用户名: 密码: 验证码:
低维钙钛矿结构锰氧化物的制备及磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构锰氧化物由于其独特的电子结构而具有丰富的电、磁、光等多种功能,具有潜在的应用价值。纳米材料由于具有各种奇异的物理、化学性质,已成为当前凝聚态物理、材料科学等领域研究热点和前沿,对于锰氧化物材料在纳米尺度下的磁性及磁热效应的研究不仅在基础科学问题上,而且在实际应用上都有重要意义。
     本文选择具有极大应用前景的钙钛矿结构锰氧化物为研究对象,开展了其可控合成纳米材料工艺和磁性质研究,具体内容如下:
     1、利用溶胶凝胶法合成了不同尺寸的纳米La0.8Ca0.2MnO3颗粒,利用X射线衍射仪、扫描电镜等对样品的结构及形貌进行了表征;样品的磁性测量结果表明:对于小尺寸晶粒的样品,存在超顺磁性,超自旋玻璃行为,以及表面自旋玻璃行为,其具有大的表面各向异性。并且发现:随着样品晶粒尺寸的减小,体系磁相变由一级相变向二级相变过渡,我们将这种相变的变化归因于小尺寸效应。通过测量化合物的等温磁化曲线,利用Maxwell关系计算了磁熵变,发现磁熵变随晶粒尺寸的减小而减小,但是其制冷温区变宽,因此通过晶粒尺寸可以对其磁制冷效率进行调控。在小尺寸样品中观察到了大的表面各向异性,给出了粒度与表面层厚度以及饱和磁化强度的关系,预言了在小尺寸晶粒中,如果表面无序层厚度降低,小尺寸样品的磁制冷效率在2.0T磁场和4.5T磁场中将达到180J/kg和471J/kg。
     2、利用溶胶凝胶法合成不同尺寸的纳米La0.67Ba0.33MnO3颗粒,利用X射线衍射仪、扫描电镜等对样品的结构及形貌进行了表征,对样品的磁性测量发现,样品的居里温度Tc随着晶粒尺寸的减小而减小,当样品晶粒尺寸达到17nm时,其居里温度降低到室温范围,于是导致其制冷温区降到室温附近,实现了La0.67Ba0.33MnO3样品的室温磁制冷.通过对样品临界行为的研究,我们将Tc随温度的变化归因于小尺寸效应,样品的磁转变随着晶粒尺寸的减小由陡峭变得平缓,导致样品的最大磁熵变减小而磁制冷温区变宽。
     3、利用水热法制备LaMnO3和La0.8Ca0.2O3纳米颗粒和纳米线,研究水热合成条件如反应温度反应时间,前驱物浓度等因素对纳米颗粒及纳米线的结构及形貌的影响。利用X射线衍射仪、扫描电镜及能谱分析对产物的结构、形貌和成份进行了表征。初步得到了LaMnO3和La0.8Ca0.2O3的成相条件,通过对反应时间及前驱物浓度的控制,制备出了准一维纳米棒和纳米线,随着反应时间延长,样品进一步生长变为四方形貌的单晶小颗粒。我们将这种由纳米线和纳米棒到四方小晶粒的转变归因于一维纳米材料大的比表面积。我们探索性的初步研究为发展锰氧化物纳米材料的合成方法提供了有益的尝试。
Manganites with pervoskite structure have been investigated experimentally and theoretically due to the interesting and rich electronic and magnetic properties and can be used in various areas. Nanomaterials have some unique and novel physical and chemical properties and are promising in applications, therefore these materials have been the focus of condensed matter physics, material science and chemisty. It is meaningful to investigate the manganites in nanoscale either from theoretical or practical application point of view.
