用户名: 密码: 验证码:
多功能含金属纳米材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,多功能纳米材料越来越受到科学家们的重视,它们在离子检测、催化和生物成像等方面得到了广泛应用。已有的功能材料主要包括荧光功能材料,磁功能材料以及电功能材料。然而单一功能的纳米材料已经不能满足当今应用的需要,多功能复合材料尤其荧光和磁性纳米杂化材料成为研究的热点之一。无论从基础研究或应用前景上看,探索荧光和磁性纳米材料新型的合成方法,并对所得荧光和磁性纳米材料性质进行研究以及制备出多功能杂化材料无疑有重要的现实意义。因此,本论文围绕多功能含金属纳米材料及其杂化材料,开展了以下四部分工作:
     在论文的第2章中,我们发展了一种弱胺还原的方法制备荧光纳米簇。采用水合肼作为还原剂,谷胱甘肽作为稳定剂情况下,温和条件下制备荧光Ag纳米簇。获得的Ag纳米簇粒径均匀,具有优良的荧光性质,其荧光发射峰位在620nm,且具有很好的稳定性和水溶性质。进一步,以合成的Ag纳米簇作为模板,采用galvanic exchange reaction方法制备了荧光Au纳米点。所得的Au纳米点粒径均匀约为2.9nm,表现出优良的荧光性质,荧光量子效率高达10%;同时制备的Au纳米点的荧光性质具有优异的稳定性,在pH=1-11较宽范围的溶液中、高浓度盐离子环境下、长时间放置以及强光照射下,其荧光性质几乎不发生改变,这归因于Au纳米点表面由谷胱甘肽稳定和Au(I)-S配合物的稳定作用;获得Au纳米点具有良好的水溶性和低的生物毒性,将其与CAL-27和MC3T3-E1细胞进行孵化,Au纳米点可以进入细胞质和细胞核,可以作为一种生物荧光探针。
     在论文的第3章中,我们合成新型近红外荧光纳米簇并对其性质进行研究。近红外光具有在生物体内深的光穿透性和弱的光散射等优点。我们选用谷胱甘肽作为稳定剂,S-肼配合物作为S源,成功制备出来具有近红外荧光的Ag_2S纳米簇。获得的Ag_2S纳米簇尺寸均匀,结构稳定,其尺寸可以控制在1.6nm到4.5nm之间,相应的荧光发射波长从620nm的红光区移到720nm的近红外区。由于生物小分子谷胱甘肽作为稳定剂,Ag_2S纳米簇具有水溶性和稳定性好、生物毒性低等特点,它可以进入MC3T3–EI细胞的细胞质和细胞核,作为一种生物荧光探针将在细胞成像领域都具有很好的应用价值。
     论文的第4章,我们沿用胺还原法,成功制备了一种同时具有荧光和磁性的新型EuSe稀土纳米晶。烷基胺和烷基酸为稳定剂,采用稀土铕的无机化合物与Se单质反应,一步制备具有低价态的EuSe纳米晶。所得EuSe纳米晶具有以下特点:形貌为球形,尺寸为20nm,粒径均匀,具有优良的荧光发射和铁磁性质。EuSe纳米晶的荧光发射峰位在403nm,半峰宽窄(约30nm),色纯度高。通过调节实验条件可以制备出形貌各异的EuSe纳米晶,包括纳米棒,纳米带,球形以及中空纳米结构,这些不同形貌的纳米材料仍然保持荧光和磁性等性质。此方法避免使用复杂的稀土配合物,环境污染小,产物纯度高。另外,操作容易,重复性好,适合大批量制备低价态稀土纳米晶。作为一种新型荧光和磁性的纳米材料,EuSe纳米晶在磁光设备等方面具有很好的应用前景。利用两亲性嵌段聚合物F127,可以实现将稀土纳米晶从油相转移到水相,将在细胞荧光成像和磁成像等领域显示出应用价值。
     在论文的第5章中,我们采用层层组装法制备荧光和磁性纳米杂化材料。采用紫外光还原法制备了阴离子聚电解质PAA稳定的荧光Ag纳米簇,其荧光发射峰位为570nm,粒径为1.5nm。通过一种阳离子聚电解质PAH辅助,利用库伦力等超分子作用层层组装,实现将磁性Fe_3O_4和荧光Ag纳米簇复合,制备磁性/荧光纳米杂化材料。获得以Fe_3O_4为核、外层修饰Ag纳米簇的杂化材料,保持了Fe_3O_4的磁性和Ag的纳米簇荧光性质。进一步,我们采用相近的方法,制备具有上下双模转换型荧光的Ag NCs-NaGdF_4:Yb/Tm NPs磁/光纳米杂化材料。这些磁性和荧光多功能杂化材料将在荧光成像和核磁共振生物成像等领域得到应用。
With the development of science and technology, multifunctional nanomaterialsattracted more and more attention of scientists and they have been widely used inions detection, catalysis and biological imaging. Existing functional materials arefluorescent, magnetic, and electrical function. However, nanomaterials with singlefunction can not be suitable for practical applications. Multifunctional hybridmaterials, especially magnetic and fluorescent hybrid materials become one ofresearch focus. Therefore, based on the point of view of basic research andapplications, exploring novel synthesis method and property of magnetic andfluorescent nano-materials as well as further preparing the multifunctional hybridmaterials will undoubtedly have important practical significance. In my PhD paper,around metal-containing multifunctional nanomaterials, we carry out the follow fourparts of work:
