同接触角时界面能值由大到小依次为膨胀生长>收缩生长>平行生长,同时平行生长也能满足气泡在液-固界面前的力学平衡,说明中心上凸两侧平行向上的平行生长是符合实际的生长方式。试样中也进一步证实了此生长方式的存在。
     建立了规则多孔铜的凝固温度场模型,用解析的方法计算了规则多孔铜凝固温度场。认为Gasar工艺凝固时,气孔对传热不起作用,凝固过程不受气孔的影响。获得了凝固层厚度与时间的理论关系,其与经典凝固中平方根定律相似,并进行了验证。结果表明对于凝固速度范围在1.5mm/s~2.5mm/s,高度为240mm的试样,所需凝固时间为93~107s。分析了固-液界面前沿液相温度场,认为加热区的总热阻主要受辐射换热热阻Rr的影响,其它热阻可忽略。固-液界面前沿液相温度梯度GL主要受加热温度Th和试样半径rl的影响。加热温度增加、试样半径减少,温度梯度GL均明显增加。熔炼温度Tp和坩埚壁厚对温度梯度GL的影响不明显,辐射距离δ对温度梯度GL基本没有影响。
Directional solidification of metal-gas eutectic, which is based on the gap of gas (hydrogen) solubility between liquid and solid metals, is a novel revolutionary process for fabricating porous material with pores aligned in solidification direction. The process is also called "Gasar" or "lotus type porous material". Ordered porosity copper with elongated pores can be fabricated by a unidirectional solidification method under a pressurized gas mixture of hydrogen and argon. Besides possessing the property of traditional porous materials (like lower density, higher specific modulus, higher specific strength and energy absorbing ability), the lotus-structured metals perform particular properties such as lower stress concentration, higher mechanical property and superior capacity of heat transmission, therefore have a wide application prospect and important potential applications.
     The manufacturing equipment is premise and requirement to study lotus-structure metals. According to the technology principle, metals are smelted in vacuum and absorb hydrogen at high pressure. When hydrogen saturation has been reached, hydrogen would separate out and formes pores. The equipment used leaning ladle.lt can separate smelting and solidification.The flow velocity of cooling water is about6m/s.The water temperature difference of get in and out cooling water is about10℃.These can ensure cooling capacity of the equipment.The material of mould, smelting crucible and heating resistor is graphite.The withdrawal rate is within the scope of0.1-10mm/min.Useing thermal baffle is effective to increase temperature gradient of solid-liquid interface.
     The non-porous layer, the big pore at edge and top, the arc shaped pore area in the actual sample are analysed and summarized. The structure characteristics of ordered porous copper are summarized.Then the practical porous structure model is obtained.
     The influence of process parameters on the the structure was investiaged and the results show that:(1) the porosity was significantly affected by the partial pressures of hydrogen and argon:the porosity decreases with increasing partial pressure of hydrogen when only single hydrogen is used; the porosity decreases with increasing partial pressure of argon when the partial pressure of hydrogen keeps constant; the porosity increases with increasing partial pressure of hydrogen when the total gas pressure keeps constant. The total gas pressure was the key factor influencing the average pore diameter, namely the average pore diameter decreased with increasing total gas pressure. The distribution uniformity of pore size was influenced by the total gas pressure and ratio of partial pressure of hydrogen to partial pressure of argon. In general, the distribution uniformity of pore size improved as the total gas pressure increased and worsened as the ratio of partial pressure of hydrogen to partial pressure of argon increased.(2) The porosity increased with increasing mold temperature. Because the radial heat dissipation is inevitable, there is an angle between pore growth direction and the sample center shaft. The angle decreased with increasing the mold temperature,(3) The porosity was independent of the transference velocity but dependent on the hydrogen gas pressure.The average pore diameter decreased with increasing transference velocity at a given gas pressure.
     In this paper, the ideal structure of ordered porous copper has been studied. Based on the ideal structure symmetry hypothesis, the porosity, pore formation gibbs free energy and the evolution of pore is analyzed and calculated. It is showed that hexagonal pore structure is in accord with the actual pore structure.
     As the heat flows from top to bottom of the sample, the solid-liquid interface morphology can be divided into concave, flat and convex interface. The bubble can not bifurcate. Its growth can only be in three ways:contraction growth, parallel growth, expansion growth. It is demonstrated that the relationship of interfacial energy of them is that expansion growth> contraction growth> parallel growth. The parallel growth meets mechanical equilibrium condition.
     The temperature field is calculated by establishing solidification model of garsar process. The heat transfer in Gasar process has been analysed. It is considered the gas has no influence on heat transfer. The relationship between solidified shell thickness and solidified time has been deduced, which is quiet simlar to the traditional square root law. It is shown that the solidification velocity should be in the range of1.5mm/s~2.5mm/s. The solidificattion time should be93-107s for sample with a height of240mm. The relationship between temperature gradient and process factors has been studied through calculating the temperature gradient in liquid. The results show that the radiant heat resistance is the most important factor in all thermal resistance. The heating temperature and the radius of sample are the main factors for the temperature gradient. The temperature gradient increases with increasing heating temperature and decreasing radius, The effect of melting temperature and the wall thickness of crucible are not obvious. The radiation distance has no effect on temperature gradient.