     In this dissertation the controllable synthesizing and the physical properties such as magnetic and magnetocaloric properties of manganites was investigated. The results are summarized as follows:
     (1)La0.8Ca0.2MnO3nanoparticles with different sizes have been prepared using the sol-gel method. The existence of blocking of the superparamagnetism (SPM), freezing of super-spin-glass and surface-spin-glass are evidenced. It is found that a core shell structure can be responsible for the magnetism behavior of the nanoparticles. The phase transition from paramagnetism (PM) to ferromagnetism (FM) has been modified from first order to second order as the particle size reduced. The magnetocaloric effect (MCE) thus has been modified by the changed magnetism. The temperature interval of observed magnetic entropy change has broadened as the particle size reduced. The relative cooling power (RCP) can be tuned dramatically by particle size due to the change of magnetism in the superparamagnetic core. The magnetic entropy change of superparamagnetic particles has been calculated based on the core shell model. We observed irreversibility in high magnetic field. The surface spin-glass behavior as well as the high-field irreversibility is suppressed by increasing particle size while the freezing temperature TF does not change with particle size. The enhanced coercivity has been observed in the particles and we attributed it to the large surface anisotropy. We have disclosed a clear relationship between the particle size, the thickness of the shell, and the saturation magnetization of the particles. The large reduction of the saturation magnetization of the samples is found to be induced by the increase of large nonmagnetic surface since the thickness of the spin-disordered surface layer increases with a decrease in the particle size. Due to the reduction of the magnetization, the magnetocaloric effect (MCE) has been reduced by the decreased particle size since the nomagnetic surface contributes little to the MCE. Based on the core-shell structure large RCPs of180J/kg and471J/kg were predicted for a field change of2.0T and4.5T respectively in the small particles with thin spin-glass layer.
     (2)We report the observation of a tunable magnetocaloric effect near room temperature in the manganites La0.67Ba0.33Mn03, The suppression of TC which induces the tunable entropy change was attributed to the finite size effect in nanopatticles. A ferrimagnetic-paramagnetic transition temperature decreased from337to295K as the particle size reduced from60nm to17nm. The rounding of the phase transition was also found which may tune the temperature span of the refrigeration. this rounding is also attributed to the finite size effect. Considering its low-cost and innocuous raw materials, Mn-based perovskite compounds are suggested to be appropriate for pursuing new materials with larger MCE.
     (3) LaMnO3and La0.8Ca0.2MnO3nanoparticle and nanowire were synthetized by hydrothermal method. The effect of synthetize conditions such as the reaction temrature and reaction time, the concentration of the precursor material on the microstructure and phase purity was investigated. The samples were analyzed by the SEM and XRD. By controlling the reaction condition such as reaction time and the concentration of the precursor solution the nanoparticle and nanowire were prepared.
引文
[1]Y. Tokura, Rep. Prog. Phys.69,797 (2006).
    [2]H. A. Jahn and E. Teller, Proc. Roy. Soc. A 161,220 (1937).
    [3]E. Dagotto, T. Hotta and A. Moreo Phys. Rep.344,1 (2001).
    [4]J. B. Goodenough and J. M. Lango, Landolt-Boomstein Taellen, New Series. Vol. III/4a Springer. Berlin, (1970.
    [5]G.H. Jonker, J. H. Van Santen, Physics,337,16 (1950).
    [6]C. Zener, Phys. Rev.405,82403 (1951).
    [7]J.B. Goodenough, Phys. Rev.100,564 (1955).
    [8]E. O. Wollan, and W. C. Koehler, Phys. Rev.100,545 (1955).
    [9]P. W. Anderson and H. Hasegawa, Phys. Rev.67,100 (1955).
    [10]T. Kasuya, Prog. Theor. Phys.22,227 (1959).
    [11]T. Kasuya, and A. Yanase, Session Ⅱ-electrons in narrow bands, Rev. Mod. Phys. 40,684 (1968).
    [12]N. Mott, and E. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford (1971).
    [13]T. Holstein, Ann. Phys.8,343 (1959).
    [14]J. Kanamori, J. Appl. Phys.31,14S (1960).
    [15]R. M. Kuster, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayes, Physica B 155,362(1989).
    [16]S. Jin, M. McCormack, T.H. Tiefel, and R. Ramesh, J. Appl. Phys.76,6929 (1994).
    [17]S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science,264,413 (1994).
    [18]G. Q. Gong, C. Canedy, G. Xiao, J. Z. Sun, A. Gupta, and W. J. Gallagher, Appl. Phys. Lett.67,1783 (1995).
    [19]Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and N. Furukawa, J. phys. Soc. Jpn.63,3931 (1994).
    [20]A. Urushibara, Y. Maritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51,14103 (1995).
    [21]M. R. Lees, J. Barratt, G. Balakrishnan, D. M. Paul, and M. Yethiraj, Phys. Rev. B 52,R14303(1995).
    [22]S. Taran, S. Chatterjee, B. K. Chaudhuri, Phys. Rev. B 69,184413 (2004).
    [23]C. R. Mahendiran, R. Mahesh, A. K. Raychaudhuri, and C. N. R. Rao, Phys. Rev. B 53,12160(1996).
    [24]S. Q. Shen and Z. D. Wang, Phys. Rev. B 61,9532 (2000).