     In Chapter2, we develop reduction method with weak amine to preparefluorescent nanoclusters (NCs). Using hydrazine hydrate (N2H4.2H2O) as reducingagent and glutathione (GSH) as stabling agent, fluorescent Ag NCs were synthesizedat room temperature. As-prepared Ag NCs exhibited red fluorescence with amaximum emission at620nm, and had good stability, water-soluble and uniformsize. Using presynthesized and size-specific controlled Ag nanodots (Ag NDs) astemplates, the galvanic exchange reaction was used to prepare fluorescent goldnanodots (GNDs). As-prepared GNDs with the size of2.9nm lead to propensities ofstrong fluorescence (quantum yields~10%), high stability and surface-bioactivity.The PL of resultant GNDs showed high photo-, time-, metal-and pH-stability. In pHvalues ranged from1to11, the solution of high salt concentration, exposed under450W Xenon (Xe) lamp for3h and storing under normal condition for three months,the PL of GNDs hardly changed, which were attributed to the protective surface layer of glutathione (GSH) and the presence of Au(I)-S complex on the surface ofthe gold core.. Moreover, this glutathione, as a stabilizer makes GNDs have gooddispersion in aqueous solution and low biological toxicity. In this study, the CAL-27and MC3T3-E1cells are used as a model to evaluate the fluorescence imaging ofGNDs.
     Next in Chapter3, we study the novel near-infrared (NIR) NCs. In vivoapplication the NIR nanomaterials have the advantages of the deep light penetrationand weak light scattering. Using GSH as capping reagent and sulfur-hydrazinehydrate complex as S~(2-)source, NIR Ag_2S NCs were prepared. The resultant Ag_2SNCs showed tunable luminescence from visible red (624nm) to NIR (724nm)corresponding to increasing the size from1.6nm to4.5nm. GSH is a kind of smallbiomolecules with several functional groups, including carboxyl and amino groupsthat suggested resultant Ag_2S NCs had good dispersion in aqueous solution and lowbiological toxicity. These advantages made as-prepared Ag_2S NCs possess potentialapplications in biological labeling as well. At last, MC3T3-EI cells are choosed toconfirm as-prepared NIR Ag_2S NCs have good application in the field of cellimaging.
