用户名: 密码: 验证码:
磁致双稳态MEMS电磁微继电器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电器是广泛应用于汽车、通讯、家电、精密仪器等领域的电器控制元件,随着机电元件使用密度的提高,小尺寸、低功耗的微型继电器的研究成为人们关注的焦点。然而,传统的精密机械加工技术已经难以完全满足器件小尺寸的精密要求,基于微电子工艺发展起来的MEMS技术使机电继电器的微小型化成为了可能。
     典型的传统继电器多采用电磁驱动,而基于MEMS技术研制的微型继电器采用的驱动手段比较多样化,基于硅微细加工技术研制的静电MEMS继电器是最早出现的微型继电器,工艺成熟、响应速度快是其最大的特点,只是受静电驱动能力的限制,多应用于小功率的RFMEMS器件中;电热MEMS继电器的驱动力大,运行位移较长,但散热问题导致响应速度慢成为其难以克服的缺点;电磁驱动是一种可以在较低的电压驱动下短时间内完成长距离运行的驱动方式,而且,电磁驱动对工作环境的要求很低,因此,基于电磁驱动的MEMS继电器具有更广阔的应用天地。
     目前,MEMS电磁微继电器的结构多数是传统继电器的缩微化。其微型电磁系统主要包括电学和磁学两个系统,相对于其他方式驱动的微小器件来说,结构稍显复杂,特别是对于制作电磁系统的磁学材料,没有成熟的MEMS工艺作为技术支撑,因此,所做的工艺研究工作也相对较多。为此,很多研究人员选择对电磁MEMS继电器的部分结构进行专门的研究,希望通过提高核心部件的性能来提高整体器件的性能。但器件封装后,微型继电器的整体性能优势却并不明显。
     针对典型的MEMS电磁微继电器的现状,本文着重从以下几个方面进行了研究:
     1、一种新型的磁致锁定电磁微继电器的整体结构设计方案及其仿真优化分析利用直线电机的驱动原理来实现对微型执行器的驱动,采用了环形的结构,降低了端面效应对电磁驱动效率的影响;“三明治”式的对称结构使轴向上的磁作用力相互抵消,缓解了轴承在转动过程中摩擦力对器件运行的影响;在线圈中嵌入的铁芯结构改变了工作气隙中的磁通密度分布,由此产生的磁力很好地执行了状态锁定的功能,实现了器件的无功耗姿态保持;电接触系统在摆动中完成对外电路的通断控制,触点间的接触方式是滑动接触;设计的动触点呈弧面薄膜结构,接触的过程中,弧面结构有利于提高接触的稳定性,并且在压力的作用下,薄膜触点会产生细微的形变,增大接触面积,降低接触电阻,提高器件的电流承载能力;电接触结构可以根据要求进行更换,这样,即可以保持器件良好的电接触性能,还能够适应不用应用领域的要求,也不必担心因为触点这种易损结构的失效而导致整个器件的报废。
     根据磁通总是优先经过磁导率较高的介质这一基本原理,在线圈嵌入了软磁铁芯结构以改变工作气隙内的铁芯周围的磁通密度,从而导致铁芯受到磁场力的作用,由于定子固定不动,因此这个反作用于转子,形成锁定器件某个姿态的效果。由于电磁系统的结构复杂且不规则,ANSYS有限元分析软件给我们提供了一个解决这个问题的方法。利用ANSYS软件分析了工作气隙内的磁场状态,优化了铁芯结构以达到最好的锁定效果,展示了线圈所在位置的磁场分布状态,为电磁驱动能力的理论计算以及器件中各部件的几何尺寸优化设计和运行方式的确定提供了很大的帮助。
     2、弧形电接触结构的研制
     根据电磁驱动器的运行特点,设计了一种弧面的电接触结构,以缓解在接触过程中,动触点对静触点产生的冲击;在接触的过程中,动触点会在静触点上滑行一段距离,一方面可以确保触点间的稳定接触,避免出现弹跳的现象,另一方面,通过滑动接触可以破坏触点间的氧化绝缘薄膜,提高电导率;利用溶胶的工艺原理,开发了一种大曲率半径的微型弧面结构的制作方法,同时还解决了光刻胶作为牺牲层的工艺难点。
     3、基于碳纳米纤维复合材料在电接触系统中的工艺研究
     电接触系统是器件的易损部件,而且为了适应不同领域的应用要求,有必要对触点材料做针对性地研究。电镀金薄膜作为触点的接触材料是MEMS继电器采用的常规手段,虽然金的物理化学性质稳定,但金薄膜材料质地较软,难以承受长时间的运行。碳纳米纤维复合金属薄膜材料是一种具有良好的机械和电学性能的电接触材料,通过调整和改进电镀工艺的参数和条件,开发了一种制作铜基碳纳米纤维复合材料作为接触材料的工艺,不仅提高了材料本身的机械和电学性能,而且其制作工艺也能够与常规的MEMS工艺兼容,为基于碳纳米纤维复合金属材料在MEMS器件中的应用奠定了一定的技术基础。
     4、双稳态MEMS电磁微继电器样品的批量加工与测试
     根据器件整体结构的设计要求,对器件的核心部件都实现了集成化加工制造,主要包括:带有软磁铁心结构的平面定子绕组和带有弧面触点结构的电接触刷结构以及相应的带有静触点的顶盖结构,对于永磁转子和封装外壳等配套的零部件采用的是精密模具冲压成型工艺,同样具备批量加工的特点,最后,通过精密组装来完成对整体器件的研制。这种制作复杂MEMS器件结构的方法降低了电磁MEMS继电器集成制作的工艺难度,有效地结合了精密机械加工的特点,基本上实现了器件的集成化批量制造,有利于提高器件的成品率,降低器件的封装难度,也有利于利用现有仪器实现对MEMS器件性能的测试。
     经测试表明:器件的响应时间和器件的接触电阻与转子摆臂的摆幅有关。最短响应时间可以达到0.3ms;此外,因为响应时间很短,因此所采用的直流脉冲电磁驱动的时间相应缩短,而且,由于磁致锁定结构的引入使稳态时的功耗为0,因此,整个器件的理论驱动功耗不到1mJ,远远小于同类微型继电器的功耗。对于金薄膜触点结构来说,其最小的接触电阻可以达到120~200m?,最大承载电流可达2A,而对于CNF复合铜金属薄膜材料来说,其接触电阻为200~300m?,虽然接触电阻稍微增大,但其硬度提高了50.9%,这样,对于不同领域的应用要求,可以采用相应的具有特殊电接触特性的电接触结构,提高了器件使用的灵活性,扩展了器件的应用范围,降低了应用成本。
As a kind of control component, relay is widely applied in automobile, communication systems, household electrical appliances, precise instruments and so on. With the increasing of the density of electromechanical components in the above equipments, the development of miniaturized relay with small dimension and low power consumption has been considered. However, conventional precision machining cannot satisfy the requirements of miniaturized device. Micro-electro-mechanical system (MEMS)technology based on the microelectronics technology makes it possible.
