用户名: 密码: 验证码:
Ni-Mn-In基合金的马氏体相变与结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用扫描电镜观察、透射电子显微分析、X射线衍射分析、示差扫描量热分析、室温压缩试验、交流磁化率测试、物性测量及相变应变测试等方法系统研究了Ni-Mn-In基磁性记忆合金的相变行为及组织结构和性能;阐明了In含量及Co和Fe掺杂对相组成、马氏体相变、力学性能和磁性能的影响规律和机制。
     研究发现,Ni50Mn50-xInx(x=16, 15, 14, 13, 12)合金为单一固溶体;Co和Fe的掺杂改变了Ni-Mn-In合金的相组成:当Co含量达3at.%或Fe含量达5at.%时,合金基体中形成短棒状富Co或富Fe的面心立方γ相;且γ相的尺寸和体积分数随Co或Fe含量的增加而增大。
     试验结果表明,Ni50Mn50-xInx合金在冷却/加热过程中发生热弹性马氏体相变及逆相变,In含量降低相变温度升高。当In含量为15at.%时,马氏体为单斜5M调制结构;当In含量为13at.%时,马氏体为单斜7M结构;当In含量为12at.%时,马氏体为单斜7M调制与少量非调制结构;当In含量为14at.%时,合金降温过程中发生立方L21→正交4O→单斜7M调制结构的两步马氏体转变。Ni50Mn50-xInx合金马氏体变体间主要为(102)M I型孪晶关系。Ni50Mn34In16-yCoy(y=0, 2, 3, 4, 5, 8)与Ni50Mn34In16-yFey(y=0, 2, 3, 4, 5, 8)合金降温过程中主要发生立方L21→单斜7M调制结构的一步热弹性马氏体相变;Co或Fe的掺杂改变了合金的基体成分,随Co含量增加,马氏体相变温度先升高后降低,Fe含量增加,马氏体相变温度升高;掺杂后马氏体变体间除呈(102)M I型孪晶关系外还观察到(111)M I型孪晶关系。
     室温压缩实验表明,Ni50Mn50-xInx合金的断裂强度和断裂应变随着In含量的降低稍有增加,而Co和Fe掺杂均使合金断裂强度和断裂应变显著提高。Co的掺杂量为8at.%时,断裂强度和断裂应变分别达1420MPa和20.5%。Co或Fe掺杂提高塑性的主要原因在于:合金基体中的面心立方γ相阻碍了裂纹扩展;同时,合金的断裂方式从沿晶脆断逐渐转变为穿晶断裂,并出现韧性的撕裂棱。
     磁性测量表明,In含量改变,Ni50Mn50-xInx合金的居里温度无明显变化,当In含量大于等于15at.%时,居里温度高于马氏体相变温度,在外磁场作用下发生顺磁马氏体→铁磁母相的转变;当In含量低于15at.%时,居里温度低于马氏体相变温度,未观察到磁场诱发马氏体逆相变。掺Co或Fe部分替代In后,居里温度增加,使得Ni50Mn34In8Co8与Ni50Mn34In14Fe2合金居里温度高于马氏体相变温度,施加磁场后发生了马氏体逆相变。另外,在居里温度附近施加磁场,Ni50Mn36In14Fe2合金呈现大的磁热效应,当磁场强度为8T时,其磁熵变达53J/kgK。
The martensitic transformation behavior, microstructures and properties of Ni-Mn-In based alloys have been investigated systematically by means of SEM, TEM, XRD, DSC, compressive tests, AC susceptibility, PPMS and transformation strain measurements. The influence and mechanics of In content, Co and Fe doping on phase constitute, phase transformation, mechanical properties and magnetic properties are illuminated.
     The research found that the Ni50Mn50-xInx(x=16, 15, 14, 13, 12) alloys are single solid solution. The phase constitute of Ni-Mn-In alloy is changed by doping Co and Fe element: As the Co content is 3at.% or Fe content is 5at.%, there are short stick-like Co-rich or Fe-rich fccγphase in matrix, and the demention and volume fraction ofγphase increase with the increase of Co or Fe content.
     The experimental results indicate that the Ni50Mn50-xInx alloys undergo thermal-elastic martensitic transformation and inverse phase transformation as cooling or heating. As In content is 15at.%, the martensite is monoclinic 5M modulated structure. As In content is 13at.%, the martensite becomes monoclinic 7M modulated. As In content is 12at.%, the martensite is monoclinic 7M modulated with few unmodulated structure. As In content is 14at.%, the alloy undergoes two-step transformation from cubic L21→orthogonal 4O→monoclinic 7M modulated structure. The relationship between variants is mainly (102)M I-type twin. Ni50Mn34In16-yCoy(y=0, 2, 3, 4, 5, 8) and Ni50Mn34In16-yFey(y=0, 2, 3, 4, 5, 8) alloys undergo one-step transformation from cubic L21→monoclinic 7M modulated structure as cooling. The martensitic transformation temperatures firstly increase then decrease with the increase of Co content, and increase with the increase of Fe content. This is because the doping changes the matrix composition. At this time, there is not only (102)M I-type twin but also (111)M I-type twin relationship between variants in these 7M martensite.