     In Chapter4, we use similar amine reducing approach to prepare magnetic andfluorescent dual functional EuSe nanocrystals. Using EuCl3(H2O)6and elemental Seas Eu and Se sources, and using the alkyl amines (OLA) and alkyl acids (OA) asstabilizing agent, one-step was developed to prepare divalent EuSe nanocrystals. Theresultant EuSe nanocrystals with spherical morphology and the size of20nm showblue emission (peaking at403nm with2.8%quantum yield) and magnetic propertywith coercively (Hc) of80.2Oe at room temperature. Controlling experimentalconditions, the morphologis of EuSe nanocrystals could be tunable and nanorods,nanobelts, spherical and hollow nanoparticles can be prepared. These EuSenanocrystals with various morphologies also have fluorescent and magneticpreporties. In our approach, the amine also behaves as a reducing agent. Note thatour ready approach is highly reproducible and suitable for large-scale production, facilitating the potential in various applications including opto-magnetic devices,optical isolators, optical catalysis, and photo magnetic memories. By F127, EuSenanocrystals could be transferred to aqueous phase, which suggested the EuSenanocrystals had a broader range of applications in the field of cell imaging andmagnetic imaging.
     Finally, in Chapter5, the layer by layer assembly method is used to preparefluorescent NCs and magnetic nanopartlcles (NPs) hybrid nanomaterials. Using UVreduction method, PAA, the anionic polyelectrolyte, stabilized fluorescent Ag NCswere synthesized. As-prepared PAA-Ag NCs with the size of1.5nm showfluorescence property with emission at570nm. Then, through the help of PAH, thecationic electrolyte, magnetic Fe_3O_4NPs and fluorescent PAA-Ag NCs hybridnanomaterials are prepared by layer by layer assembly. As-prepared hybridnanomaterials have the core of Fe_3O_4and the outermost layer of fluorescent PAA-AgNCs. Hence as-prepared hybrid nanomaterials show magnetic and fluorescentproperties of Fe_3O_4NPs and Ag NCs. Then, we use similar layer by layer assemblymethod to prepare paramagnetic, up and down dual model fluorescent AgNCs-NaGdF_4: Yb/Tm NPs hybrid nanomaterials. The magnetic and fluorescentmultifunctional hybrid nanomaterials could be applied in the field of biologicalimaging and magnetic resonance imaging.
引文
[1] Han M, Gao X, Su J, Nie S. Quantum-Dot-Tagged Microbeads for MultiplexedOptical Coding of Biomolecules[J]. Nature biotechnology2001,19:631-635.
    [2] Bruchez M, Moronne M, Gin P., Alivisatos A.P. Science1998,281:2013
    [3] Zhang Y, Li Y, Yan X P. Aqueous Layer-by-Layer Epitaxy of Type-IiCdTe/CdSe Quantum Dots with near-Infrared Fluorescence for BioimagingApplications[J]. Small2009,5:185-189.
    [4]张皓,“碲化镉纳米晶的制备及其与聚合物的复合”吉林大学博士论文,2004.
    [5] Park K, Lee S, Kang E, Kim K, Choi K, Kwon I C. New Generation ofMultifunctional Nanoparticles for Cancer Imaging and Therapy[J]. AdvancedFunctional Materials2009,19:1553-1566.
    [6] Feldmann C. Luminescent Nanomaterials[J]. Nanoscale2011,3:1947-1948.
    [7] H tzer B, Medintz I L, Hildebrandt N. Fluorescence in Nanobiotechnology:Sophisticated Fluorophores for Novel Applications[J]. Small2012,8:2297-2326.
    [8] Shimomura O, Johnson F H, Saiga Y. Extraction, Purification and Properties ofAequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea[J]. Journal of Cellular and Comparative Physiology1962,59:223-239.
    [9] Orm M, Cubitt A B, Kallio K, Gross L A, Tsien R Y, Remington S J. CrystalStructure of the Aequorea Victoria Green Fluorescent Protein[J]. Science1996,273:1392-1395.