     Electromagnetic drive is always chosen in the classic conventional relay. While, the drive methods of miniaturized relays fabricated by MEMS technology are more diversified. Silicon-based electrostatic MEMS relay is a pioneer of miniaturized relay depending on mature integrated circuit process. Rapid response is the outstanding property of electrostatic MEMS relay. But it is only applied in low power devices owing to the low electrostatic drive capability. Electrothermal drive is able to make a larger force in a long distance compared with electrostatic drive. However, the response is too slow. It is not easy to be solved because the heat elimination is the essential problem. However, as to the electromagnetic drive mode, it is not a problem and the voltage for driving is lower than the one for electrostatic drive. So the electromagnetic MEMS relay is more prospective to be applied.
     The structure of electromagnetic MEMS relay is mostly the miniaturization of conventional prototype. The miniaturized electromagnetic system is made up of electric structure and magnetic structure. It is a little bit more complicated than the other drive methods. Especially, as the foundation for fabricating the miniaturized magnetic structure, the process of magnetic materials is not mature and needs to be developed. Until now, many jobs were focused on developing some key structures of miniaturized electromagnetic devices in order to increase the whole properties. But, the whole properties of the miniaturized devices were increased unobviously. Combining with the current research of classic MEMS electromagnetic microrelay, the main job is as follows:
     1、Design, simulation and optimized analysis of a novel overall structure of electromagnetic miniaturized relay
     The theory for driving the performer is based on the drive theory of linear motor. The end-effect is decreased using the annular driving structure. The friction on the axis is decreased because the“sandwich”symmetric structure in the axial direction makes the magnetic force counteracted. The magnetic flux density in the working air gap is changed by embedded soft magnetic iron core in the planar coils. The difference around the iron core leads to a magnetic force to the iron core. But the planar coil in the stator is not move in the operation. So the electromagnetic force retroacts on the rotor. The contact system mounted on the armature executes the on/off control by oscillating movement. The contact mode is slide contact. The moving contact with arched surface is a kind of thin film structure that is helpful to increase the contact stability. The contact resistance can be reduced and the loading current can be increased because the contact surface can be increased under the contact pressure. In order to keep good performance in a long time, the contact system can be changed by the requirements. The whole can’t be rejected owing to the failure of contact system as quick-wear parts.
     As we know, the magnetic flux prefers to pass the material with higher permeability, so when the soft magnetic iron core is embedded in the planar coil, the magnetic force is induced by the difference of magnetic flux density around the iron core. Because the iron core is fixed in the immovable stator, the magnetic force will counteract on the rotor and make the device keeping a certain state without other power consumption. It is difficult to analyze the magnetic field clearly owing to the complicated miniaturized electromagnetic structure. ANSYS software provides us a good way to solve this problem. The magnetic figure is shown and the structure of iron core is optimized using ANSYS. The theoretical arithmetic of electromagnetic drive, the parameters of every part and the confirmation of operation benefit from the analysis using ANSYS.
     2、Development of contact structure with an arched surface
     A novel electric contact structure with an arched surface is designed based on the operation properties of the electromagnetic driver. The strike to the breakback contact can be relieved by the novel contact structure. The moving contact will slide on the breakback contact in a certain distance and the bump phenomena can be avoided. The electric conductivity is increased because the oxidized contact surface can be destroyed by the slide contact mode. A novel fabrication of arched structure with large radius curvature is developed. The difficulty of using photoresist as sacrificial layer is solved by precision thermal control.
     3、Fabrication of Cu-based carbon nanofiber (CNF) composite as contact
     The contact system is quick-wear part. So it is necessary to study the material of contact system for diversified requirements. Electroplating gold as contact material is a common method in the MEMS devices. The physical and chemical characteristics of gold are very stable for the electric contact, but it is easy to be abraded. CNF composite metal can be used as electric contact material because of the perfect mechanical and electric properties. The process for fabricating Cu-based CNF composite as electric contact material is developed by modifying the electroplating composition and environment. The properties of Cu-based CNF composite are increased and the fabrication method is compatible with another MEMS technologies. It makes a technical foundation for the application of CNF composite metal in other MEMS devices.
     4、Batch fabrication and measurement of the bistable electromagnetic microrelay The core components of the microrelay are batch fabricated based on the requirements for designing the whole device. They mainly include the planar winding coil with iron core, the electric brush with arched surface contacts and the cover board with breakback contact. The other parts are fabricated by precise mould punch forming technology which is kind of batch fabrication technology. Finally, all the components are assembled precisely to make a whole device. Combined with precision machining technology, the fabrication method makes batch fabricating complicated miniaturized devices more easily. The yield is increased and the encapsulation difficulty is decreased.