     The compressive experiment indicated that the fracture stress and fracture strain of Ni50Mn50-xInxalloys increase slightly with the decrease of In content, but increase significantly after doping Co and Fe element. When the Co content is 8at.%, the fracture stress and fracture strain are as high as 1420MPa and 20.5%. The main reason of the plastic increase by doping Co and Fe is that the fccγphase particles delay the crack of grain boundaries, and the fraction type changes from intergranular crack to transgranular crack as the Co or Fe content increase. This also indicates that the ductility of the alloys is improved significantly.
     The magnetic measurement illustrates that the Curie temperature has no obvious changes with the change of In content. As the In content is no less than 15at.%, the Curie temperature of the alloy is higher than martensitic transformation temperature, and transform from paramagnetic martensite to ferromagnetic parent phase. As the In content is less than 15at.%, the Curie temperature is lower than martensitic transformation temperature, and then magnetic field induced phase transformation can not be observed at this time. The Curie transformation temperatures increase after the addition of Co and Fe replacing In partially, the Curie temperatures of Ni50Mn34In8Co8 and Ni50Mn34In14Fe2 alloys are higher than the martensitic transformation temperatures, and could observe the magnetic field induced phase transformation behaviour. In addition, Ni50Mn34In14Fe2 alloy has large magnetocaloric effect, and the magnetic entropy change is as large as 53J/kgK with a magnetic field of 8T.
引文
1. V.A. Chernenko and V.V. Kokorin. Ni2MnGa as a New Ferromagnetic Ordered Shape Memory Alloy. Proceedings of the international conference on martensitic transformation 1992. Monterey Institute for Advanced Studies. 1993. Monterey, California, USA.:1205~1210
    2. K. Ullakko, J.K. Huang, C. Kantner, R.C. O′Handley and V.V. Kokorin, Large Magnetic-field-induced Strains in Ni2MnGa Single Crystals, Appl. Phys. Lett., 1996, 69(13):1966-1968
    3. F.Q. Zhua, F.Y. Yang, C.L. Chien, L. Ritchie, G. Xiao, G.H. Wu, Magnetic and Thermal Properties of Ni-Mn-Ga Shape Memory Alloy with Martensitic Transition Near Room Temperature, J. Magn. Magn. Mater. 2005, 288:79-83
    4. Ll. Ma?osa, X. Moya, A. Planes, T. Krenke, M. Acet, E.F. Wassermann. Ni-Mn-based Magnetic Shape Memory Alloys: Magnetic Properties and Martensitic Transition. Mater. Sci. Eng. A. 2008, 481-482:49-56
    5. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma and K. Ishida. Magnetic Properties and Large Magnetic-field-induced Strains in Off-stoichiometric Ni-Mn-Al Heusler Alloys. Appl. Phys. Lett. 2000, 77(19):3054-3056
    6. S. Majumdar, V. K. Sharma, M. Manekar, Rakesh Kaul, K.J.S. Sokhey, S.B. Roy and P. Chaddah. Magnetic and Martensitic Transitions in Ni-Fe-Ga alloy. Solid State Commun. 2005, 136(2):85-88
    7. F. Masdeu, J. Pons, R. Santamarta, E. Cesari, J. Dutkiewicz. Effect of Precipitates on the Stress-strain Behavior under Compression in Polycrystalline Ni-Fe-Ga alloys. Mater. Sci. Engi. A. 2008, 481-482:101-104
    8. J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca and Y.I. Chumlyakov. Pseudoelasticity at Elevated Temperatures in [001] Oriented Co49Ni21Ga30 Single Crystals under Compression. Scripta Mater. 2006, 55 (8):663-666
    9. J. Liu, M.X. Xia, Y.L. Huang, H.X Zheng, J.G. Li. Effect of Annealing on the Microstructure and Martensitic Transformation of Magnetic Shape Memory Alloys CoNiGa. J. Alloys. Compd. 2006, 417(1-2):96-99
    10. Z.H. Liu, S.Y. Yu, H. Yang, G.H. Wu, Y.N. Liu. Phase Separation and Magnetic Properties of Co-Ni-Al Ferromagnetic Shape Memory Alloys. Intermetallics. 2008,16(3):447-452
    11. B. Bartova, D. Schryvers, Z.Q. Yang, S. Ignacova and P. Sittner. Microstructure and Precipitates in As-cast Co38Ni33Al29 Shape Memory Alloy. Scripta Mater. 2007,57(1):37-40