    [10] Wang S. X, Hazelrigg T. Nature1994,369:400–403.
    [11] Heim R A, Cubitt B, Tsien R. Y. Nature1995,373:663–664.
    [12] Striker G, Subramaniam V, Seidel C A M, Volkmer A. Photochromicity andFluorescence Lifetimes of Green Fluorescent Protein[J]. The Journal ofPhysical Chemistry B1999,103:8612-8617.
    [13] Patterson G H, Lippincott-Schwartz J. A Photoactivatable Gfp for SelectivePhotolabeling of Proteins and Cells[J]. Science2002,297:1873-1877.
    [14] Campbell R E, Tour O, Palmer A E, Steinbach P A, Baird G S, Zacharias D A,Tsien R Y. A Monomeric Red Fluorescent Protein[J]. Proceedings of theNational Academy of Sciences2002,99:7877-7882.
    [15] Prof. Roger Tsien’s website, http://www.tsienlab.ucsd.edu (last accessed:04/2012).
    [16] Chan W. C. W., Maxwell D. J., Gao X., Bailey R. E, Han M, Nie S. Curr.Opin.biotechnol.2002,13:40.
    [17] Scholes G D. Controlling the Optical Properties of Inorganic Nanoparticles[J].Advanced Functional Materials2008,18:1157-1172.
    [18] Xie R, Chen K, Chen X, Peng X. Inas/InP/ZnSe Core/Shell/Shell QuantumDots as near-Infrared Emitters: Bright, Narrow-Band, Non-CadmiumContaining, and Biocompatible[J]. Nano Research2008,1:457-464.
    [19] Xie R, Peng X. Synthesis of Cu-Doped InP Nanocrystals (D-Dots) with ZnSeDiffusion Barrier as Efficient and Color-Tunable NIR Emitters[J]. Journal ofthe American Chemical Society2009,131:10645-10651.
    [20] Pradhan N, Peng X. Efficient and Color-Tunable Mn-Doped ZnSe NanocrystalEmitters: Control of Optical Performance Via Greener Synthetic Chemistry[J].Journal of the American Chemical Society2007,129:3339-3347.
    [21] Nitzsche B, Ruhnow F, Diez S. Nat.Nanotechnol.2008,3:552.
    [22] Peng Z, Peng X. Formation of High-Quality CdTe, CdSe, and CdSNanocrystals Using CdO as Precursor[J]. Journal of the American ChemicalSociety2001,123:183-184.
    [23] Azad Malik M, O'Brien P, Revaprasadu N. Synthesis of TOPO-CappedMn-Doped ZnS and CdS Quantum Dots[J]. Journal of Materials Chemistry2001,11:2382-2386.
    [24] Somaskandan K, Tsoi G M, Wenger L E, Brock S L. Isovalent Doping Strategyfor Manganese Introduction into Ⅲ-V Diluted Magnetic SemiconductorNanoparticles: InP:Mn[J]. Chemistry of Materials2005,17:1190-1198.
    [25] Wang R, Ratcliffe C I, Wu X, Voznyy O, Tao Y, Yu K. Magic-Sized Cd3P2Ⅱ VNanoparticles Exhibiting Bandgap Photoemission[J]. The Journal of PhysicalChemistry C2009,113:17979-17982.
    [26] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec FV, Bawendi M G. Self-Assembly of CdSe ZnS Quantum Dot BioconjugatesUsing an Engineered Recombinant Protein[J]. Journal of the AmericanChemical Society2000,122:12142-12150.
    [27] Yu W W, Qu L, Guo W, Peng X. Experimental Determination of the ExtinctionCoefficient of CdTe, CdSe, and CdS Nanocrystals[J]. Chemistry of Materials2003,15:2854-2860.
    [28] Zhong H, Scholes G D. Shape Tuning of Type Ii CdTe-CdSe ColloidalNanocrystal Heterostructures through Seeded Growth[J]. Journal of theAmerican Chemical Society2009,131:9170-9171.