引文
[1]Nakajima H. Fabrication, Properties and Application of Porous Metals with Directional Pores [J]. Progress in Materials Science,2007,52(7):1091-1173.
    [2]DEGISCHER H P, KRISZT B. Handbook of Cellular Metals:Production, Processing, Application [M]. Weinheim:Wiley-VCH Verlag Gmbh,2002:1-373.
    [3]王肇经.铸造铝合金中的气体和非金属夹杂物[J].北京:兵器工业出版社,1988:1-103.
    [4]刘培生,多孔材料引论[M].北京:清华大学出版社,2004:1-151.
    [5]徐有明.木材学[M].北京:中国林业出版社,2006:1-51.
    [6]陈永.多孔材料制备与表征[M].合肥:中国科学技术大学出版社,2010:1-188.
    [7]Gibson L J, Ashby M F. Cellular solids Structure and Properties [M],Cambridge: Cambridge University Press,1997.
    [8]Seepersad C C,Fernandez M G,Panchal J H,et al.Foundations for a systems-based approach for materials design//The 10th AIAA/SSMO Multidisciplinary Analysis and Optimization Conference Albany.New York,2004
    [9]卢天健,徐峰,文婷.周期性多孔金属材料的热流性能[M].北京:科学技术出版社.2010.4
    [10]Sosniek B.USA Patent,2434775[P],1948
    [11]Banhart J. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Materials Science[J],2001,46(6):559-632
    [12]Ashby M F et al. Translation by Liu Peisheng(刘培生),WangXishu(王习述),Li Yanxiang(李言祥)et al. Metal Foams:A Design Guide(泡沫金属设计指南)[M]. Beijing:MetallurgicalIndustry Press,2006
    [13]Evans A QHutchinson J W,Ashby M F.Multifunctionality of cellular metal systems[J].Progress in Materials Science,1999:171-221
    [14]Ashby M F.The properties of foams and lattices[J].Philosophical Transactions of the Royal Society A,2006,364:15-30
    [15]Wadley H N GMultifunctional periodic cellular metals[J].Philosophical Transactions of the Royal Society A,2006,364:31-38
    [16]Fleck N A.An overview of the mechanical properties of foams and periodic materials[J].Symposium on Cellular Metals and Polymers,2004,252:43-48
    [17]Queheillalt D T,Sypeck D J,Wadly H N GUltrasonic characterization of cellular metal structures[J].Materials Science and Engineering A,2002,323:38-47
    [18]陈祥,李言祥.金属泡沫材料研究进展[J].材料导报,2003,17(5):5-11
    [19]刘培生,李铁藩,傅超,等.多孔金属材料的应用[J].功能材料,2001,32(1):12-15
    [20]李言祥,刘源.金属/气体共晶定向凝固规则多孔金属的研究进展[J].材料导报,2003,17(4):1-4
    [21]许庆彦,熊守美.多孔金属的制备工艺方法综述[J].铸造,2005,54(9):840-843
    [22]刘培生,马晓明.多孔材料检测方法[M].北京:清华大学出版社,2006:1-310
    [23]左孝青,孙加林.泡沫金属制备技术研究进展[J].材料科学与工程学报,2004,22(1):90-93
    [24]徐光,金属泡沫材料的生产方法和研究现状[J].武汉冶金科技大学学报.1998,21(4):401-404
    [25]S.A. Maire H. H.Naomi. Experimental Investigation of Sintered Porous Metal Filters[J]. Journal of Aerosol Science.2000,31(6):721-738
    [26]李宝山,牛玉舒,廖克俭等.电沉积法制备泡沫铜[J].化工冶金.1998,19(3):199-204
    [27]梁永仁,丁秉钧等.金属多孔材料的应用及制备的研究进展[J].稀有金属材料与工程.2006,2:30-35
    [28]王政红,陈派明.发泡法制备泡沫铝,材料开发与应用,1998,13(3):30-32
    [29]L.O. Ma, S.Z. Song. Cellular structure control of aluminum foams during foaming process of aluminum melt[J], Scripta Materialia,1998, 39(11):1523-1528
    [30]H. Nakajima, T. lkeda, S.K. Hyun. Fabrication of lotus-type porous metals and their physical properties [J]. Advanced Engineering Materials.2004;6(6):377-384
    [31]程和法,黄笑梅,陈国宏.渗流法制备泡沫铝合金工艺的研究[J].轻合金加工技术.2001,29(1):38-40
    [32]陈雯,刘中华,朱诚意等.泡沫金属材料的特性、用途及制备方法[J],有色矿冶,1999,1:33-36
    [33]Shapovalov V I. Method and Apparatus for Manufacturing Porous Articles[P]: WO, WO92/19400.1992-12-11.