    [25]L. Vasiliu-Doloc, J. W. Lynn, Y. M. Mukovskii, A. A. Arsenov, and D. A. Shulyatev, J. Appl. Phys.83,7342 (1998).
    [26]Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett.78,1142(1997).
    [27]H. Y. Chen, C. Lin, and D. S. Dai, J. Magn. Magn. Mater.257,254 (2003).
    [28]X. Bohigas, J. Tejada, E. del Barco, X. X. Zhang, and M. Sales, Appl. Phys. Lett. 73,390(1998).
    [29]A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B Dabrowski, S. kolesnik, and Z. Bukowski, Appl. Phys. Lett.77,1026 (2000).
    [30]X. Bohigas, E. del Barco, M. Sales, J. Magn. Magn. Mater.197,455 (1999).
    [31]M. H. Yu, P. S. Devi, L. H. Lewis, S. Sampath, J. B. Parise, and R. J. Gambino, Mater. Sci. Eng. B 97,245 (2003).
    [32]N. H. Luong, N. Chau, P. M. Huong, D. L. Minh, N. N. Chau, B. T. Cong, and M. Kurisu, J. Magn. Magn. Mater.242,760 (2002)
    [33]N. Chau, H. N. Nhat, N. H. Luong, D. L. Minh, N. D. Tho, and N. N. Chau, Phy sica B 327,270 (2003).
    [34]Y. Sun, W. Tong, W. Liu, and Y. H. Zhang, J. Magn. Magn. Mater.238,25 (2002).
    [35]H. Chen, C. Lin, D. S. Dai, J. Magn. Magn. Mater.257,254 (2003).
    [36]T. Yi, S. Song, X. Qi, Y. F. Zhu, F. X. Cheng, B. Q. Ma, Y. H. Huang, C. S. Liao, C. H. Yan,61,1407 (2000).
    [37]L. E. Hueso, P. Sande, D. R. Miguens, and J. Rivasa, J. Appl. Phys.91,1215 (2002).
    [38]W. Tang, W. J. Lu, X. Luo, B. S. Wang, X. B. Zhu, W. H. Song, Z. R. Yang, and Y. P. Sun, J. Magn. Magn. Mater.322,2360 (2010).
    [39]P. Anderson, and H. Hasegawa, Phys. Rev.100,675 (1955).
    [40]Y. Tokura, and Y. Tomioka, J. Magn. Magn. Mater.200,1(1999).
    [41]P. Schiffer, A. Ramirez, W. Bao, and S. W. Cheong, Phys. Rev. Lett.75,3336 (1995).
    [42]张立德,牟季美,纳米材料与纳米结构,科学出版社,北京(2001).
    [43]R. Kubo, A. Kawabata, and S. Kobayashi, Ann. Rev Mater. Sci,14,49 (1984).
    [44]K. Kamegawa, and H. Yoshida, J. Mater. Sci.34,3105 (1999).
    [45]C. K. Lambert, R. D. Gonzalez, J. Mater. Sci.34,3109 (1999).
    [46]D. Franquin S. Monteverdi, S. Molina, M. M. Bettahar, Y. Fort, J. Mater. Sci, J. Mater. Sci.34,4481(1999).
    [47]L. E. Brus, J. Phys. Chem.90,2555 (1986).
    [48]R. Kubo, J. Phys. Soc. Jpn,17,975 (1962).
    [49]R. Kubo, A. Kawabata, and S. Kobayashi, Ann. Rev. Mater. Sci.14,49 (1984).
    [50]张立德,牟季美,物理,21,167(1992).
    [51]费浩生,艾希成,中国凝聚态物理年会报告,1992.
    [52]Y. L. Fu, Appl. Phys. Lett.77,118 (2000).
    [53]H. Schmalzried, Solid State Reactions, Verlag Chemie, Weinheim (1981).
    [54]T. Sarkar, P. K. Mukhopadhyay, A. K. Raychaudhuri and S. Banerjee, J. Appl. Phys.101,124307 (2007).
    [55]S. A. Majestich, M. Sachan, J. Phys. D:Appl. Phys.39, R407 (2006).
    [56]A. K. Pramanik and A. Banerjee, Phys. Rev. B 82,094402 (2010).
    [57]R. C. O' Handley, Modern Magnetic Materials:Principles and Applications, Wiley-VCH, Weinheim (2000).
    [58]D. Givord, Q. Lu, M. F. and Rossignol, Science and Technology of Nano-structured Materials, Plenum, NewYork (1991).
    [59]F. Wiekhorst, E. Shevchenko, H. Weller, and J. Kotzler, Phys. Rev. B 67 22441 (2003).