    12. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida and K. Oikawa. Magnetic and Martensitic Transformations of NiMnX(X=In,Sn,Sb) Ferromagnetic Shape Memory Alloys. Appl. Phys. Lett. 2004,85(19):4358-4360
    13. V.K. Sharma, M.K. Chattopadhyay and S.B. Roy. Kinetic Arrest of the First Order Austenite to Martensite Phase Transition in Ni50Mn34In16: dc Magnetization Studies. Phys. Rev. B. 2007,76(14):140401
    14. J. Dubowika, I. Go?ciańskab, Y.V. Kudryavtsevc and A. Szlaferek. Magnetic Properties and Structure of Thin Ni-Mn-Sn Films and Alloys. J. Magn. Magn. Mater. 2007,310 (2):2773-2775
    15. I. Galanakis. Electronic and Magnetic Properties of the (111) Surfaces of NiMnSb. J. Magn. Magn. Mater. 2005, 288:411-417
    16. A. Sozinov, A.A. Likhachev, N. Lanska and K. Ullakko, Giant Magnetic-field-induced Strain in NiMnGa Seven-layered Martensitic Phase. Appl. Phys.Lett. 2002, 80(10):1746-1748
    17. S.J. Murray, M. Marioni, S.M. Allen, R.C. O′Handly and T.A. Lograsso. 6% Magnetic-field-induced Strain by Twin-boundary Motion in Ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 2000, 77(6):886-888
    18. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida. Magnetic-field-induced Shape Recovery by Reverse Phase Transformation. Nature. 2006, 439(7079):957-959
    19. [美]R.C. O′Handly著,周永洽等译.现代磁性材料原理和应用.化学工业出版社. 2002:138-254
    20. P.J. Webster, K.R.A. Ziebeck, S.L. Town and M.S. Peak. Magnetic Order and Phase Transformation in Ni2MnGa. Philosophical Magazine B. 1984, 49(3):295-310
    21. K. Ullakko, J. K. Huang, C. Kantner, R. C. O′Handley and V. V. Kokorin. Large Magnetic-field-induced Strains in Ni2MnGa Single Crystals. Appl. Phys. Lett. 1996,69 (13):1966-1968
    22. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov and H.J. Maier. On the Stress-assisted Magnetic-field-induced Phase Transformation in Ni2MnGa Ferromagnetic Shape Memory Alloys. Acta Mater. 2007,55(13):4253-4269
    23. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov and H.J. Maier. One-way Shape Memory Effect due to Stress-assisted Magnetic field-induced Phase Transformation in Ni2MnGa Magnetic Shape Memory Alloys. Scripta Mater. 2006, 55(9):803-806
    24. J. Pons, E. Cesari, C. Seguí, F. Masdeu and R. Santamarta. Ferromagnetic Shape Memory Alloys: Alternatives to Ni-Mn-Ga. Mater. Sci. Engi. A 2008, 481-482:57-65
    25. J. Pons, R. Santamarta, V.A. Chernenko and E. Cesari. Structure of the Layered Martensitic Phases of Ni-Mn-Ga Alloys. Mater. Sci. Engi. A 2006, 438-440:931-934
    26. L. Righi, F. Albertini, L. Pareti, A. Paoluzi and G. Calestani. Commensurate and Incommensurate“5M”Modulated Crystal Structures in Ni-Mn-Ga Martensitic Phases. Acta Mater. 2007, 55(15):5237-5245
    27. M. Pasquale, C.P. Sasso, L.H. Lewis, L. Giudici, T. Lograsso and D. Schlage. Magnetostructural Transition and Magnetocaloric Effect in Ni55Mn20Ga25 Single Crystals, Phys. Rev. B. 2005,72(9):094435
    28. Y. Li, Y. Xin, C.B. Jiang and H.B. Xu. Mechanical and Shape Memory Properties of Ni54Mn25Ga21 High-temperature Shape Memory Alloy. Mater. Sci. Engi. A 2006, 438-440:978-981
    29. V.A. Chernenko, J. Pons, E. Cesari and K. Ishikawa. Stress-temperature Phase Diagram of a Ferromagnetic Ni-Mn-Ga Shape Memory Alloy. Acta Mater. 2005, 53(19):5071-5077
    30. V. Sánchez-Alarcos, J.I. Pérez-Landazábal and V. Recarte. Effect of Thermal Treatments on the Martensitic Transformation in Co-containing Ni-Mn-Ga Alloys, Mater. Sci. Engi. A. 2008,481:293-297
    31. G.H. Wu, W.H. Wang, J.L. Chen, L. Ao, Z.H. Liu, W.S. Zhan, T. Liang and H.B. Xu. Magnetic Properties and Shape Memory of Fe-doped Ni52Mn24Ga24 Single Crystals. Appl. Phys. Lett. 2002, 80(4):634-636
    32. K. Tsuchiya, Y. Sho, T. Kushima, Y. Todaka and M. Umemoto. Phase Transformation, Magnetic Property and Microstructure of Ni-Mn-Fe-Co-Ga Ferromagnetic Shape Memory Alloys. J. Magn. Magn. Mater. 2007, 310(2):2764-2766
    33. I. Glavatskyy, N. Glavatska, O. S?derberg, S.-P. Hannula and J.-U. Hoffmann.Transformation Temperatures and Magnetoplasticity of Ni-Mn-Ga Alloyed with Si, In, Co or Fe. Scripta Mater. 2006, 54(11):1891-1895