     The test results show that the response and contact resistance is related to the amplitude of oscillation of the armature. The minimum response time is up to 0.3 ms. DC pulse is adopted for driving the device because the response time is so short. Additionally, the drive power is zero when the device is in one stable state due to the magnetic locking structure. So the minimum power in one operation cycle is only about 1 mJ which is much less than the one of the products in the same category. The minimum contact is 120~200 m? when the contact material is fabricated by gold. The maximum loading current is up to 2A. The contact resistance is 200~300 m? when the contact material is Cu-based CNF composite film. Although the resistivity of the Cu-based CNF composite is a little bit more than the one of copper, the hardness is increased by 50.9%. Thus, kinds of electric contact structures can be adopted based on the diversified requirements of different application fields.
引文
[1] http://www.ic-ceca.org.cn/yjbg/report-detail.asp?hw_id=275
    [2]邹海锋小型电磁继电器陕西科学技术出版社1984.10
    [3] http://www.icbuy.net/?mod=info&do=newsshow&infoid=5182&sid=204a9e20295d0b 36e92e3bdcd1fc8db4
    [4]章吉良,杨春生.微机电系统及其相关技术,上海,上海交通大学出版社, 2001.
    [5] Stephen A. Campbell etc. the science and engineering of microelectronic fabrication, Oxford University press, Inc. 2001
    [6] Helmut F. Schlaak, potentials and limits of micro-electromechanical systems for relays and switches, 21st international conference on electrical contacts, 9-12 Sep. 2002, Zuich 19-30
    [7] http://semiapps.com.cn/content.php?content_id=43797&taxo_id=127
    [8] Subrahmanyam Gorthi, Atanu Mohanty and Anindya Chatterjee, Cantilever beam electrostatic MEMS actuators beyond pull-in JOURNAL OF MICROMECHANICS AND MICROENGINEERING 16 (2006) 1800–1810
    [9] V. T. Srikar, S. M. Spearing. Materials selection for microfabricated electrostatic actuators sensors and actuators A 102 (2003) 279-285
    [10]藤田博之,MEMS的世界(日文)[M]仓敷印刷厂
    [11] Gretillat, M.-A.; Thiebaud, P.; Linder, C.; de Rooij, N.F. Integrated circuit compatible electrostatic polysilicon microrelays, Journal of Micromechanics and Microengineering, v 5, n 2, Jun, 1995, p 156-160
    [12] Milanovic, Veljko; Maharbiz, Michel; Pister, Kristofer S.J. Batch transfer integration of RF microrelays IEEE Microwave and Guided Wave Letters, v 10, n 8, Aug, 2000, p 313-315
    [13] Roy, Shuvo; Mehregany, Mehran Design, fabrication, and characterization of electrostatic microrelays Proceedings of SPIE - The International Society for Optical Engineering, v 2642, 1995, p 64-73
    [14] Schiele, Ignaz; Huber, Joerg; Hillerich, Bernd; Kozlowski, Frank Surface-micromachined electrostatic microrelay Sensors and Actuators, A: Physical, v 66, n 1-3, Apr 1, 1998, p 345-354
    [15] Sattler, R.; Voigt, P.; Pradel, H.; Wachutka, G. Innovative design and modelling of a micromechanical relay with electrostatic actuation Journal of Micromechanics and Microengineering, v 11, n 4, July, 2001, p 428-433
    [16] Lee, Han-Sheng; Leung, Chi H.; Shi, Jenny; Chang, Shih-Chia Electrostatically actuated copper-blade microrelays Sensors and Actuators, A: Physical, v 100, n 1, Aug 15, 2002, p 105-113
    [17] Paul M. Zavracky, Sumit Majumder, and Nicol E. McGruer“Micromechanical Switches Fabricated Using Nickel Surface Micromachining”Journal Of Microelectromechanical Systems, Vol. 6, No. 1, March 1997 3
    [18] Michael J. Daneman, Norman C. Tien, Olav Solgaard, Albert P. Pismo, Kam Y. Lau and Richard S. Muller,“Linear Microvibromotor for Positioning Optical Components”Journal Of Microelectromechanical Systems, Vol. 5, No. 3, September 1996 159
    [19] Richard Yeh, Ezekiel J. J. Kruglick, and Knstofer S. J. Pister,“Surface-Micromachined Components for Articulated Microrolbots”Journal Of Microelectromechanical Systems, Vol. 5, No. 1, March 1996
    [20] Jian Li, Michael P. Brenner, Thomas Christen, Markku Sami Kotilainen, Jeffrey H. Lang and Alexander H. Slocum, Deep-Reactive Ion-Etched Compliant Starting Zone Electrostatic Zipping Actuators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005
    [21] Nikolay I. Mukhurov*, Georgiy I. Efremov Electrostatic micro-relays with adjustable parameters Proceedings of SPIE Vol. 5717 2004 238-241
    [22] Ren Yang, Seok J. Jeong, and Wanjun Wang, UV-LIGA Microfabricated of a Power Relay Based on Electrostatic Actuation Proceedings of SPIE Vol. 4981 (2003) 122-130