    [60]L. Neel, Ann. Geophys.5,99 (1949).
    [61]W. F. Brown. Jr, Phys. Rev.130,1677 (1963).
    [62]M. F. Hansen, and S. Morup, J.Magn.Magn.Mater.203,214 (1999).
    [63]P. Panissod, M. Malinowska, E. Jedryka, M. Wojcik, S. Nadolski, M. Knobel, and J. E. Schmidt, Phys.Rev. B 63,014408 (2000).
    [64]M. Hanson, C. Johansson, and S. Morup J.Phys.:Conden. Matter.7,9263 (1995).
    [65]S. Blundell, Magnetism in Condensed Matter, Oxford University Press, New York (2001).
    [66]S. Morup, Europhys. Lett.28,671 (1994).
    [67]R. D. Zysler, C. A. Ramos, E. De Biasi, H. Romero, A. Ortega, and D. Fiorani, J. Magn. Magn. Mater.221,1 (2000).
    [68]B. Martinez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett.80,181(1998).
    [69]C. Westman, S. Jang, C. Kim, S. He, G. Harmon, N. Miller, B. Graves, N. Poudyal, R. Sabirianov, H. Zeng, M. DeMarco, and J. P. Liu, J. Phys. D:Appl. Phys.41,225003 (2008).
    [70]E. Michael Fisher, and N. Michael Barber, Phys. Rev. Lett.28,1516 (1972).
    [71]K. Binder, Phys. Rev. Lett.31,693 (1981).
    [72]S. Murty, S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,1841(1986).
    [73]K. Binder, Physica 62,508 (1972).
    [74]J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. D. evlin,and A. Kostikas, Phys. Rev. B 54,9288 (1996).
    [75]E. Warburg, Ann. Phys.13,141, (1881).
    [76]P. Langevin, Ann. Chim. Phys.5,70 (1905).
    [77]P. Weiss, and A. Piccard, Compt. Rend. Ac. Sci.166,352 (1918).
    [78]P. Debye, Ann. Phys.81,1154 (1926).
    [79]W. F. Giauque, J. Am. Chem. Soc.49,1864 (1927).
    [80]W. F. Giauque and D. P. MacDougall, Phys. Rev. Lett.43,768 (1933).
    [81]G. V. Brown, J. Appl. Phys.47,3673 (1976).
    [82]C. B. Zimm, A. Jastrab, A. Sternberg, V. K. Pecharsky, K. A. Gschneidner Jr, M. Osborne and I. Anderson, Adv. Cryog. Eng.43,1759 (1998).
    [83]V. K. Pecharsky, K. A. Gschneidner Jr., A. O. Pecharsky and A. M. Tishin, Phys. Rev. B 64,144406(2001). [84] Vitalij K. Pecharsky, and Karl A. Gschneidner Jr. Int. J. Refrigeration,29,1239 (2006).
    [85]B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, Int. J. Refrigeration,23, 622 (2003).
    [86]T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Cryogenics 21,647 (1981).
    [87]V. K. Pecharsky, and K. A. Gschneidner Jr, J. Appl. Phys.86,565 (1999).
    [88]V. K. Pecharsky, K. A. Gschneidner Jr, A. O. Pecharsky, A. M. Tishin, Phys. Rev. B 64,44406 (2001).
    [89]M. H. Phan, and S. C. Yu, J. Magn. Magn. Mater.308,325 (2007).
    [90]C. B. Zimm, A. Jastrab, A. Sternberg, V. K. Pecharsky, K. A. Gschneidner Jr, M. Osborne, and I. Anderson, Adv. Cryog. Eng.43,1759 (1998).
    [91]S. Y. Dan'kov, A. M. Tishin, V. K. Pecharsky and K. A. Gschneidner Jr. Phys. Rev. B 57,3478 (1998).
    [92]A. Smaili, and R. Chahine, J. Appl. Phys.81,824 (1997).
    [93]K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys.68, 1479 (2005).
    [94]V. K. Pecharsky, and K. A. Gschneidner Jr. Phys. Rev. Lett.78,4494 (1997).
    [95]A. O. Percharsky, K. A. Gschneidner Jr. and V. K. Pecharsky, J. Appl. Phys. Phys. Rev. Lett.93,4722 (2003).
    [96]V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature,429,853 (2004).
    [97]O. Tegus, E. Briick, K. H. J. Buschow, and F. R. de Boer, Nature 415,150 (2002).