    34. W. Cai, L. Gao, A.L. Liu, J.H. Sui and Z.Y. Gao. Martensitic Transformation and Mechanical Properties of Ni-Mn-Ga-Y Ferromagnetic Shape Memory Alloys. Scripta Mater. 2007,57 (7):659-662
    35. G.F. Dong, C.L. Tan, Z.Y. Gao, Y. Feng, J.H. Sui and W. Cai. The Effect of Ageing on the Microstructure and Mechanical Properties of Ni53Mn23.5Ga18.5Ti5 Ferromagnetic Shape Memory Alloy. Scripta Mater. 2008, 59 (8):268-271
    36. P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak. Magnetic Order and Phase Transformation in Ni2MnGa. Philos. Mag. B. 1984,49:295-310
    37. V.V. Martynov and V.V. Kokorin. The Crystal Structure of Thermally-and stress-induced Martensites in Ni2MnGa Single Crystals. J. Phys.Ⅲ. 1992,2:739-749
    38. J. Pons, V.A. Chernenk, R. Santamarta and E. Cesari. Crystal Structure of Martensitic Phases in Ni-Mn-Ga Shape Memory Alloys. Acta. Mater. 2000,48(12):3027-3038
    39. Y. Ge, H. Jiang, A. Sozinov, O. S?derberg, N. Lanska, J. Ker?nen, E.I. Kauppinen, V.K. Lindroos and S.-P. Hannula. Crystal Structure and Macrotwin Interface of Five-layered Martensite in Ni-Mn-Ga Magnetic Shape Memory Alloy. Mater. Sci. Engi. A. 2006,438-440:961-964
    40. L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko,S. Besseghini, C. Ritter and F. Passaretti. Crystal Structure of 7M Modulated Ni-Mn-Ga Martensitic Phase. Acta Mater. 2008,56(16):4529-4535
    41. J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari. Crystal Structure of Martensitic Phases in Ni-Mn-Ga Shape Memory Alloys. Acta Mater. 2000,48(12):3027-3038
    42. M. Han, J.C. Bennett, M.A. Gharghouri, J. Chen, C.V. Hyatt and N. Mailman. Microstructure Characterization of the Non-modulated Martensite in Ni-Mn-Ga Alloy. Mater. Character. 2008,59(6):764-768
    43. N. Glavatska, G. Mogylny, I. Glavatsky, A. Tyshchenko, O. S?derberg and V.K. Lindroos. Temperature Dependence of Magnetic Shape-Memory Effect and Martensitic Structure of NiMnGa Alloy. Mater. Sci. Forum. 2002,394-395:537-540
    44. V.A. Chernenko, C. Segui, E. Cesari, J. Pons, V.V. Kokorin. Sequence of Martensitic Transformations in Ni-Mn-Ga Alloys. Phys. Rev. B. 1998, 57(5):2659-2662
    45. N. Lanska, O. S?derberg, A. Sozinov, Y. Ge, K. Ullakko, V.K. Lindroos. Composition and Temperature Dependence of the Crystal Structure of Ni-Mn-Ga Alloys. J. Appl. Phys. 2004,95(12):8074-8078
    46. C. Seguí, V.A. Chernenko, J. Pons, E. Cesari, V. Khovailo and T. Takagi. Low Temperature-induced Intermartensitic Phase Transformations in NiMnGa Single Crystal. Acta Mater. 2005, 53 (1):111-120
    47. N. Okamoto, T. Fukuda and T. Kakeshita. Temperature Dependence of Rearrangement of Martensite Variants by Magnetic Field in 10M, 14M and 2M Martensites of Ni-Mn-Ga alloys. Mater. Sci. Engi. A. 2007, 481-482:306-309
    48. J. Pons, R. Santamarta, V.A. Chernenko and E. Cesari. Structure of the Layered Martensitic Phases of Ni-Mn-Ga Alloys, Mater. Sci. Engi. A. 2006, 438-440:931-934
    49. V.A. Chernenko. E. Cesari, V.V. Kokorin, I.N. Vitenko. The Development of New Ferromagnetic Shape Memory Alloys in NiMnGa System. Scripta Matall. Mater. 1995,33(8):1239-1244
    50. V.A. Chernenko. Compositional Instability ofβPhase in Ni-Mn-Ga Alloy. Scripta Mater. 1999,40(5):523-527
    51. V.V. Kokorin, I.A. Osipenko and T.V. Shirina. Phase Transitions in Alloys Ni2MnGaxIn1-x. Phys. Met. Metall. 1989,67(3):173-176
    52. Y. Xin, Y. Li, C.B. Jiang and H.B. Xu. Martensitic Transformations of Ni54Mn25Ga21-xAlx Shape Memory Alloys. Mater. Sci. Forum. 2005,475-479:1991-1994
    53. A.A. Cherechukin, T. Takagi, H. Miki, M. Matsumoto and M. Ohtsuka. Influence of Three-Dimensional Transition Elements on Magnetic and Structural Phase Transitions of Ni-Mn-Ga Alloys. J. Appl. Phys. 2004,95(4):1740-1742
    54. Z.H. Liu, M. Zhang, W.Q. Wang, W.H. Wang, J.L. Chen, G.H. Wu, F.B. Meng, H.Y. Liu, B.D. Liu, J.P. Qu and Y.X. Li. Magnetic Properties and Martensitic Transformation in Quaternary Heusler Alloy of NiMnFeGa. J. Appl. Phys. 2002,92(9):5006-5010