    [23] Efremov, G.I.; Mukhurov, N.I.; Galdetskiy, A.V. Analysis of electromechanical parameters of electrostatic microrelay with a movable elastic cantilever electrode Proceedings of SPIE - The International Society for Optical Engineering, v 4019, 2000, p 580-583
    [24] Gary D. Gray, Matthew J. Morgan, and Paul A. Kohl“Electrostatic Actuators With Expanded Tuning Range Due to Biaxial Intrinsic Stress Gradients”Journal Of Microelectromechanical Systems, Vol. 13, No. 1, February 2004 51
    [25] V.T. Srikar, S. M. Spearing materials selection for microfabricated electrostatic actuators“sensors and actuators A 102 (2003) 279-285
    [26] Marc Sulfridge, Taher Saif, Norman Miller, and Mark Meinhart“Nonlinear Dynamic Study of a Bistable MEMS: Model and Experiment”Journal Of Microelectromechanical Systems, Vol. 13, No. 5, October 2004 725-731
    [27] Il-Han Hwang, Yu-Seok Shim and Jong-Hyun Lee,“Modeling and experimental characterization of the chevron-type bi-stable microactuator”J. Micromech. Microeng. 13 (2003) 948–954
    [28] M. Taher A. Saif ,“On a Tunable Bistable MEMS—Theory and Experiment”Journal Of Microelectromechanical Systems, Vol. 9, No. 2, June 2000 157
    [29] Almeida, L.; Ramadoss, R.; Jackson, R.; Ishikawa, K.; Yu, Q.“Study of the electrical contact resistance of multi-contact MEMS relays fabricated using the Metal MUMPs process”Journal of Micromechanics and Microengineering, v 16, n 7, Jul 1, 2006, p 1189-1194
    [30] Laurent Latorre, Joonwon Kim, Junghoon Lee, Peter-Patrick de Guzman, Hyesog J. Lee,Pascal Nouet, and Chang-Jin Kim, Electrostatic Actuation of Microscale Liquid-Metal Droplets Journal Of MICROELECTROMECHANICAL SYSTEMs, V. 11, N. 4, Aug. 2002
    [31]姜政;丁桂甫;王艳;张东梅;王志明;冯建智;扭梁悬臂梁支撑的扭摆式MEMS永磁双稳态机构半导体学报vol 27 num 1 2006
    [32] Jin Qiu, Jeffrey H. Lang, Alexander H. Slocum, and Alexis C. Weber, A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 5, OCTOBER 2005
    [33] Ye Wang, Zhihong Li,, Daniel T. McCormick, and Norman C. Tien,“A Low-Voltage Lateral MEMS Switch With High RF Performance”Journal Of Microelectromechanical Systems, Vol. 13, No. 6, December 2004
    [34] Martin Hoffmann, Peter Kopka, Edgar Voges Bistable micromechanical fiber-optic switches on silicon with thermal actuators Sensors and Actuators 78 1999.28–35
    [35] K. Hiltmann, M. Ashauer, H.Sandmaier, W. Lang, Silicon thermal microrelays with multiple switching states sensors and actuators A 62 (1997) 612-615
    [36] Michael S. Baker and Larry L. Howell,“On-Chip Actuation of an In-Plane Compliant Bistable Micromechanism”Journal of Microelectromechanical Systems,v.11,n5, Oct. 2002
    [37] Peter Kopka, Edgar Voges“Bistable micromechanical fiber-optic switches on silicon with thermal actuators”Sensors and Actuators 78_1999.28–35
    [38] Sun, X., Farmer, K. R. and Carr, M. N., "A Bistable Microrelay Based on Two-segment Multimorph Cantilever Actuators," Proceedings IEEE Workshop on MEMS, pp. 154-159, 1998.
    [39] Long Que; Udeshi, K.; Park, J.; Gianchandani, Y.B.; A bi-stable electro-thermal RF switch for high power applications Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS) 2004 Page(s):797– 800
    [40] Cao A, Chiao M and Lin L 2002 Selective and localized wafer bonding using induction heating Technical Digest of Solid-State Sensors and Actuators Workshop (Hilton Head Island, NC, June 2000) pp 153–6
    [41] Jonathan Simon, Scott Saffer, and Chang-Jin (CJ) Kim A Liquid-Filled Microrelay with a Moving Mercury Microdrop Journal Of Microelectromechanical Systems, Vol. 6, No. 3, September 1997
    [42] You Kondoh, Tsutomu Takenaka, Tetsuya Hidaka, Go Tejima, Yasuhisa Kaneko, and Mitsuchika Saitoh, High-Reliability, High-Performance RF Micromachined Switch Using Liquid Metal Journal Of Microelectromechanical Systems, Vol. 14, No. 2, April 2005
    [43] Orphée Cugat, Jér?me Delamare, and Gilbert Reyne“Magnetic Micro-Actuators and Systems MAGMAS)”IEEE Transactions On Magnetics, Vol. 39, No. 5, Nov. 2003 3607
    [44] D. Shen, G. Meunier, J. L. Coulomb and Sabonnadiere, solution of magnetic fields and electrical circuits combined problems IEEE transactions on magnetics, vol. Mag-21, NO. 6,Nov. 1985 2288-2291
    [45] L. Richard Carley, Greg Ganger, David F. Guillou and David Nagle, system design considerations for MEMS-actuated magnetic-probe-based mass storage, IEEE transactions on magnetics, vol. 37, NO.2, mar 2001, 657-662
    [46] Gilbert Reyne Lionel Houet, Yoshifumi Takahashi, Tarik Bourouina, Jiroyuki Fujita, electromagnetic Remote control and Down scaling advantages and examples for MOEMS, proceedings of SPIE vol. 4592 (2001) 205-215