    [98]E. Bruck J. Phys. D:Appl. Phys.38, R381 (2005).
    [99]J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta, and B. Martinez, Phys. Rev. B 66,224413 (2002).
    [100]S. Y. Dan'kov, A. M. Tishin, V. K. Pecharsky and K. A. Gschneidner Jr. Phys. Rev. B 57,3478 (1998).
    [101]A. Smaili, and R. Chahine, J. Appl. Phys.81,824 (1997).
    [102]V. K. Pecharsky, and K. A. Gschneidner Jr. Phys. Rev. Lett.78,4494 (1997).
    [103]A. O. Percharsky, K. A. Gschneidner Jr. and V. K. Pecharsky, J. Appl. Phys.93, 4722 (2003).
    [104]E. Bruck, J. Phys. D:Appl. Phys.38, R381 (2005).
    [105]J. Marcos, A. Planes, L. Manosa, F. Casanova, X. Batlle, A. Labarta, and B. Martinez, Phys. Rev. B 66,224413 (2002).
    [106]F. X. Hu, B. G. Shen, J. R. Sun, and Z. H. Cheng, Phys. Rev. B 64,012409 (2001).
    [107]F. X. Hu, B. G. Shen, J. R. Sun, G. J. Wang, and Z. H. Cheng, Appl. Phys. Lett. 80,826 (2002).
    [108]C. Xu, G. D. Li, and L. G. Wang, J. Appl. Phys.99,123913 (2006).
    [109]R. F. Yang, Y. Sun, N. L. Di, Q. Li, and Z. H. Cheng, J. Magn. Magn. Mater. 309,149(2007).
    [110]H. Zhu, H. Song, W. Tong, and Y. H. Zhang, Appl. Phys. Lett.81,3416 (2002).
    [111]G. C. Lin, X. L. Yu, Q. Wei, and J. X. Zhang, Mater. Lett.59,2149 (2005).
    [112]A. N. Ulyanov, J. S. Kim, G. M. Shin, Y. M. Kang, and S. I. Yoo, J. Phys. D: Appl. Phys.40,123 (2007).
    [113]J. Q. Li, W. A. Sun, W. Q. Ao, and J. N. Tang, J. Magn. Magn. Mater.302,463 (2006).
    [114]R. D. McMichael, R. D. Shull, L. J. Swartzendruber, L. H. Bennett, and R. E. Watson, J. Magn. Magn. Mater.111,29 (1992).
    [115]Y. Z. Shao, J. K. L. La,i and C. H. Shek, J. Magn. Magn. Mater.163,103 (1996).
    [116]M. H. Yu, P. Sujatha Devi, L. H. Lewis, Sanjay Sampath, J. B. Parise, and R. J. Gambino, Mater. Sci. Eng. B 97,245 (2003).
    [1]倪星元,姚兰芳,沈军,周斌,纳米材料制备技术,化学工业出版社,北京(2008)
    [2]E. Traversa, P. Nunziante, M.Sakamoto, Y. Sadaoka, M. C. Carotta, and G. Martinelli, J. Mater. Res.13,1335 (1998).
    [3]Y. F. Zhu, H. Wang, R. Q. Tan, L. L. Cao, J. Alloy. Compd.352,134 (2003).
    [1]R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Sanwer, Phys. Rev. Lett.71,2331 (1993).
    [2]S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264,413 (1994).
    [3]Tapati Sarkar, P. K. Mukhopadhyay, A. K. Raychaudhuri, and Sangam Banerjee, J. Appl. Phys.101,124307 (2007).
    [4]B. Martinez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80,181 (1998).
    [5]Hong, W. S. Kim, and N. H. Hur, Phys. Rev. B 63,092504 (2001)
    [6]C. P. Adams, J. W. Lynn, V. N. Smolyaninova, A. Biswas, R. L. Greene, W. Ratcliff II, S. W. Cheong, Y. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B 70,134414 (2004).
    [7]J. Mira, J. Rivas, F. Rivadulla, C. Vazquez- Vazquez, and M. A. L6pez-Quintela, Phys. Rev. B 60,2998 (1999).
    [8]T. Sarkar, A. K. Raychaudhuri, A.K.Bera and S. M.Y usuf. New Journal of Physics 12,123026 (2010).
    [9]A. Rostamnejadi, M. Venkatesan, J. Alaria, M. Boese, P. Kameli, H. Salamati, and J. M. D. Coey, J. Appl. Phys.110,043905 (2011).