    [34]V. I. Shapovalov. Fomation of ordered gas-solid structures via solidification in metal-hydrogen system[J]. Materials Research Society Symposium. Proceedings. 1998,521:281-290
    [35]V. I. Shapovalov. Structure formation behavior of alloys during gas-eutectic transformation and prospects of the use of hydrogen in alloys[J]. The Minerals, Metals and Materials Society.1992:207-210
    [36]Shapovalov V I. Method for Manufacturing Porous Articles[P]:US.5181549. 1993-01-26.
    [37]Shapovalov V.I.,MRS Bulletin 4 [P] (1994)p.24
    [38]V. I. Shapovalov. Porous Metals, MRS Bulletin[J],1994(4):24-29
    [39]WALUKAS D M. GASAR Materials:A Novel Approach in the Fabrication of Porous Metals [R]. USP Holdings,1992
    [41]Tane M. Nakajima H. Fabrication of Lotus-Type Porous Magnesium Using Hydrogen Decomposed from MgH2.2008.//Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008: 241-244.
    [42]Tane M., H. Nakajima. Fabrication of Lotus-Type Porous Magnesium through Thermal Decomposition of Magnesium Hydride[J]. Journal of Physics: Conference Series,2009.165:12-65.
    [43]Nakajima H, Ide T. Method for Manufacturing Porous Body[P]:WO, WO/2008/004460,2008-01-10.
    [44]Nakajima H. Fabrication of Lotus-Type Porous Metals through Hydride Decomposition[J]. Advanced Engineering Materials,2008,10(9):816-819.
    [45]Nakajima H. Fabrication and Applications of Lotus-Type Porous Metals through Hydride Decomposition.//Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008:193-196.
    [46]Nakajima H, Ide T. Fabrication of Porous Copper with Directional Pores through Thermal Decomposition of Compounds[J]. Metallurgical and Materials Transactions A,2008,39(2):390-394
    [47]Kim S Y, Nakajima H, Hur B Y. Fabrication of Lotus-Type Porous Nickel through Thermal Decomposition Method of Compounds by Mold Casting Technique.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008:197-200.
    [48]Wada T, Ide T, Nakajima H. Fabrication of Porous Iron with Directional Pores through Thermal Decomposition of Chromium Nitride[J]. Metallurgical and Materials Transactions A,2009,40(13):3204-3209.
    [49]Kim S Y, Park J S, Nakajima H. Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method[J]. Metallurgical and Materials Transactions A,2009,40(4):937-942.
    [50]Nakajima H, Kim S Y, Park J S. Fabrication of Porous Aluminium with Directional Pores through Thermal Decomposition Method[J]. Journal of Physics: Conference Series,2009.165:12-63.
    [51]Onishi H, Ueuo S, Hyun S K, et al. Fabrication of Lotus-Type Porous Cobalt and Silicon through Decomposition of Moisture[J]. Metallurgical and Materials Transactions A,2009,40(2):438-443.
    [52]Kim T B, Suzuki S, Nakajima H. Fabrication of A Lotus-Type Porous Al-Si Alloy by Continuous Casting with A Thermal Decomposition Method[J]. Journal of Physics:Conference Series,2009.165:12-67
    [53]Nakahata T, Hyun S K, Nakajima H. Fabrication of Lotus-type Silver by Unidirectional Solidificaion in Oxygen Atmosphere.//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006: 223-228.
    [54]Nakajima H. Invariant Reaction of Liquid→Solid+Gas—Gas-Evolution Crystallization Reaction. Materials Transactions,2001,42(8):1827-1829
    [55]刘源.金属气体共晶定向凝固制备藕状多孔金属基础研究[D].北京:清华大学,2004
    [56]Li Y, Zhang H, Liu Y. Directional Solidification of Metal-Gas Eutectics for Fabrication of Aligned Porous Metals.//Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008: 209-212.
    [57]李言祥,刘源,张华伟.GASAR和Gasarite研究进展[J].特种铸造及有色合金,2004,(1):9-11.
    [58]Li Y X, Liu Y, Zhang H W. On the Solidification of Metal-Gas Eutectics.//Jones H, eds. Proceedings of the 5th Decennial International Conference on Solidification Processing. Sheffield:The Department of Engineering Materials, the University of Sheffield,2007:576-581.
    [59]张华伟.金属-气体共晶定向凝固的研究[D].北京:清华大学机械工程系,2007.
    [60]张华伟,李言祥,刘源.Gasar工艺下难以制得藕状多孔Al的原因分析.//中国材料研究学会,编.2006年材料科学与工程新进展——“2006北京国际材料周”论文集.北京:中国材料研究学会,2006:572-576.