    55. Y.Q. Ma, S.Y. Yang, W.J. Jin, X.J. Liu. Ni56Mn25?xCuxGa19 (x=0, 1, 2, 4, 8) High-temperature Shape-memory Alloys. J. Alloys. Compd. 2009,471(1-2): 570-574
    56. W. Yan, PhD Dissertation, University of Birmingham, U. K., 1988
    57. Z. Wang, M. Matsumoto, T.Abe, K. Oikawa, J.H. Qiu, T. Takagi, J. Tani. Phase Transformation of Ni2MnGa Made by the Spark Plasma Sintering Method. Mater. T. Jim. 1999, 40:389-391
    58. Y. Li, Y. Xin, C.H. Jiang, H.B. Xu. Shape Memory Effect of Grain Refined Ni54Mn25Ga21 Alloy with High Transformation Temperature. Scripta Mater. 2004, 51:849-852
    59.高丽. Ni-Mn-Ga-RE磁性记忆合金的微观结构与马氏体相变和力学性能.哈尔滨工业大学博士学位论文. 2007
    60. H.B. Wang, F. Chen, Z.Y. Gao, W. Cai and L.C. Zhao. Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys. Mater. Sci. Engi. A. 2006,438-440:990-993
    61. D.Y. Cong, S. Wang, Y.D. Wang, Y. Ren, L. Zuo, C. Esling. Martensitic and Magnetic Transformation in Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys, Mater. Sci. Engi. A. 2008,473:213-218
    62. R.C. O'Handley, Model for Strain and Magnetization in Magnetic Shape-memory Alloys. Journal of. Applied Physics. 1998,83(6):3263-3270
    63. G.H. Wu, C.H. Yu, L.Q. Meng, J.L. Chen, F.M. Yang, S.R. Qi, W.S. Zhan, Z. Wang, Y.F. Zheng and L.C. Zhao. Giant Magnetic-field-induced Strains in Heusler Alloy NiMnGa with Modified Composition. Appl. Phys. Lett. 1999,75(19):2990-2992
    64. B.W. Peterson, J. Feuchtwanger, J.M. Chambers, D. Bono, S.R. Hall, S.M. Allen, and R.C. O′Handley. Acoustic Assisted, Field-induced Strain in Ferromagnetic Shape Memory Alloys. J. Appl. Phys. 2004,95(11):6963-6964
    65. R. Techapiesancharoenkij, J. Kostamo, J. Simon, D. Bono, S. M. Allen and R. C. O′Handley, Acoustic-assisted Magnetic-field-induced Strain and Stress Output of Ni-Mn-Ga Single Crystal. Appl. Phys. Lett. 2008,92(3):032506
    66. A. Sozinov, A.A. Likhachev, K. Ullakko. Crystal Structures and Magnetic Anisotropy Properties of Ni-Mn-Ga Martensitic Phases with Giant Magnetic-Field-Induced Strain. IEEE Trans. Magn. 2002,38(5):2814-2818
    67. K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, and V. K. Lindroos, Magnetic-field-induced Strains in Polycrystalline Ni-Mn-Ga at Room Temperature. Scripta mater. 2001,44 (3):475-480
    68. D.L. Schlagel, Y.L. Wu, W. Zhang and T.A. Lograsso. Chemical Segregation during Bulk Single Crystal Preparation of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. J. Alloy. Compd. 2000,312(1-2):77-85
    69. T. Liang, C.B. Jiang, H.B. Xu, Z.H. Liu, M.Zhang, Y.T. Cui and G.H. Wu. Phase Transition Strain and Large Magnetic Field Induced Strain in Ni50.5Mn24Ga25.5 Unidirectionally Solidified Alloy. J.Magn.Magn.Mater. 2004,268(1-2):29-32
    70.周尧和,胡壮麟,介万奇.凝固技术.北京:机械工业出版社. 1998, 155-259
    71.谢建新,王自东,吴春京,胡汉起.单向纤维晶强化超高强度钢丝的制备.北京科技大学学报. 1998, 20(6): 571
    72.张鸿,王自东,谢建新.单向纤维组织Cu-0.1Fe合金线材组织性能的再结晶温度.材料科学与工艺. 2004, 9(3): 281-284
    73.张鸿,谢建新,任克刚,覃强,王自东.退火温度对单向纤维晶纯铜线组织性能的影响.北京科技大学学报. 2003,25(3):237-240
    74.谢建新等.材料加工新技术与新工艺. 2004,16-92
    75. U. Gaitzsch, M. P?tschke, S. Roth, B. Rellinghaus and L. Schultz. Mechanical Training of Polycrystalline 7M Ni50Mn30Ga20 Magnetic Shape Memory Alloy. Scripta Mater. 2007,57 (6):493-495
    76. C.B. Jiang, J.H. Liu, J.M. Wang, L.H. Xu and H.B. Xu. Solid-liquid Interface Morphology and Crystal Growth of NiMnGa Magnetic Shape Memory Alloys. Acta Mater. 2005,53 (4):1111-1120
    77.蒋成保,刘敬华,张涛,徐惠彬.定向凝固铁磁形状记忆合金Ni2MnGa的固-液界面形态. 2004,40(9):975-980
    78. T. Liang, C.B. Jiang, H.B. Xu. Temperature Dependence of Transformation Strain and Magneticfield-induced Strain in Ni51Mn24Ga25 Single Crystal. Mater. Sci. Engi. A. 2005,402(1-2):5-8
    79.谢华,刘剑,霍颜秋,李建国.定向凝固铁磁形状记忆合金Co-Ni-Ga的择优取向及其组织演化.金属学报, 2007,43(4):417-421
    80. J. Liu, H. Xie, J.G. Li Crystal Growth of Co46Ni27Ga27 Ferromagnetic Shape Memory Alloys with Large Single-variant Set. J.Cryst. Growth. 2007,300(2):272-276