    [10]W. Tang, W. J. Lu, X. Luo, B. S. Wang, X. B. Zhu, W. H. Song, Z. R. Yang, and Y. P. Sun, J. Magn. Magn. Mater.322,2360 (2010).·
    [11]L. E. Hueso, P. Sande, D. R. Miguens, and J. Rivasa, J. Appl. Phys.91,1215 (2002).
    [12]S. E. Lofland, V. Ray, P. H. Kim, S. M. Bhagat, M. A. Mannheimer, and S. D. Tyagi, Phys. Rev. B 55,2749 (1997).
    [13]A. K. Pramanik and A. Banerjee, Phys. Rev. B 82,094402 (2010).
    [14]T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad, and P. Svedlindh, Phys. Rev. Lett.75,4138 (1995).
    [15]M. Suzuki, S. I. Fullem, and I. S. Suzuki, Phys. Rev. B 79,024418 (2009).
    [16]R. C. O'Handley, Modern Magnetic Materials:Principles and Applications Wiley-VCH, Weinheim (2000).
    [17]L. Neel, Ann. Geophys.5,99 (1949).
    [18]W. F. Brown. Jr, Phys. Rev.130,1677 (1963).
    [19]D. S. Fisher and D. A. Huse, Phys. Rev. Lett.56,1601 (1986).
    [20]D. S. Fisher and D. A. Huse Phys. Rev. B 38,373(1988).
    [21]A. E. Berkowitz, W. J. Shuele, and P. J. Flanders, J. Appl. Phys.39,1261(1968).
    [22]F. T. Parker, M. W. Foster, D. T. Margulies, and A. E. Berkowitz, Phys. Rev. B 47,7885(1993).
    [23]S. Linderoth, P. V. Hendriksen, F. B(?)dker, S. Wells, K. Davis, S. W. Charles, and S. M(?)rup, J. Appl. Phys.75,6583(1994).
    [24]D. Lin, A. C. Numes, C. F. Majkrzak, and A. E. Berkowitz, J. Magn. Magn. Mater.145 (1995) 343.
    [25]A. H. Morrish and K. Haneda, J. Appl. Phys.52,2496 (1981).
    [26]R. H. Kodama, A. E. Berkowitz, E. J. McNiff Jr., and S. Foner, Phys. Rev. Lett. 77,394(1996).
    [27]C. R.Vestal and Z. J. Chang, J. Am. Chem. Soc.125,9828 (2003).
    [28]D. A. Garanin, and H. Kachkachi, Phys. Rev. Lett.90,065504 (2003).
    [29]B. Roy, and S. Das, Appl. Phys. Lett.92,233101 (2008).
    [30]R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. R. Rao, Appl. Phys. Lett. 68,2291 (1996).
    [31]L. E. Hueso, J. Rivas, F. Rivadulla and M. A. Lopez-Quintela, J. Appl. Phys.86, 3881 (1999).
    [32]L. Almeida Jr, and D. J. Thouless. J. Phys. A 11,983 (1978).
    [33]M. E. Hilo, K.O. Grady, and R. W Chantrell, J. Magn. Magn. Mater.114,307 (1992).
    [34]H. Mamiya, and I. Nakatani, J. Magn. Magn. Mater.177,966 (1998).
    [35]V. Spasojevic, A, Mrakovic, M. Perovic V. Kusigerski and J. Blanusa, J. Nanopart. Res.13,763(2011).
    [36]M. Garcia del Muro, X, Batlle, and A, Labarta, Phys. Rev. B 59,13584 (1999).
    [37]S. A. Majestich, M. Sachan, J. Phys. D:Appl. Phys.39, R407 (2006).
    [38]S. Morup, Europhys. Lett.28,671 (1994).
    [39]R. D. Zysler, C. A. Ramos, E. De Biasi, H. Romero, A. Ortega, and D. Fiorani, J. Magn. Magn. Mater.221,1 (2000).
    [40]S. Bedanta and W. Kleemannl J. Phys. D:Appl. Phys.420,13001 (2009).
    [41]V. Markovich, I. Fita, A. Wisniewski, G. Jung, D. Mogilyansky, R. Puzniak, L. Titelman, and G. Gorodetsky, Phys. Rev. B 81,134440 (2010).
    [42]T. Zhu, B.G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan, Appl. Phys. Lett.78, 3863 (2001).
    [43]S. K. Mandal, T. K. Nath and V. V. Rao, J. Phys.:Condens. Matter 20, 385203(1994).
    [44]F. B(?)dker, S. Morup, and S. Linderoth, Phys. Rev. Lett.72,282 (1994).