    [61]Liu Y, Li Y X. Theoretical Analysis of Bubble Nucleation in GASAR Materials [J]. Transactions of Nonferrous Metals Society of China,2003,13(4):830-834.
    [62]张华伟,李言祥.金属熔体中气泡形核的理论分析[J].物理学报,2007,56(8):4864-4871.
    [63]刘源,李言祥,张华伟,等.藕状规则多孔结构形成的压力条件和气孔尺寸的演变规律[J].金属学报,2005,41(8):886-890.
    [64]张华伟,李言祥,刘源.固/气共晶定向凝固中的工艺判据[J].金属学报,2007,43(6):589-594.
    [65]Li Y X, Liu Y, Zhang H W, et al. Effects of Processing Condition on Structure of Regular Porous Metals Fabricated by Directional Solidification//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:237-240.
    [66]Liu Y, Li Y X, Zhang H W, et al. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-Type Porous Magnesium Fabricated with GASAR Process. Journal of Materials Science and Technology,2006,22(3):306-310.
    [67]张华伟,李言祥,刘源.Gasar工艺获得均匀藕状多孔结构的气压选择[J].金属学报,2006,42(11):1171-1176.
    [68]Wan J, Li Y X, Liu Y. Spatial Distribution of Pores in Lotus-Type Porous Metal [J]. Journal of Materials Science,2007,42(15):6446-6452.
    [69]万疆,李言祥,刘源.气压对定向凝固藕状多孔镁的气孔分布影响[J].中国 有色金属学报,2007,17(2):200-206.
    [70]Liu Y, Li Y X. A Theoretical Study of Gasarite Eutectic Growth [J]. Scripta Materialia,2003,49(5):379-386.
    [71]Liu Y, Li Y X, Wan J, et al. Evaluation of Porosity in Lotus-Type Porous Magnesium Fabricated by Metal/Gas Eutectic Unidirectional Solidification. Materials Science and Engineering A,2005,402(1-2):47-54.
    [72]Liu Y, Li Y X, Wan J, et al. Some Theoretical Problems in Metal-Gas Eutectic Unidirectional Growth.//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:241-246.
    [73]刘源,李言祥,万疆,等.金属-气体共晶定向生长的理论分析.//中国材料研究学会,编.2006年材料科学与工程新进展——"2006北京国际材料周”论文集.北京:中国材料研究学会,2006:588-596.
    [74]王雪.固-气共晶二维定向凝固制备放射状规则多孔金属[D].北京:清华大学,2008.
    [75]王雪,李言祥,刘源.放射状规则多孔金属的孔分布结构.//中国材料研究学会,编.2006年材料科学与工程新进展——“2006北京国际材料周”论文集.北京:中国材料研究学会,2006:511-516
    [76]王雪,李言祥,刘源.用金属/气体共晶二维定向凝固法制备放射状规则多孔Mg[J].金属学报,2006,42(10):1075-1080.
    [77]Wang X, Li Y X, Liu Y. Structural Features in Radial-Type Porous Magnesium Fabricated by Radial Solidification [J]. Materials Science and Engineering A, 2007,444(1-2):306-313
    [78]王雪,李言祥,刘源.金属/气体共晶二维定向凝固放射状多孔Mg的结构特征[J].金属学报,2007,43(1):6-10.
    [79]王雪,李言祥,刘源.熔体流动对Mg-H共晶二维定向凝固的影响[J].金属学报,2008,44(9):1057-1062.
    [80]Wang X, Li Y X, Liu Y. Bidirectional Solidification of Radial-Type Porous Magnesium. International Journal of Cast Metals Research,2009,22(1-4): 200-203.
    [81]黄峰,杨天武,李再久,等.规则多孔铜压缩性能的各向异性[J].中国有色金属学报,2011,21(3):604-610.
    [82]彭震,杨天武,李再久,等.规则多孔铜拉伸性能的各向异性[J].中国有色金属学报,2011,21(5):1045-1051.
    [83]金青林,黎振华,李再久,等.藕状多孔铜的连铸法制备工艺研究[J].铸造技术,2011,32(3):306-309
    [84]岳珊,杨天武,李再久,等.规则多孔铜热膨胀性能的研究[J].功能材料,2011
    [85]申芳华,李再久,杨天武,等.规则多孔铜基自润滑材料的干摩擦磨损性能.摩擦学报,2012,32(2):150-156
    [86]杨天武,周荣,金青林,等.规则多孔金属理想结构分析[J].特种铸造及有色合金.2012,32(5):400-403
    [87]姚迪,刘新华,刘雪峰,等.藕状多孔铜轴向压缩变形行为与本构关系[J].中国有色金属学报,2008,18(11):1996-2001
    [88]刘新华,姚迪,刘雪峰,等.藕状多孔铜沿垂直于气孔方向的压缩变形行为与本构关系[J].中国有色金属学报,2009,19(7):1237-1244
    [89]谢建新,刘新华,刘雪峰,等.藕状多孔纯铜棒的制备与表征[J].中国有色金属学报,2005,15(11):1869-1873
    [90]Ikeda T, Tsukamoto M, Nakajima H. Fabrication of Lotus-Type Porous Stainless Steel by Unidirectional Solidification under Hydrogen Atmosphere[J]. Materials Transactions,2002,43(11):2678-2684
    [91]Hoshiyama H, Ikeda T, Nakajima H. Fabrication of Lotus-Type Porous Magnesium and its Alloys by Unidirectional Solidification under Hydrogen Atmosphere[J]. High Temperature Materials and Processes,2007,26(4):303-316.