    81. J. Liu, H.X. Zheng, Y.L. Huang, M.X. Xia and J.G. Li. Microstructure and Magnetic Field Induced Strain of Directionally Solidified Ferromagnetic Shape Memory CoNiAl alloys. Scripta Mater. 2005,53 (1):29-33
    82. J. Liu, H.X. Zheng and J.G. Li. Effect of Solidification Rate on Microstructure and Crystal Orientation of Ferromagnetic Shape Memory Alloys Co-Ni-Al, Mater. Sci. Engi. A. 2006,438-440:1061-1064
    83.刘静远,张振忠,沈晓冬.急冷Mg81.53Zn18.19Y0.28合金薄带的制备及凝固组织.有色金属. 2007,(1):27-30
    84. N.V.R. Rao, R. Gopalan, M.M. Raja, J.A. Chelvane, B. Majumdar and V. Chandrasekaran. Magneto-structural Transformation Studies in Melt-spun Ni-Mn-Ga Ribbons. Scripta Mater. 2007,56 (5):405-408
    85. A.K. Panda, M. Ghosh, A. Kumar and A. Mitra. Magnetic Transitions and Structure of a NiMnGa Ferromagnetic Shape Memory Alloy Prepared by Melt Spinning Technique. J. Magn. Magn. Mater. 2008,320 (17):L116-L120
    86. Z.H. Liu, H. Liu, X.X. Zhang, M. Zhang, X.F. Dai, H.N. Hu, J.L. Chen and G.H. Wu. Martensitic Transformation and Magnetic Properties of Heusler Alloy Ni-Fe-Ga Ribbon. Phys. Lett. A. 2004,329 (3):214-220
    87. Z.H. Liu, J.L. Chen, H.N. Hu, M. Zhang, X.F. Dai, Z.Y. Zhu, G.D. Liu, G.H. Wu, F.B. Meng and Y.X. Li. The Influence of Heat Treatment on the Magnetic and Phase Transformation Properties of Quaternary Heusler Alloy Ni50Mn8Fe17Ga25 Ribbons. Scripta Mater. 2004,51 (10):1011-1015
    88. Y. Kishi, Z. Yajima, K. Shimizu, T. Okazaki, Y. Furuya and M. Wuttig. Phase Transformation Behavior and Microstructures of Rapidly Solidified Co-Ni-Ga Alloys. Mater. Sci. Engi. A. 2006,438-440:965-969
    89. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Ma?osa and A. Planes. Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-In Alloys. Phys. Rev. B. 2006,73(17):174413
    90. T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Ma?osa and A. Planes. Martensitic Transitions and the Nature of Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-Sn alloys. Phys. Rev. B. 2005, 72(1), 014412
    91. R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita and K. Ishida. Metamagnetic Shape Memory Effect in a Heusler-type Ni43Co7Mn39Sn11 Polycrystalline Alloy. Appl. Phys. Lett. 2006, 88(19):192513
    92. S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang and X.X. Zhang. Magnetic Field-induced Martensitic Transformation and Large Magnetoresistance in NiCoMnSb Alloys. Appl. Phys. Lett. 2007,90(24):242501
    93. S.Y. Yu, Z.X. Cao, L. Ma, G.D. Liu, J.L. Chen, G.H. Wu, B. Zhang and X.X. Zhang. Realization of Magnetic Field-induced Reversible Martensitic Transformation in NiCoMnGa Alloys. Appl. Phys. Lett. 2007,91(10):102507
    94. R. Kainuma, W. Ito, R.Y. Umetsu, K. Oikawa and K. Ishida, MagneticField-induced Reverse Transformation in B2-type NiCoMnAl Shape Memory Alloys. Appl. Phys. Lett. 2008,93(9):091906
    95. M. Pugaczowa-Michalska, Pressure Behaviour and Thermal Expansion of NiMnSb from First Principles Calculations. Solid State Commun. 2006,140(5):251-255
    96. T. Yasudaa, T. Kanomataa, T. Saitoa, H. Yosidab, H. Nishiharac, R. Kainumad, K. Oikawad, K. Ishidad, K.-U. Neumanne and K.R.A. Ziebeck. Pressure Effect on Transformation Temperatures of Ferromagnetic Shape Memory Alloy Ni50Mn36Sn14. J. Magn. Magn. Mater. 2007,310 (2):2770-2772
    97. L. Ma?osa, X. Moya, A. Planes, O. Gutfleisch, J. Lyubina, M. Barrio and J. Tamarit, S. Aksoy, T. Krenke and M. Acet. Effects of Hydrostatic Pressure on the Magnetism and Martensitic Transition of Ni-Mn-In Magnetic Superelastic Alloys. Appl. Phys. Let. 2008,92(1):012515
    98. J.L.S. Llamazares, T. Sanchez, J.D. Santos, M.J. Pérez, M.L. Sanchez, B. Hernando, Ll. Escoda, J.J. Su?ol and R. Varga. Martensitic Phase Transformation in Rapidly Solidified Mn50Ni40In10 Alloy Ribbons. Appl. Phys. Lett. 2008,92(1):012513
    99. M. Pasquale, C.P. Sasso, L. Giudici, T. Lograsso and D. Schlagel. Field-driven Structural Phase Transition and Sign-switching Magnetocaloric Effect in Ni-Mn-Sn. Appl. Phys. Lett. 2007,91(13):131904