    [29] Chen D, Viswanatha R, Ong G L, Xie R, Balasubramaninan M, Peng X.Temperature Dependence of “Elementary Processes” in Doping SemiconductorNanocrystals[J]. Journal of the American Chemical Society2009,131:9333-9339.
    [30] Qu L, Peng X. Control of Photoluminescence Properties of CdSe Nanocrystalsin Growth[J]. Journal of the American Chemical Society2002,124:2049-2055.
    [31] Yang Y, Chen O, Angerhofer A, Cao Y C. Radial-Position-Controlled Doping inCdS/ZnS Core/Shell Nanocrystals[J]. Journal of the American ChemicalSociety2006,128:12428-12429.
    [32] Yu K. CdSe Magic-Sized Nuclei, Magic-Sized Nanoclusters and RegularNanocrystals: Monomer Effects on Nucleation and Growth[J]. AdvancedMaterials2012,24:1123-1132.
    [33] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, OberR, Jensen K F, Bawendi M G.(CdSe)ZnS Core Shell Quantum Dots: Synthesisand Characterization of a Size Series of Highly LuminescentNanocrystallites[J]. The Journal of Physical Chemistry B1997,101:9463-9475.
    [34] Hines M A, Guyot-Sionnest P. Synthesis and Characterization of StronglyLuminescing ZnS-Capped CdSe Nanocrystals[J]. The Journal of PhysicalChemistry1996,100:468-471.
    [35] Ouyang J, Zaman M B, Yan F J, Johnston D, Li G, Wu X, Leek D, Ratcliffe C I,Ripmeester J A, Yu K. Multiple Families of Magic-Sized CdSe Nanocrystalswith Strong Bandgap Photoluminescence Via Noninjection One-PotSyntheses[J]. The Journal of Physical Chemistry C2008,112:13805-13811.
    [36] Revaux A, Dantelle G, George N, Seshadri R, Gacoin T, Boilot J-P. A ProtectedAnnealing Strategy to Enhanced Light Emission and Photostability of YAG:CeNanoparticle-Based Films[J]. Nanoscale2011,3:2015-2022.
    [37] Zhou J-C, Sun L-D, Shen J, Gu J-Q, Yan C-H. Fluorescent-MagneticNanocrystals: Synthesis and Property of YPV1-XO4:Eu@GdPO4Core/ShellStructure[J]. Nanoscale2011,3:1977-1983.
    [38] Hou Z, Chai R, Zhang M, Zhang C, Chong P, Xu Z, Li G, Lin J. Fabricationand Luminescence Properties of One-Dimensional Camoo4: Ln3+(Ln=Eu, Tb,Dy) Nanofibers Via Electrospinning Process[J]. Langmuir2009,25:12340-12348.
    [39] Shen J, Sun L-D, Yan C-H. Luminescent Rare Earth Nanomaterials forBioprobe Applications[J]. Dalton Transactions2008,0:5687-5697.
    [40] Yan Z-G, Yan C-H. Controlled Synthesis of Rare Earth Nanostructures[J].Journal of Materials Chemistry2008,18:5046-5059.
    [41] Petoud S, Cohen S M, Bunzli J C, Raymond K N. Stable LanthanideLuminescence Agents Highly Emissive in Aqueous Solution: Multidentate2-Hydroxyisophthalamide Complexes of Sm(3+), Eu(3+), Tb(3+), Dy(3+)[J]. JAm Chem Soc2003,125:13324-13325.
    [42] Buissette V, Giaume D, Gacoin T, Boilot J-P. Aqueous Routes toLanthanide-Doped Oxide Nanophosphors[J]. Journal of Materials Chemistry2006,16:529.
    [43] Yang J, Zhang C, Li C, Yu Y, Lin J. Energy Transfer and TunableLuminescence Properties of Eu3+in TbBO3Microspheres Via a FacileHydrothermal Process[J]. Inorganic Chemistry2008,47:7262-7270.