    [92]Taguchi K, Sato M, Mizuta A, et al. Casting and Mechanical Properties of Lotus-type Porous Hastelloy X. In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:219-222
    [93]Shapovalov V I, Withers J C. Hydrogen Technology for Porous Metals (Gasars) Production[J]. In:Baranowski B, Zaginaichenko S, Schur D, Skorokhod V V, Veziroglu A, eds. Carbon Nanomaterials in Clean Energy Hydrogen Systems. Berlin:Springer Netherlands..2009:29-51.
    [94]Hyun SK, Park J S, Tane M, et al. Fabrication of Lotus-type Porous Metals by continuous Zone Melting and Continuous Casting Techniques. In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:211-214.
    [95]Kashihara M, Yonetani H, Kobi T, et al. Fabrication of Lotus-type Porous Carbon Steel by Unidirectional Solidificaion in Nitrogen Atmosphere. In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:215-218.
    [96]Ikeda T, Aoki T, Nakajima H. Fabrication of Lotus-Type Porous Stainless Steel by Continuous Zone Melting Technique and Mechanical Property[J]. Metallurgical and Materials Transactions A,2005,36 A(1):77-86.
    [97]Ide T, Tane M, Hyun S K, et al. Fabrication of Lotus-type Porous Ni3Al by Unidirectional Solidification.In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:229-232.
    [98]Nakano T, Tachibana T, Hagihara K, et al. Fabrication and Plastic Deformation Behavior of Lamellar Ti-Rich TiAl Crystals with Lotus-Type Aligned pores. In: Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008:213-216.
    [99]Park J S, Suzuki S, Nakajima H, et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using Continuous Casting Technique. In:Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008: 229-232.
    [100]Hyun S K, Suzuki S, Nakajima H. Fabrication of Lotus-Type Porous Magnesium by Continuous Casting Process. In:Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008:233-235.
    [101]Onishi H, Hyun S K, Nakajima H, et al. Magnetization Process of Lotus-Type Porous Metals[J]. Journal of Applied Physics,2008,103(9):9353-9358.
    [102]Nakahata T, Hyun S K, Nakajima H. Fabrication of Lotus-type Silver by Unidirectional Solidificaion in Oxygen Atmosphere//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006: 223-228.
    [103]Nakahata T, Nakajima H. Fabrication of Lotus-Type Silver with Directional Pores by Unidirectional Solidification in Oxygen Atmosphere[J]. Materials Transactions,2005,46(3):587-592.
    [104]Tetsu Ichitsubo, Masakazu Tane. Anisotropic elastic constants of Lotus-type porous copper; measurements and micromechanics modeling[J]. Acta Materialia.2002,50:4105-4115
    [105]Chiba H, Ogushi T, Nakajima H. Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink[J].. The Japan Institute of Metals.2006:35-40
    [106]NAKAJIMA H, HYUN S K, OHASHI K, OTA K, et al. Fabrication of Porous Copper by Unidirectional Solidification under Hydrogen and Its Properties [J]. Colloids and Surfaces,2001,179A.-209-214
    [107]SIMONE A E. The Tensile Strength of Porous Copper Made by the GASAR Process [D]. Massachusetts:Massachusetts Institute of Technology,1994
    [108]陈文革,罗启文,张强,等.定向凝固技术制备多孔铜及其力学性能[J].机械工程材料,2007,31(7):42-44
    [109]R.J.Bonenberger, A.J. Kee, R.K.Everett. Characterization of porous Gasar aluminum[J], MRS Symposium. Proceedings, San Francisco, California, 1998,Vol.521:303-320
    [110]A. Kee; P.Matic, R.K.Everett. Amesoscale computer simulation of multi-axial yield in gasar porous copper[J], Materials Science and Engineering.,1998,A249: 30-39
    [111]A.Kee; P.Matic, L.Popels. Two dimensional computational study of a gasar porous copper microstructure[J], Materials Science and Engineering., 1997,A225:85-95
    [112]P.Matic, J.M.Wolla, A.Kee. A computational study of elongated pore interactions in a low density porous copper[J], Materials Science and Engineering., 1997,A230:14-24
    [113]J.Kov & cik. The tensile behavior of porous metals made by GASAR process[J], Acta Materialia.,1998,46(15):5413-5422