    [47] Nosang V. Myung, D.–Y. Park, B.–Y. Yoo, Paulo T.A. Sumodjo, Development of electroplated magnetic materials for MEMS, journal of magnetism and magnetic materials 265 (20003) 189-198
    [48] Yu. I. Rozenberg, Yuri Rosenberg, V. Krylov, G. Belitsky, Yosi Shacham-Diamand, resin-bonded permanent magnetic films with out-of-plane magnetization for applications, journal of magnetism and magnetic materials 305 (2006) 357-360
    [49] B.Y. Yoo, S. C. Hernandez, D.–Y. Park, N.V. Myung, electrodeposition of FeCoNi thin films for magnetic-MEMS devices, electrochimica acta 51 (2006) 6364-6352
    [50] L Vieux-Rochaz, C Dieppedale, B Desloges, D Gamet, C Barragatti, H Rostaing and J Meunier-Carus, electrodeposition of hard magnetic CoPtP material and integration into magnetic MEMS, J. micromech. Microeng. 16 (2006)219-224
    [51] Guan, Shan; Vollmers, Karl; Subramanian, Arunkumar; Nelson, Bradley J.“Design and fabrication of a gold electroplated electromagnetic and electrostatic hybrid MEMS relay”Journal of Applied Physics, v 97, n 10, May 15, 2005, p 10R506
    [52] Yufeng Su, Hong Wang, Guifu Ding, Feng Cui, Weiping Zhang and Wenyuan Chen, electroplated hard magnetic material and its application in microeletrmechanical systems, IEEE Transactions on magnetics vol. 41, NO. 12 Dec. 2005
    [53] Yonghua Zhang, Guifu Ding, Hong Wang, Shi Fu and Bingchu Cai, low-stress permalloy for magnetic MEMS switches, IEEE transactions on magnetics, vol. 42, NO. 1,Jan. 2006
    [54] R. B. Zmood, L. Qin, D. K. Sood, T. Vinay, and D. Meyrick, magnetic MEMS used in smart structures which exploit magnetic materials properties proceeding of SPIE vol. 4235 2001 173-187
    [55] P. L. Cavallotti, M. Bestetti, S. Franz, microelectrodeposition of Co-Pt alloys for micromagnetic applications, electrochimica acta 48 (2003) 3013-3020
    [56] R. B. Zmood, L. Qin and D. K. Sood, smart magnetic structures for MEMS, smart materials bulletin, July 2001 9-13
    [57] D. Niarchos, magnetic MEMS: key issues and some applications, sensors and actuators, A 109 (2003) 166-173
    [58] Fullin, E.; Gobet, J.; Tilmans, H.A.C.; Bergqvist, J.; A new basic technology for magnetic micro-actuators Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on 25-29 Jan. 1998 143- 147
    [59] T. Kohlmeier, V. Serdemann, S. Büttgenbach, H. H. Gatzen, application of UV depth lithography and 3D-microforming for high aspect ratio electromagnetic microactuator componenets, microsystem technologies 8 (2002) 304-307
    [60] J. Sutanto, A. D. Papania, Y. H. Berthelot, P. J. Hesketh, Dynamic Characteristics Of Membrane Displacement Of A Bidirectional Electromagnetic Microactuator With Microcoil Fabricated On A Single Wafer, microelectronic engineering 82 (2005) 12-27
    [61] William P. Taylor, Oliver Brand and Mark G. Allen, fully integrated magnetically actuated micromachined relays, journal of microelectromechanical systems, v. 7, N. 2 June 1998
    [62] D. B. Mott, S. Aslam, K. A. Blumenstock, R. K. Fettig, D. Franz, A. S. Kutyrev, M. J. Li, C. J. Monroy, S. H. Moseley, D. S. Schwinger, magnetically actuated microshutter arrays, proceedings of SPIE vol.4561 2001 163-170
    [63] J. D. Williams, W. Wang, microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology, microsystem technologies 10 (2004) 699-705
    [64] Ucok, A.B.; Giachino, J.M.; Najafi, K.;Modular assembly/packaging of multi-substrate microsystems (WIMS Cube) using thermo-magnetically actuated cables Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on 30 Jan.-3 Feb. 2005 536– 539
    [65] John D. Williams, Ren Yang, Wanjun Wang, numerical simulation and test of a UV-LIGA-fabricated electromagnetic micro-relay for power applications, sensors and actuators A 120(2005) 154-162
    [66] Shinozawa, Y.; Abe, T.; Kondo, T.; A proportional microvalve using a bi-stable magnetic actuator Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop on 26-30 Jan. 1997 Page(s):233 - 237
    [67] A. C. Hartley, R. E. Miles, J. Corda, acomparison of two multiplayer microcoil fabrication techniques, proceedings of SPIE, vol. 5276 (2004) 154-161
    [68] Hung-Pin Chang, Jiangyuan Qian, Mark Bachman, Phil Congdon and G. P. Li, a novel technique for fabrication of multi-layered micro coils in microelectromechanical system (MEMS) applications, proceedings of SPIE, vol.4700 (2002) 187-195