    [44] Li C, Hou Z, Zhang C, Yang P, Li G, Xu Z, Fan Y, Lin J. Controlled Synthesisof Ln3+(Ln=Tb, Eu, Dy) and V5+Ion-Doped YPO4Nano-/Microstructureswith Tunable Luminescent Colors[J]. Chemistry of Materials2009,21:4598-4607.
    [45] He F, Yang P, Niu N, Wang W, Gai S, Wang D, Lin J. Hydrothermal Synthesisand Luminescent Properties of YVO4:Ln(3+)(Ln=Eu, Dy, and Sm)Microspheres[J]. J Colloid Interface Sci2010,343:71-78.
    [46] Chen G, Ohulchanskyy T Y, Law W C, Agren H, Prasad P N. MonodisperseNaYbF4: Tm3+/NaGdF4Core/Shell Nanocrystals with near-Infrared tonear-Infrared Upconversion Photoluminescence and Magnetic ResonanceProperties[J]. Nanoscale2011,3:2003-2008.
    [47] Hou Z, Li C, Ma P, Li G, Cheng Z, Peng C, Yang D, Yang P, Lin J.Electrospinning Preparation and Drug-Delivery Properties of an up-ConversionLuminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite[J].Advanced Functional Materials2011,21:2356-2365.
    [48] Chatterjee D K, Gnanasammandhan M K, Zhang Y. Small UpconvertingFluorescent Nanoparticles for Biomedical Applications[J]. Small2010,6:2781-2795.
    [49] Zhang J, Badger P D, Geib S J, Petoud S. Sensitization ofnear-Infrared-Emitting Lanthanide Cations in Solution by TropolonateLigands[J]. Angew Chem Int Ed2005,44:2508-2512.
    [50] Chen W, Zhang X, Huang Y. Luminescence Enhancement of EuS Nanoclustersin Zeolite[J]. Applied Physics Letters2000.
    [51] Lin J, Huang Y, Bando Y, Tang C, Golberg D. Bn Tubular Layer-SheathedCaS:Eu2+Nanowires as Stable Red-Light-Emitting Nanophosphors[J].Chemical Communications2009,0:6631-6633.
    [52] Bierman M J, Van Heuvelen K M, Schmei er D, Brunold T C, Jin S.Ferromagnetic Semiconducting EuO Nanorods[J]. Advanced Materials2007,19:2677-2681.
    [53] Hasegawa Y, Tanaka A, Doi Y, Hinatsu Y, Fujita K, Tanaka K, Kawai T.Enhanced Faraday rotation of cube-shaped EuS nanocrystals with a magneticcoercive field, Materials Science and Engineering2009,1:012026.
    [54] Hasegawa Y, Adachi T, Tanaka A, Afzaal M, O’Brien P, Doi T, Hinatsu Y,Fujita K, Tanaka K, Kawai T. Remarkable Magneto-Optical Properties ofEuropium Selenide Nanoparticles with Wide Energy Gaps[J]. Journal of theAmerican Chemical Society2008,130:5710-5715.
    [55] Singh N, Mohan Saini S, Nautiyal T, Auluck S. Theoretical Investigation of theOptical and Magneto-Optical Properties of EuX (X=S, Se, and Te)[J]. PhysicaB: Condensed Matter2007,388:99-106.
    [56] Hasegawa Y, Okada Y, Kataoka T, Sakata T, Mori H, Wada Y. Synthesis andPhotophysical Properties of EuS Nanoparticles from the Thermal Reduction ofNovel Eu(Ⅲ) Complex[J]. The Journal of Physical Chemistry B2006,110:9008-9011.
    [57] Hasegawa Y, Afzaal M, O'Brien P, Wada Y, Yanagida S. A Novel Method forSynthesizing EuS Nanocrystals from a Single-Source Precursor under WhiteLED Irradiation[J]. Chem Commun2005,242-243.