    [114]A.E.Simone and L.J.Gibson. The tensile strength of porous copper made by the Gasar process[J], Acta Metall.,1996,44(29):1463-1471
    [115]S.K.Hyun, K.Murakami, H.Nakajima. Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification, Mater.Sci.Eng., 2001,A299:241-248
    [116]H.Nakajima, S.K.Hyun, K.Ohashi, K.Ota, K.Murakami. Fabrication of porous copper by unidirectional solidification under hydrogen and its properties[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,179:209-214
    [117]KOVACIK J. The Tensile Behaviour of Porous Metals Made by GASAR Process [J]. Acta Metallurgica 1998,46(15):5413-5422
    [118]http://www.msm. cam. ac.uk/mmc/people/dave/method2. html
    [119]Ogushi T, Chiba H, Nakajima H, Ikeda T. Measurement and Analysis of Effective Thermal Conductivities of Lotus-type Porous Copper[J]. Verlag Massachusetts Institute of Technology Publicayions.2003,493-498
    [120]Ogushi T, Tane M, Nakajima H. Prediction of the Thermal Properties of Lotus-Type and Quasi-Isotropic Porous Metals:Numerical and Analytical Methods[J]. Materials Letters.2006,60(21-22):2690-2694
    [121]S.Nishio. Proc.2nd symposium on Thermal Design and Thermal Management Technology [J]. Japan Management Association.2002,5:1-11
    [122]Ogushi T, Chiba H, Nakajima H. Development of Lotus-type Porous Copper Heat Sink.In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:27-34.
    [123]Shapovalov V I, Eryomenko N D. The Structure and Properties of Composite Porous Materials with Monolithic Framework for Slide Bearing Units.// European Advanced Material Institute, eds. Proceedings of International New Business and High-Tech Research Conference. Jyvaskyla:European Advanced Material Institute.1989:1-12.
    [124]Chiba H, Nakajima H, Tomimura T, et al.Steady State Comparative-Longitudinal Heat Flow (SCHF) Method Using Specimen of Different Thickness for Measuring Thermal Conductivity of Ani so tropic and Thin Porous Metals.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008:521-524
    [125]Chiba H, Ogushi T, Nakajima H, et al. Steady State Comparative-Longitudinal Heat Flow Method Using Specimen of Different Thicknesses for Measuring Thermal Conductivity of Lotus-Type Porous Metals [J]. Journal of Applied Physics,2008,103(1):13-15.
    [126]Sergent J E, Krum A. Thermal Management Handbook:for Electronic Assemblies [M]. New York:McGraw-Hill Companies,1998:1-213
    [127]Withers J C, Shapovalov V I. Method and Apparatus for Manufacturing Porous Articles[P]:US,20090047439,2009-02-19.
    [128]Xie J X, Yamada Y, Banno T, et al. Sound Absorption of Lotus-type Porous Magnesium. In:Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals,2006:607-610.
    [129]K. Ota, K. Ohashi, H.Nakajima. Internal friction in lotus-structured porous copper with hydrogen pores [J], Mater.Sci.Eng.,2003,A341:139-143
    [130]T. Murakami, K. Nakata, H.Nakajima. Weld fusion property of lotus-type porous copper by laser beam irradiation [J], Mater.Sci.Eng.,2003,A357:134-140
    [131]肖华星,陈光,崔鹏.定向凝固多孔金属制造人工骨的前景展望[J].特种铸造及有色合金,2001(2):88-89
    [132]V. I. Shapovalov, L. Boyko. Advantages of gasar-materials for brake shoes and plates[J],18th Annual Brake Colloquium and Engineering Display, San Diego, California, USA,2000,10:5-8
    [133]Nakajima H. Solar Energy-utilizing desalion method and apparatus [P].JP53095650,2005.
    [134]Ide T,Tane M,Ikeda T,et al. Compressive properties of lotus-type porous stainless steel [J]. JMater Res,2006,21(1):185-193.
    [135]Alvarez K, Hyun S K, Tsuchiya H, et al. Corrosion behaviour of Lotus-type porous high nitrogen nickel-free stainless steels [J]. Corros Sci,2008,50(1):183-193.
    [136]Tane M,Ichitsubo T,Nakajima H,et.al. Elasticproperties of lotus-typeporousiron: acoustic measurement and extended effective-mean-field theory [J]. Acta Materialia,2004,52(17):5195-5201.