    100.B. Zhang, X.X. Zhang, S.Y. Yu, J.L. Chen, Z.X. Cao and G.H. Wu. Giant Magnetothermal Conductivity in the Ni-Mn-In Ferromagnetic Shape Memory Alloys. Appl. Phys. Lett. 2007,91(1):012510
    101.A. Planes, Ll. Ma?osa, X. Moya, T. Krenke, M. Acet, E.F. Wassermann. Magnetocaloric Effect in Heusler Shape-memory Alloys. J. Magn. Magn. Mater. 2007,310(2):2767-2769
    102.Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu and Y.W. Du. Large Magnetic Entropy Changes in the Ni45.4Mn41.5In13.1 Ferromagnetic Shape Memory Alloy. Appl. Phys. Lett. 2006, 89(18): 182507
    103.P.A. Bhobe, K.R. Priolkar and A.K. Nigam. Room Temperature Magnetocaloric Effect in Ni-Mn-In. Appl. Phys. Lett. 2007,91(24):242503
    104.T. Krenke, E. Duman, M. Acet, X. Moya, L. Ma?osa and A. Planes. Effect of Co and Fe on the Inverse Magnetocaloric Properties of Ni-Mn-Sn. J. Appl. Phys. 2007,102(3):033903
    105.X. Moya, Ll. Ma?osa, A. Planesa, T. Krenke, E. Duman, M. Acet, E.F. Wassermann. Calorimetric Study of the Inverse Magnetocaloric Effect in FerromagneticNi-Mn-Sn. J. Magn. Magn. Mater. 2007,316(2):e572-e574
    106.W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa and K. Ishida. Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys. Metall. Mater. Trans. A. 2007,38A(4):759-766
    107.J. Liu, N. Scheerbaum, D. Hinz and O. Gutfleisch. Magnetostructural Transformation in Ni-Mn-In-Co Ribbons. Appl. Phys. Lett. 2008,92(16):162509
    108.I.D. Borisenko, V.V. Koledov, V.V. Khovailo and V.G. Shavrov. Martensitic and Magnetic Phase Transitions in Ternary Ferromagnetic Alloys Ni-Mn-Ga. J. Magn. Magn. Mater. 2006,300(1):e486-e488
    109.R.K. Singh, M. Shamsuddin, R. Gopalan, R.P. Mathur and V. Chandrasekaran. Magnetic and Structural Transformation in Off-stoichiometric NiMnGa Alloys. Mater. Sci. Engi. A. 2008,476(1-2):195-200
    110.H.B. Xu, Y. Li and C.B. Jiang. Ni-Mn-Ga High-temperature Shape Memory Alloys. Mater. Sci. Engi. A. 2006,438-440:1065-1070
    111.C.B. Jiang, Y. Muhammad, L.F. Deng, W. Wu and H.B. Xu, Composition Dependence on the Martensitic Structures of the Mn-rich NiMnGa Alloys. Acta Mater. 2004,52(9):2779-2785
    112.K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida, S. Okamoto, O. Kitakami and T. Kanomata. Effect of Magnetic Field on Martensitic Transition of Ni46Mn41In13 Heusler alloy. Appl. Phys. Lett. 2006,88(12):122507
    113.D.Y. Cong, S. Wang, Y.D. Wang, Y. Ren, L. Zuo and C. Esling. Martensitic and Magnetic Transformation in Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys. Mater. Sci. Engi. A. 2008,473(1-2):213-218.
    114.V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, C. Gómez-Polo and J.A. Rodríguez-Velamazán.Correlation between Composition and Phase Transformation Temperatures in Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys. Acta Mater. 2008,56(19):5370-5376
    115.O. S?derberg, A. Sozinov, N. Lanska, Y. Ge, V.K. Lindroos and S.-P. Hannula. Effect of Intermartensitic Reaction on the Co-occurrence of the Magnetic and Structural Transition in Ni-Mn-Ga Alloys. Mater. Sci. Engi. A. 2006,438:957-960
    116.K. Koho, O. S?derberg, N. Lanska, Y. Ge, X. Liu, L. Straka, J. Vimpari, O. Heczko and V.K. Lindroos. Effect of the Chemical Composition to Martensitic Transformation in Ni-Mn-Ga-Fe Alloys. Mater. Sci. Engi. A.2004,378(1-2):384-388
    117.D.E. Soto-Parra, F. Alvarado-Hernandez, O. Ayala, R.A. Ochoa-Gamboa, H. Flores-Zú?iga and D. Rios-Jara. The Effect of Fe Addition on the Transformation Temperatures, Lattice Parameter and Magnetization Saturation of Ni52.5?xMn23Ga24.5Fex Ferromagnetic Shape Memory Alloy. J. Alloys Compd. 2008,464(1-2):288-291
    118.Y.C. Liang, H. Kato, M. Taya and T. Mori. Straining of NiMnGa by Stress and Magnetic Fields. Scripta Mater. 2001,45(5):569-574
    119.B. Kiefer, H.E. Karaca, D.C. Lagoudas and I. Karaman. Characterization and Modeling of the Magnetic Field-induced Strain and Work Output in Ni2MnGa Magnetic Shape Memory Alloys. J. Magn. Magn. Mater. 2007,312 (1):164-175.