    [45]D. E. Biasi, C. A. Ramos, and R. D. Zysler, Phys. Rev. B 65,144416 (2002).
    [46]M. Muroi, P. G. Mc Cormick, and R. Street, Rev. Adv. Mater. SCI.5,76 (2003).
    [47]M. Pekala, N. Kozlova, and V. Drozd, J. Appl. Phys.104,123902 (2008).
    [48]C. Zeener, Phys Rev.82,403 (1951).
    [49]M. Muroi, R. Street, and P. G. Mc Cormick, J. Appl. Phys.87,5579 (2000).
    [50]J. B. Goodenough, Mechanics and chemical bond, inerscience, New York, (1963).
    [51]J. B. Goodenough, Phys. Rev.100,564 (1955).
    [52]L. Zheng, K. B. Li, and Y. H. Zhang, Phys. Rev. B 58,8613 (1998).
    [53]V. M. Browning, R. M. Stroud, W. W. Fuller-Mora, J. M. Byers, M. S. Osofsky, D. L. Knies, K. S. Grabowski, D. Koller, J. Kim, D. B. Chrisey, and J. S. Horwitz, J. Appl. Phys.83,7070 (1998).
    [54]S. K. Banerjee, Phys. Lett.12,16 (1964).
    [55]D. Balzarand, and H. Ledbetter, J. ppl. crystallr.26,97 (1993).
    [56]R. H. Kodama, J. Magn. Magn. Mater.200,359 (1999).
    [57]Murty S. S. Challa, and D. P. Landau, Phys. Rev. B 34,1841 (1986).
    [58]T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Cryogenics 21,647 (1981).
    [59]V. K. Pecharsky, and K. A. Gschneidner Jr, J. Appl. Phys.86,565 (1999).
    [60]V. K. Pecharsky, K. A. Gschneidner Jr, A. O. Pecharsky, A. M. Tishin, Phys. Rev. B 64,44406 (2001).
    [61]M. H. Phan, and S. C. Yu, J. Magn. Magn. Mater.308,325 (2007).
    [62]R. B. Griffiths, Phys. Rev. Lett.23,17 (1969).
    [63]A. J. Bray, Phys. Rev. Lett.59,586 (1987).
    [64]M. B. Salamon and P. Lin, Phys. Rev. Lett.88,197203 (2002).
    [65]M. B. Salamon, Phys. Rev. B 68,014411(2003).
    [66]S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelli and C. Chaillout, Phys. Rev. B 59,1304 (1999).
    [67]L. Jia, G. J. Liu, J. Z. Wang, J. R. Sun, H. W. Zhang and B. G. Shen, Appl. Phys. Lett.89 122515(2006).
    [1]N. Thakur, S. M. Yusuf, P. L. Paulose, and L. Keller, J. Appl. Phys. 111,063918 (2012).
    [2]Z. B. Guo, W. Yang, Y. T. Shen, and Y. W. Du, Solid State Commun.105,89 (1998).
    [3]W. Chen, L. Y. Nie, W. Zhong, Y. J. Shi, J. J. Hu, A. J. Li, and Y. W. Du, J. Alloy. Compd.395,23 (2005).
    [4]L. E. Hueso, P. Sande, D. R. Miguens, and J. Rivasa, J. Appl. Phys.91,1215 (2002).
    [5]W. Tang, W. J. Lu, X. Luo, B. S. Wang, X. B. Zhu, W. H. Song, Z. R. Yang, and Y. P. Sun, J. Magn. Magn. Mater.322,2360 (2010).
    [6]D. P. Landau, Phys. Rev. B 13,2998(1976).
    [7]K. Binder, Physica,62,508 (1972).
    [8]X. Batlle, and A. Labarta, J. Phys. D:Appl. Phys.35, R15 (2002).
    [9]C. Domb, and M. S. Rreen, Pahse Transition, and Critical Phenomena, Harcourt Brace Jaranovich publisher, London(1976).
    [10]Z. X. Tang, C. M. Sorensen, and K. J. Klabunde, Phys. Rev. Lett.67, 3602(1991).
    [11]J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. Devlin, and A. Kostikas, Phys. Rev. B 54,9288(1996).
    [12]T. Sarkar, A. K. Raychaudhuri, A. K. Bera, and S. M. Yusuf, New Journal of Physics,12,123026 (2010).
    [13]S. I. Andronenko, R. R. Andronenko, and O. A. Zagrebelnyi, Glass Physics and Chemistry,36,617 (2010).