    [69] Markus Ohnmacht, Volker Serdemann, Stephnanus Buttgenbach, microcoils and microrelays: an optimized multiplayer fabrication process, sensors and actuators, 83 (2000) 124-129
    [70] Hyun Ku Jeong, Ok Chan Jeong and Sang Sik Yang, fabrication of an electromagnetic actuator with the planar coil, proceeding of SPIE vol. 3990 (2000) 272-280
    [71] C.-T. Pan, H. Yang, M. -C. Chou, S. -C. Shen, integrated electromagnetic microactuators with a large driving force, microsyst. Technol. Volume 12, Numbers 1-2 / December, 2005 173-179
    [72] Meichun Ruan, Jun Shen, and Charles B. Wheeler“Latching Micromagnetic Relays”Journal Of Microelectromechanical Systems, Vol. 10, No. 4, December 2001 511
    [73] Gary D. Gray Jr., Paul A. Kohl "Magnetically bistable actuator Part 1. Ultra-low switching energy and modeling”Sensors and Actuators A 119 (2005) 489–501
    [74] Gary D. Gray Jr.a, Eric M. Prophetb, Lingbo Zhua, Paul A. Kohla, Magnetically bistable actuator Part 2 Fabrication and performance Sensors and Actuators A 119 (2005) 502–511
    [75] Daniel J. Sadler, Trifon M. Liakopoulos and Chong H. Ahn, a universal electromagnetic microactuator using magnetic interconnection concepts, Journal of microelelctromechanical systems, vol. 9, NO. 4, Dec. 2000 460-468
    [76]李团结,曹炎,李世俊,周小勇,平面双稳态柔性机构的优化设计,机械科学与技术,2004年6月,第23卷第6期,709-711
    [77] H. Ren U, E. Gerhard“Design and fabrication of a current-pulse-excited bistable magnetic microactuator”Sensors and Actuators A 58 (1997) 259–264
    [78]任万滨,翟国富,李德胜,肖伟耀, MEMS技术在微型电磁继电器应用中的探讨,机电元件,2004年9月,第3期,vol. 124, NO. 13
    [79]尤政,李慧娟,张高飞,MEMS微继电器及其关键问题研究现状,压电与声光,2006年6月,第28卷第3期
    [80]张鹏,刘刚,田扬超,UV-LIGA技术制造微型电磁继电器的初步研究,微纳电子技术,2002年第4期33-36
    [81]张宇峰,张鹏飞,李德胜,王东宏,基于MEMS技术的微型电磁继电器的研究,仪器仪表学报,2001年6月,第22卷第3期增刊, 333-334
    [82]杨振川,李婷,郝一龙,武国英,具有隔离结构的横向接触式体硅微机械继电器,北京大学学报(自然科学版),第40卷,第3期,2004年5月,397-401
    [83]李德胜,张宇峰,李浩群,微机械电磁继电器的研究,北京工业大学学报,2004年6月,第30卷第2期,148-155 [84 Zhang Yufeng and Li Desheng, fabrication and simulation of an electromagnetic microrelay, Chinese journal of semiconductors, vol. 23, NO. 12 Dec. 2002
    [85] Liuqiang Zhang, Dawei Deng, Qiang wang, Jianeng Wang, Zhiyu wen, the design and simulation of a practical micromachined relay, proceeding of SPIE, vol.6040, 2005,
    [86]刘本东,李德胜,杨晓波,一种单稳态微电磁继电器的研究,光学精密工程2007 Vol.15 No.4 P.543-549
    [87] Xi-Qing Sun; Farmer, K.R.; Carr, W.N.; A bistable microrelay based on two-segment multimorph cantilever actuators Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on 25-29 Jan. 1998 Pp154– 159
    [88] Mattias Vangbo, an analytical analysis of a compressed bistable buckled beam, sensors and actuators A 69 (1998) 212-216
    [89] Ucok, Asli B.; Giachino, Joseph M.; Najafi, KhalilModular assembly/packaging of multi-substrate microsystems (WIMS CUBE) using thermo-magnetically actuated cables, Source: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2005 Miami - Technical Digest, 2005, p 536-539
    [90] Yong-hua ZHANG, Gui-fu DING, Xu-han DAI, Bing-chu CAI,“Fast switching bistable electromagnetic microactuator”electronics letters 10th Nov. 2005 Vol.41 No.23 1276-1278
    [91] Gary D. Gray, Jr. and Paul A. Kohl, modeling and performance of a magnetic MEMS wiping actuator, journal of microelectrmechanical systems vol. 15, NO. 4,Aug. 2006 904-911 [92 WHITEHOUSE D J,Kinetic Kinematics of Small,Contacting,Moving Bodies纳米技术与精密工程2005年6月第3卷第2期p81-91
    [93]黄见秋,黄庆安,表面粘连效应对接触式微开关接触电阻的影响,半导体学报,2005年6月,第6期p1230-1233
    [1] C.-T. Pan, H. Yang, M. -C. Chou, S. -C. Shen, integrated electromagnetic microactuators with a large driving force, microsyst. Technol. Volume 12, Numbers 1-2 / December, 2005 173-179
    [2] Daniel J. Sadler, Trifon M. Liakopoulos and Chong H. Ahn, a universal electromagnetic microactuator using magnetic interconnection concepts, Journal of microelelctromechanical systems, vol. 9, NO. 4, Dec. 2000 460-468
    [3] Meichun Ruan, Jun Shen, and Charles B. Wheeler“Latching Micromagnetic Relays”Journal Of Microelectromechanical Systems, Vol. 10, No. 4, December 2001 511
    [4] Gary D. Gray Jr., Paul A. Kohl "Magnetically bistable actuator Part 1. Ultra-low switching energy and modeling”Sensors and Actuators A 119 (2005) 489–501
    [5] Gary D. Gray Jr.a, Eric M. Prophetb, Lingbo Zhua, Paul A. Kohla, Magnetically bistable actuator Part 2 Fabrication and performance Sensors and Actuators A 119 (2005) 502–511
    [6] Orphée Cugat, Jér?me Delamare, and Gilbert Reyne“Magnetic Micro-Actuators and Systems MAGMAS)”IEEE Transactions On Magnetics, Vol. 39, No. 5, November 2003 3607