    [137]L.V. Boiko. Use of hydrogen for the production of materials with regulated porosity[J], Materials Science,2000,36(4):506-512
    [138]V. I. Shapovalov. Formation of ordered gas-solid structures via solidification in metal-hydrogen system [M], MRS Symposium. Proceedings, San Francisco, California,1998,Vol.521:281-290
    [139]A. Pattnaik, S.C. Sanday, C.L.Vold. Microstructure of Gasar porous copper ingots[J], MRS Symposium. Proceedings, San Francisco, California, 1995,Vol.371:371-376
    [140]C. Park and S.R. Nutt. Metallographic study of Gasar porous magnesium, MRS Symposium[J]. Proceedings, San Francisco, California,1998,Vol.521:315-320
    [141]J.M. Apprill, D.R. Poirier D.R, M.C. Maguire. Gasar porous metals process contro[J]l, MRS Symposium. Proceedings, San Francisco, California, 1998,Vol.521:291-296
    [142]C.J. Paradies, A. Tobin, J. Walla. The effect of Gasar processing parameters on porosity and properties in aluminum alloys[J], MRS Symposium. Proceedings, San Francisco, California,1998,Vol.521:297-302
    [143]Y. Zheng, S. Sridhar, K.C. Russell. Controlled porosity alloys through solidification processing:A modeling study[J], MRS Symposium. Proceedings, San Francisco, California,1995,Vol.365-370
    [144]Drenchev, Gasars A Specific Class of Porous Materials [M]. Warsaw:Motor Transport Institude,2009
    [145]Nakajima H. Apparatus for Producing Lotus Root-Shaped Porous Metal[P]. JP Patent,2000239760,2000-09-05
    [146]Hyun S K, Nakajima H. Anisotropic Compress Properties of Porous Copper Produced by Unidirectional Solidification [J].Materials Science and Engineering,2003,A340(1-2):258-264
    [147]Xie Z K, Yamada Y, Banno T, Hyun S K, Tane M, Okuda Y, Nakajima H. Sound Absorption of Lotus-Type Porous Magnesium. In:Nakajima H, Kanetake N, eds.Proceedings of MetFoam2005. Sendai:The Japan Institute of Metals, 2006.607-610
    [148]K.A. Jackson, J.D. Hunt. Trans. Metall [J]. Soc. ASME.,1966,236:1129-1142
    [149]V. I. Shapovalov. Method of manufacture of Porous Articles [P], U.S. Patent No. 5,181,549 (January 26,1993)
    [150]S.K.Hyun, H.Nakajima. Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification [J], Materials Letters.,2003,57:3149-3154
    [151]Park J S, Hyun S K, Suzuki S, et al. Effect of Transference Velocity and Hydrogen Pressure on Porosity and Pore Morphology of Lotus-Type Porous Copper Fabricated by a Continuous Casting Technique. Acta Materialia,2007, 55(16):5646-5654.
    [152]刘源,李言祥,刘润发,等.连铸法Gasar工艺中抽拉速率对多孔金属结构影响的理论分析[J].金属学报,2010,46(2):129-134.
    [153]陈永定,余新昌.金属和合金中的氢[M].北京:冶金工业出版社,1988:1-116.
    [154]Fromm E, Hoerz G. Hydrogen, Nitrogen, Oxygen, and Carbon in Metals [J]. International Metals Reviews,1980,25(5-6):269-311.
    [155]Fromm E, Jehn H. Solubility of Hydrogen in the Elements [M]. Bulletin of Alloy Phase Diagrams,1984,5(3):324-326.
    [156]Smithells C J. Smithells Metal Reference Book [M].7th ed. Boston: Butterworth-Heinemann,1992.
    [157]Manchester F D. Phase Diagrams of Binary Hydrogen Alloys [M]. Materials Park:ASM International,2000.
    [158]张华伟,李言祥,刘源.氢在Gasar工艺常用纯金属中的溶解度[J].金属学报,2007,43(2):113-118
    [159]Lide D R. CRC Handbook of Chemistry and Physics [M].84th ed. Boca Raton: CRC Press, c2003:4.37-4.132.
    [160]Murakami K, Nakajima H. Formation of Pores during Unidirectional Solidification of Water Containing Carbon Dioxide [J]. Materials Transactions, 2002,43(10):2582-2588.
    [161]Park J S, Suzuki S, Nakajima H, et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using Continuous Casting Technique.//Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal:DEStech Publications,2008: 229-232.
    [162]Park J S, Hyun S K, Suzuki S, et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using the Continuous Casting Technique [J]. Metallurgical and Materials Transactions A,2009,40(2):406-414.
    [163]Shapovalov V I, Timchenko A G. Production of Gas-Crystal Structures in Aluminium and Its Alloys in The Presence of Hydrogen [J]. The Physics of Metals and Metallography,1993,76(3):335-337.
    [164]Boyko L. Structural Features and Properties of GASARs-New Porous Composite Metals for Industry.//Rohatgi P K, eds. Proceedings of the TMS Fall Meeting. St. Louis:TMS,2000:303-312.
    [165]Shapovalov V I, Boyko L. Gasar-A New Class of Porous Materials [J]. Advanced Engineering Materials,2004,6(6):407-410.
    [166]Atwood R C, Sridhar S, Zhang W, et al. Diffusion-Controlled Growth of Hydrogen Pores in Aluminium-Silicon Castings:in Situ Observation and Modelling. Acta Materialia,2000,48(2):405-417.