    120.H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov and H.J. Maier. Magnetic Field and Stress Induced Martensite Reorientation in NiMnGa Ferromagnetic Shape Memory Alloy Single Crystals. Acta Mater. 2006,54 (1):233-245
    121.Y.F. Ma and J.Y. Li, Magnetization Rotation and Rearrangement of Martensite Variants in Ferromagnetic Shape Memory Alloys. Appl. Phys. Lett. 2007, 90(17): 172504
    122.H. Morito, K. Oikawa, A. Fujita, K. Fukamichi, R. Kainuma and K. Ishida. Enhancement of Magnetic-field-induced Strain in Ni-Fe-Ga-Co Heusler Alloy. Scripta Mater. 2005,53 (11):1237-1240
    123.R.F. Hamilton, H. Sehitoglu, C. Efstathioua and H.J. Maier. Mechanical Response of NiFeGa Alloys Containing Second-phase Particles. Scripta Mater. 2007,57(6):497-499
    124.V.A. Chernenko, J. Pons, E. Cesari and I.K. Zasimchuk. Transformation Behaviour and Martensite Stabilization in the Ferromagnetic Co-Ni-Ga Heusler Alloy. Scripta Mater. 2004,50 (2):225-229
    125.Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma and K. Ishida. Magnetic Domain Structures in Co-Ni-Al Shape Memory Alloys Studied by Lorentz Microscopy and Electron Holography. Acta Mater. 2002,50(8):2173-2184
    126.V. Sánchez-Alarcos, J.I. Pérez-Landazábal, V. Recarte, C. Gómez-Polo and J.A. Rodríguez-Velamazan. Correlation between Composition and Phase Transformation Temperatures in Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys. Acta Mater. 2008,56(19):5370-5376
    127.Y.D. Wang, Y. Ren, E.W. Huang, Z.H. Nie, G. Wang, Y.D. Liu, J.N. Deng, L. Zuo,H. Choo, P.K. Liaw and D.E. Brown. Direct Evidence on Magnetic-field-induced Phase Transition in a NiCoMnIn Ferromagnetic Shape Memory Alloy under a Stress Field. Appl. Phys. Lett. 2007,90(10):101917
    128.Y. D. Wang, E.W. Huang, Y. Ren, Z.H. Nie, G. Wang, Y.D. Liu, J.N. Deng, H. Choo, P.K. Liaw, D.E. Brown, L. Zuo. In Situ High-energy X-ray Studies of Magnetic-field-induced Phase Transition in a Ferromagnetic Shape Memory Ni-Co-Mn-In Alloy. Acta. Mater. 2008,56(4):913-923
    129.T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, Ll. Ma?osa, A. Planes, E. Suard and B. Ouladdiaf. Magnetic Superelasticity and Inverse Magnetocaloric Effect in Ni-Mn-In. Phys. Rev. B. 2007,75(10):104414
    130.赵连城,蔡伟,郑玉峰著.合金的形状记忆效应与超弹性.国防工业出版社. 2002
    131.J. Liu, N. Scheerbaum, J. Lyubina and O. Gutfleisch. Reversibility of Magnetostructural Transition and Associated Magnetocaloric Effect in Ni-Mn-In-Co. Appl. Phys. Lett. 2008,93(10):102512
    132.J. D. Santos, T. Sanchez, P. Alvarez, M. L. Sanchez, J. L. Sánchez Llamazares, B. Hernando, Ll. Escoda, J. J. Su?ol and R. Varga. Microstructure and Magnetic Properties of Ni50Mn37Sn13 Heusler Alloy Ribbons. J. Appl. Phys. 2008,103(7):07B326
    133.B. Hernando, J.L. Sánchez Llamazares, J.D. Santos, Ll. Escoda, J.J. Su?ol, R. Varga, D. Baldomir and D. Serantes. Thermal and Magnetic Field-induced Martensite-austenite Transition in Ni50.3Mn35.3Sn14.4 Ribbons. Appl. Phys. Lett. 2008,92(4):042504
    134.胡西多,林德民,林光明.测量非晶合金激活能的新方法.物理测试. 2001(4):33-36
    135.董子和,李永辉.用DSC研究CuAlNi形状记忆合金的动力学过程.湖南有色金属. 1997,13(1):32-33
    136.T. Ozawa. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965,38:1881-1886
    137.J. Flynn, LA. Wall. Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data. Polym. Lett. 1966, 4:323-328
    138.A.A. Joraid, A.A. Abu-Sehly, El.M. Abu, S.N. Alamri. Nonisothermal Crystallization Kinetics of Amorphous Te51.3As45.7Cu3. Thermochim Acta 2008,470:98-104.
    139.S. Vyazovkin. Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy. J. Comput. Chem. 2001,22(2):178-183
    140.M.L. Richard. Systematic analysis of the crystal structure, chemical ordering, and microstructure of Ni-Mn-Ga ferromagnetic shape memory alloys. Doctorate dissertations of Massachusetts Institute of Technology. 2005:64-74
    141.W.H. Wang, Z.H. Liu, J.Zhang, J.L. Chen, G.H. Wu, W.S. Zhan, T.S. Chin, G.H. Wen and X.X. Zhang. Thermoelastic Intermartensitic Transformation and Its Internal Stress Dependency in Ni52Mn24Ga24 Single Crystals. Phys. Rev. B. 2002,66(5):052411
    142.张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤编.金属间化合物结构材料.国防工业出版社. 2001: 315-353
    143.(苏)卡依勃舍夫.金属的塑性和超塑性. 1982: 369-400
    144.E. Dikshtein, D. I. Ermakov, V. V. Koledov, L. V. Koledov, T.Tagaki, A. A. Tulaikova, A. A. Cherechukin and V. G. Shavrov. J. Exper. Theore. Phys. Lett. 2000, 72(7): 373-376
    145.A.A. Cherechukin, T. Takagi, M. Matsumoto, V.D. Buchelńikov. Magnetocaloric Effect in Ni2+xMn1?xGa Heusler Alloys. Phys. Lett. A. 2004, 326(1-2):146-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700