    [7] D. Shen, G. Meunier, J. L. Coulomb and Sabonnadiere, solution of magnetic fields and electrical circuits combined problems IEEE transactions on magnetics, vol. Mag-21, NO. 6,Nov. 1985 2288-2291
    [8] L. Richard Carley, Greg Ganger, David F. Guillou and David Nagle, system design considerations for MEMS-actuated magnetic-probe-based mass storage, IEEE transactions on magnetics, vol. 37, NO.2, mar 2001, 657-662
    [9] Gilbert Reyne Lionel Houet, Yoshifumi Takahashi, Tarik Bourouina, Jiroyuki Fujita, electromagnetic Remote control and Down scaling advantages and examples for MOEMS, proceedings of SPIE vol. 4592 (2001) 205-215
    [10] H. Ren U, E. Gerhard“Design and fabrication of a current-pulse-excited bistable magnetic microactuator”Sensors and Actuators A 58 (1997) 259–264
    [11] J. D. Williams, W. Wang, Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology, Microsystem Technologies 10 (2004) 699–705
    [12] Xi-Qing Sun; Farmer, K.R.; Carr, W.N.; A bistable microrelay based on two-segment multimorph cantilever actuators Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on 25-29 Jan. 1998 Page(s):154– 159
    [13] Jin Qiu, Jeffrey H. Lang, Alexander H. Slocum, and Alexis C. Weber, A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators, Journal of microelectromechanical systems, VOL. 14, NO. 5, OCTOBER 2005 pp1099-1109
    [14] Guan, Shan; Vollmers, Karl; Subramanian, Arunkumar; Nelson, Bradley J.“Design and fabrication of a gold electroplated electromagnetic and electrostatic hybrid MEMS relay”Journal of Applied Physics, v 97, n 10, May 15, 2005, p 10R506
    [15] Yong-hua ZHANG, Gui-fu DING, Xu-han DAI, Bing-chu CAI,“Fast switching bistable electromagnetic microactuator”electronics letters 10th Nov. 2005 Vol.41 No.23 1276-1278
    [16]黄见秋,黄庆安,表面粘连效应对接触式微开关接触电阻的影响,半导体学报,2005年6月,第6期p1230-1233
    [17] WHITEHOUSE D J,Kinetic Kinematics of Small,Contacting,Moving Bodies纳米技术与精密工程2005年6月第3卷第2期p81-91
    [18]沈雪瑾,侯利程,刘瑾,硅微机械动平板表面粘附阻力,润滑与密封,第7期,2006年7月,pp64-67
    [19] H. Ren U, E. Gerhard“Design and fabrication of a current-pulse-excited bistable magnetic microactuator”Sensors and Actuators A 58 (1997) 259–264
    [20] Yong-hua ZHANG, Gui-fu DING, Xu-han DAI, Bing-chu CAI,“Fast switching bistable electromagnetic microactuator”electronics letters 10th Nov. 2005 Vol.41 No.23 1276-1278
    [21]姜政;丁桂甫;王艳;张东梅;王志明;冯建智;扭梁悬臂梁支撑的扭摆式MEMS永磁双稳态机构半导体学报vol 27 num 1 2006
    [22] S. Z. Cheng, Z. Y. Jiang. General physics, 4th ed, Higher Education Press, Beijing, 1982. pp.215. (in Chinese)
    [23]王瑁成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1995
    [24] C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen and T. H. Kao, magnetic analysis of a micromachined magnetic actuator using the finite element method, proceeding of SPIE, vol. 3893 Oct. 1999, 127-136
    [25] Tadashi Yamaguchi, Yoshihiro Kawase, Hirokazu Shiomoto, and Katsuhiro Hirata, 3-D Finite-Element Analysis of Dynamic Characteristics of Twin-Type Electromagnetic Relay, IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002 361-364
    [26] Miklos Gyimesi, Ilya Avdeev, and Dale Ostergaard, Finite-Element Simulation of Micro-Electromechanical Systems (MEMS) by Strongly Coupled Electromechanical Transducers IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 2, MARCH 2004 557-560
    [27] Yoshihiro Kawase, Osamu Miyatani, Tadashi Yamaguchi, Shokichi Ito, Numerical Analysis of Dynamic Characteristics of Electromagnets Using 3-D Finite Element Method with Edge Elements, IEEE TRANSACTIONS ON MAGNETICS, VOL. 30. NO. 5, SEPTEMBER 1994, 3248-3251
    [28]任万滨,梁慧敏,王其亚,翟国富,李德胜“微机械电磁继电器三维磁场分析及其电磁系统优化设计”,中国电机工程学报,2006, Vol.26, No.6, P.151-156
    [29] G. Q. Wang. Practical numerical simulation in engineering and its practice on ANSYS, the Northwestern Polytechnical University Press, Xi’an , 1999, pp.42-47. (in Chinese)
    [30] C. F. Xie, K. J. Rao. Electromagnetic fields and waves. Beijing: Higher Education Press, 1979, pp.192-194. (in Chinese)
    [31]张琛,直流无刷电动机原理及应用,机械工业出版社,2004第2版,
    [32] Daniel J. Sadler, Trifon M. Liakopoulos and Chong H. Ahn, a universal electromagnetic microactuator using magnetic interconnection concepts, Journal of microelelctromechanical systems, vol. 9, NO. 4, Dec. 2000 460-468
    [33]美国ANSYS公司上海办事处,ANSYS有限元分析手册——电磁学篇,1999
    [34]赵凯华,陈熙谋,电磁学,高等教育出版社,上册,1985年第二版
    [35]程守洙,江之永,胡盘新,汤毓骏,钟季康,普通物理学,高等教育出版社,2006年,第6版
    [1] Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc. 2001 2nd edition.