    [14]N. Moutis, I. Panagiotopoulos, M. Pissas, and D. Niarchos, Phys. Rev. B 59, 1129(1999).
    [15]A. de Andres, J. Rubio, G. Castro, S. Taboada, J. L. Martinez, and J. M Colino, Appl. Phys. Lett.83,713 (2003).
    [16]Tapati Sarkar, A. K. Raychaudhuri, A. K. Bera, and S. M. Yusuf, New Journal of Physics 12,123026 (2010).
    [17]T. Hashimoto, T. Numasawa, M. Shino, and T. Okada, Cryogenics 21,647 (1981).
    [18]V. K. Pecharsky, and K. A. Gschneidner Jr, J. Appl. Phys.86,565 (1999).
    [19]V. K. Pecharsky, K. A. Gschneidner Jr, A. O. Pecharsky, A. M. Tishin, Phys. Rev. B 64,44406 (2001).
    [20]M. H. Phan, and S. C. Yu, J. Magn. Magn. Mater.308,325 (2007).
    [21]H. Wada and Y. Tanabe, Appl. Phys. Lett.79,3302 (2001).
    [1]S. lijima, Helical, Nature,354,56 (1991).
    [2]C. M. Lieber, Solid state Commun.107,607 (1998).
    [3]L. D. Zhang, G. W. Meng, F. Phillipp, Mater. Sci. Eng. A 286,34 (2000).
    [4]Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science,293,1289 (2001).
    [5]S. lijima, Physica B 323,1 (2002).
    [6]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature materials,4, 455 (2005).
    [7]G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed.41,2446 (2002).
    [8]Y. N. Xia, P.D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater.15,353 (2003).
    [9]J. T. Robinson, M. Jorgolli, A. K. Shalek, M. H. Yoon, R. S. Gertner, H. Park, Nature,7,180(2012).
    [10]Q. Wan Q. H. Li, Y. J. Chen, Appl. Phys. Lett.84,3654 (2004).
    [11]X. Duan, C. M. Lieber, J. Am. Chem. Soc.122,188 (2000).
    [12]Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science,293,1289 (2001).
    [13]Y. Y Wu, P. D. Yang, J. Am. Chem. Soc.123,3165 (2001).
    [14]V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, P. Werner, Nano lett.11,1247 (2011).
    [17]S. V. Thombare, A. F. Marshall, P. C. McIntyre. J. Appl. Phys.112,054325 (2012).
    [18]P. Yang, C. M. Lieber, J. Mater. Res.12,2981 (1997).
    [19]S. H. Mousavi, H. Haratizadeh, H. Minaee, Thin Solid Films,520,4642 (2012).
    [20]B. Liu, D. M. Tang, C. Sun, C. Liu, W. Ren, F. Li, H. M. Cheng, J. Am. Chem. Soc.133,197(2010).
    [21]O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett.72,1173 (1998).
    [22]L. Guo, X. Wang, C. Zhong, L. Li, J. Appl. Phys. 111,026104(2012).
    [23]F. Han, G. Meng, X. Zhao, Q. Xu, J. Liu, B. Chen, M. Kong, Mater. Lett.63, 2249 (2009).
    [24]N. S. Ramgir, Y. Yang, M. Zacharias,Small,6,1705 (2010).
    [25]Y. W. Yang, Y. B. Chen, F. Liu, X. Y. Chen, Y. C. Wu, Electrochimica Acta,56, 6420(2011).
    [26]G. Yi, W. Schwarzacher, Appl. Phys. Lett.74,1746 (1999).
    [27]M. Rauber, I. Alber, S. Muller, R. Neumann, O. Picht, C. Roth, W. Ensinger, Nano lett,112304(2011).
    [29]K. Nielsch, F. Muller, A. P. Li, U. Gosele, Adv. Mater.12,582 (2000).
    [30]D. Xu, Y. Xu, G. Guo, D. Chen, L. Gui, Y. Tang, Adv. Mater.12,520 (2000).
    [31]X. H. Xia, J. P.Tu, Y. J. Mai, X. L. Wang, C. D. Gu, X. B. Zhao, J. Mater. Chem. 21319(2011).
    [32]O. Lupan, and T. Pauport6, J. Cryst. Grow.312,2454 (2010).
    [33]J. Y. Kim, H. Jeong, D. J. Jang, J. Nanopart. Res.13,6699 (2011).
    [34]Q.Huang, A.Santoro, J.W.Lynn, R.W.Erwin, J.A.Borchers, J. L. Peng, R. L. Greene, Phys. Rev. B,55,14987 (1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700