    [167]Lee P D, Hunt J D. Hydrogen Porosity in Directionally Solidified Aluminium-Copper Alloys:A Mathematical Model [J]. Acta Materialia,2001, 49(8):1383-1398
    [168]Melo M L N M, Rizzo E M S, Santos R G. Numerical Model to Predict the Position, Amount and Size of Microporosity Formation in Al-Cu Alloys by Dissolved Gas and Solidification Shrinkage [J]. Materials Science and Engineering A,2004,374(1-2):351-361.
    [169]赵海东,吴朝忠,李元元,等.垂直向上凝固A1-Cu铸件中微观孔洞形成的数值模拟[J].金属学报,2008,44(11):1340-1347.
    [170]Jamgotchian H, Trivedi R, Billia B. Interface Dynamics and Coupled Growth in Directional Solidification in Presence of Bubbles [J]. Journal of Crystal Growth, 1993,134(3-4):181-195.
    [171]陈家祥.连续铸钢手册[M].第一版.北京:冶金工业出版社.1991,1-183
    [172]史衰兴.实用冶金连铸技术[M].北京:冶金工业出版社1998,8-9
    [173]Shapovalov V, Boyko L. [J]. Adv Eng Mater,2004,6(6):407.
    [174]朱纪磊,奚正平,汤慧萍,等.多孔结构表征及分形理论研究简况[J].稀有金属材料与工程,2006,35(Suppl.2):452-454.
    [175]Fisher J C[J]. J Appl Phys,1948,19:106
    [176]Ashby M F.The properties of foams and lattices [J].Philosophical Transactions of the Royal Society A,2006,364:15-30
    [177]Neumann J V. Metal Interfaces[J]. American Society of Metals,1952:108-115
    [178]Mullins W W. Estinmation of the geometrical rate constant in idealized three dimensional grain growth [J].Acta Metallurgiea,1989,37(11):2979-2984
    [179]Dinsdale A T. SGTE Data for Pure Elements [J]. Calphad,1991,15(4):317-425.
    [180]Jones H. The Solid-Liquid Interfacial Energy of Metals Calculations versus Measurements [J]. Materials Letter,2002,53(4-5):364-366
    [181]B.C. Allen. Liquid Metals Chem. And Phys[M]. Dekker New York,1972:161
    [182]R. Warren. Solid-liquid interfacial energies in binary and pseudo-binary systems [M], J. Mater. Sci.,1980,15:2489-2496
    [183]W.R. Tyson, W. A. Miller. Surface Science [M],1977,62:267-270
    [184]冯瑞.金属物理学[M].第二卷.北京:科学出版社,2000
    [185]姚连增.晶体生长基础[M].合肥:中国科学技术出版社,1995
    [186]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社.1982
    [187]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1998
    [188]张克从,张乐惠.晶体生长科学与技术[M].北京:科学出版社,1997
    [189]李庆春.铸件成形理论基础[M].北京:机械工业出版社,1982
    [190]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000
    [191]李日等.材料科学与工程中的传输原理[M].北京:化学工业出版社,2010
    [192]杨世铭.传热学[M].北京:高等教育出版社,1980
    [193]戴锅生.传热学[M].北京:高等教育出版社,1999,28.
    [194]杨世铭、陶文铨.传热学3版[M].高等教育出版社,1998,138-143
    [195]高家锐.动量、热量、质量传输原理[M].重庆:重庆大学出版社,1987.167 171.
    [196]安阁英.铸件形成理论[M].北京:机械工业出版社,1990.173-183
    [197]李慧春.连铸坯凝固传热过程的数值模拟[D].兰州:兰州理工大学.2008.6
    [198]韩传基,蔡开科,赵家贵等.板坯连铸二冷区凝固传热过程与控制[J].北京科技,2000,30(3):35-41
    [199]杨全.金属凝固与铸造过程数值模拟[M].杭州:浙江大学出版社,1996.26-31.
    [200]戴起勋,赵玉涛.材料科学研究方法.北京:国防工业出版社,2004,8
    [201]周尧和,胡壮麒,介万奇.凝固技术.北京:机械工业出版社,1998.
    [202]傅恒志等,先进材料定向凝固[M],北京科学出版社,2008.
    [203]范金辉,华勤.铸造工程基础[M].北京:北京大学出版社,2009:24
    [204]Mills K C, Monaghan B J, Keene B J. Thermal Conductivities of Molten Metals: Part 1 Pure Metals[M]. International Materials Reviews,1996.41(6):209-242.
    [205]岳留振,倪锋,张永振,龙锐.热型连铸工艺参数的数值分析[J].铸造,2005,54(6):39-47
    [206]ELLIOTT A J, TIN S, KING W T, et al. In:Directional Solidification of Large Superalloy Castings with Radiation and Liquid2Metal Cooling:A Comparative Assessment [J]. Metallurgical and Materials Transactions,2004, 35A(10):3221-3231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700