    [2] Petersen K E, Micromechanical membrane switches on silicon, IBM J. Res. Dev. V23 n4 1979, 376-85
    [3] Gretillat, M.-A.; Thiebaud, P.; Linder, C.; de Rooij, N.F. Integrated circuit compatible electrostatic polysilicon microrelays, Journal of Micromechanics and Microengineering, v 5, n 2, Jun, 1995, p 156-160
    [4] Subrahmanyam Gorthi, Atanu Mohanty and Anindya Chatterjee, Cantilever beam electrostatic MEMS actuators beyond pull-in JOURNAL OF MICROMECHANICS AND MICROENGINEERING 16 (2006) 1800–1810
    [5] Lin, Yo-Sheng, Temperature and substrate-impedance dependence of noise figure of monolithic RF inductors on silicon, Source: IEEE Electron Device Letters, v 26, n 6, June, 2005, p 397-400
    [6] Xiaosheng Wu,Wenyuan Chen, Xiaolin Zhao and Weiping Zhang“Development of a micromachined rotating gyroscope with electromagnetically levitated rotor”J. Micromech. Microeng. 16 (2006) 1993–1999
    [7] J. D. Williams, W. Wang, microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology, microsystem technologies 10 (2004) 699-705
    [8] V. Seidemann*, S. Büttgenbach“A novel fabrication process for 3D meander shaped micro coils in SU8 dielectric and their application to linear micro motors”Proc. SPIE Vol. 4407 304-309
    [9] Hung-Pin Chang, Jiangyuan Qian, Mark Bachman, Phil Congdon and G. P. Li, a novel technique for fabrication of multi-layered micro coils in microelectromechanical system (MEMS) applications, proceedings of SPIE, vol.4700 (2002) 187-195
    [10]张永华,丁桂甫,李永海,蔡炳初,MEMS中的牺牲层技术,微纳电子技术,2005,42(2):73-77.
    [11]李永海,丁桂甫,张永华,曹莹,电化学选择性刻蚀Cu/Ni牺牲层技术的研究,传感器技术,2005,24(4):86-88.
    [12] Meili Hu, Jinjin Chen, Zhongshen Lai, Huibing Mao, and Dexin Sheng, Research for polyimide as a sacrificial layer in MEMS device, Proceedings of SPIE -- V 5774 Dec.2004, pp. 642-645
    [13] Meichun Ruan, Jun Shen, and Charles B. Wheeler“Latching Micromagnetic Relays”Journal Of Microelectromechanical Systems, Vol. 10, No. 4, December 2001 511
    [14] Markus Ohnmacht, Volker Serdemann, Stephnanus Buttgenbach, microcoils and microrelays: an optimized multiplayer fabrication process, sensors and actuators, 83 (2000) 124-129
    [15] Hyun Ku Jeong, Ok Chan Jeong and Sang Sik Yang, fabrication of an electromagnetic actuator with the planar coil, proceeding of SPIE vol. 3990 (2000) 272-280
    [16] Xi-Qing Sun; Farmer, K.R.; Carr, W.N.; A bistable microrelay based on two-segment multimorph cantilever actuators Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on 25-29 Jan. 1998 pp:154- 159
    [17] Jin Qiu, Jeffrey H. Lang, Alexander H. Slocum, and Alexis C. Weber, A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 5, OCTOBER 2005
    [18] Michael S. Baker and Larry L. Howell, On-Chip Actuation of an In-Plane Compliant Bistable Micromechanism, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 5, OCTOBER 2002
    [19] Ye Wang, Zhihong Li,, Daniel T. McCormick, and Norman C. Tien,“A Low-Voltage Lateral MEMS Switch With High RF Performance”Journal Of Microelectromechanical Systems, Vol. 13, No. 6, December 2004
    [20] Cao A, Chiao M and Lin L 2002 Selective and localized wafer bonding using induction heating Technical Digest of Solid-State Sensors and Actuators Workshop (Hilton Head Island, NC, June 2000) pp 153–6
    [21]黄子勋,实用电镀技术,化学工业出版社,2002
    [22]李永海,丁桂甫,毛海平,张永华,LIGA/准LIGA技术微电铸工艺研究进展,电子工艺技术,2005,26(1):1-5、34.
    [23] Yonghua ZHANG, Guifu DING, Hong WANG, Shi FU, Bingchu CAI, Low stress permalloy for magnetic MEMS switches, IEEE Transaction on Magnetics, Vol.42, NO.1 Jan. 2006 pp1-5
    [24]瞪俊泳,冯勇建,聚酰亚胺在MEMS中的特性研究及应用,MEMS器件与技术,2003年,第4期,30-33
    [25]朱履冰.表面与界面物理[M] .天津:天津大学出版社, 1992 ,141.
    [26] F.C. Wippermann, D. Radtke, U. Zeitner, J.W. Duparré, A. Tünnermann, M. Amberg*, S. Sinzinger*, C. Reinhardt+, A. Ovsianikov+, B. N. Chichkov+, Fabrication technologies for chirped refractive microlens arrays, Proc. of SPIE Vol. 6288, 1-10
    [27] Zhou J, Guo JT.“Effect of Ag alloying on microstructure, mechanicaland electrical properties of NiAl intermetallic compound. Materials Science and Engineering A 2003; 339; 166-74.
    [28] Low CTJ, Wills RGA, Walsh FC“Electrodeposition of composite coatings containing nanoparticles in a metal deposit”Surface & coatings Technology Sep. 12, 2006, v 201, n 1-2, 371-383
    [29] Arai S, Endo M.“Various carbon nanofiber– copper composite films prepared by electrodeposition”. Electrochemistry Communications 2005;7; 19-22.
    [30] Fu Shi, Wang Yuchao, Ding Guifu, Wu Huiqing, Wang Hong,fabrication of arched MEMS electrical contactor with Cu-based carbon nanofiber composite film,Micro & Nano Letters, 2007, 2, (3), pp. 58–62
    
    [1]中国电子学会审查技术学分会丛书编委会,微电子封装技术,2005年6月
    [2]黄庆安,唐洁影译,微系统封装基础,2005年2月,第1版
    [3]杨帮文,新型继电器实用手册,人民邮电出版社,2004年6月,第一版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700