    [58] Yehezkeli O, Raichlin S, Tel-Vered R, Kesselman E, Danino D, Willner I.Biocatalytic Implant of Pt Nanoclusters into Glucose Oxidase: A Method toElectrically Wire the Enzyme and to Transform It from an Oxidase to aHydrogenase[J]. The Journal of Physical Chemistry Letters2010,1:2816-2819.
    [59] Schaaff T G, Shafigullin M N, Khoury J T, Vezmar I, Whetten R L, Cullen W G,First P N, Gutiérrez-Wing C, Ascensio J, Jose-Yacamán M J. Isolation ofSmaller Nanocrystal Au Molecules: Robust Quantum Effects in OpticalSpectra[J]. The Journal of Physical Chemistry B1997,101:7885-7891.
    [60] Parker J F, Fields-Zinna C A, Murray R W. The Story of a Monodisperse GoldNanoparticle: Au25L18[J]. Accounts of Chemical Research2010,43:1289-1296.
    [61] Tanaka S, Miyazaki J, Tiwari D K, Jin T, Inouye Y. Fluorescent PlatinumNanoclusters: Synthesis, Purification, Characterization, and Application toBioimaging[J]. Angew Chem Int Ed2011,50:431-435.
    [62] Wei W, Lu Y, Chen W, Chen S. One-Pot Synthesis, Photoluminescence, andElectrocatalytic Properties of Subnanometer-Sized Copper Clusters[J]. Journalof the American Chemical Society2011,133:2060-2063.
    [63] Hyotanishi M, Isomura Y, Yamamoto H, Kawasaki H, Obora Y. Surfactant-FreeSynthesis of Palladium Nanoclusters for Their Use in Catalytic Cross-CouplingReactions[J]. Chemical Communications2011,47:5750-5752.
    [64] Pettibone J M, Hudgens J W. Synthetic Approach for Tunable, Size-SelectiveFormation of Monodisperse, Diphosphine-Protected Gold Nanoclusters[J]. TheJournal of Physical Chemistry Letters2010,1:2536-2540.
    [65] Choi S, Dickson R M, Yu J. Developing Luminescent Silver Nanodots forBiological Applications[J]. Chem Soc Rev2012,41:1867-1891.
    [66] Richards C, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L,Dickson R. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores[J].Journal of the American Chemical Society2008,130:5038-5039.
    [67] Link S, Beeby A, FitzGerald S, El-Sayed M A, Schaaff T G, Whetten R L.Visible to Infrared Luminescence from a28-Atom Gold Cluster[J]. The Journalof Physical Chemistry B2002,106:3410-3415.
    [68] Zheng J, Zhang C. W, Dickson R. M. Phys. Rev. Lett.,2004,93:077402..
    [69] Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters[J].Nano Letters2010,10:2568-2573.
    [70] I. Diez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann, A. H. E.Muller, O. Ikkala and R. H. A. Ras, Angew. Chem., Int. Ed.2009,48,2122–2125.
    [71] He Y, Kang Z-H, Li Q-S, Tsang C, Fan C-H, Lee S-T. Ultrastable, HighlyFluorescent, and Water-Dispersed Silicon-Based Nanospheres as CellularProbes[J]. Angew. Chem., Int. Ed.2009,48:128-132.
    [72] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R; et al.Strongly Green-Photoluminescent Graphene Quantum Dots for BioimagingApplications[J]. Chem Commun2011,47:6858-6860.
    [73] Wang F, Xie Z, Zhang H, Liu C-Y, Zhang Y-G. Highly LuminescentOrganosilane-Functionalized Carbon Dots[J]. Advanced Functional Materials2011,21:1027-1031.
    [74] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C H, Yang X, Lee ST. Water-Soluble Fluorescent Carbon Quantum Dots and PhotocatalystDesign[J]. Angew Chem Int Ed2010,49:4430-4434.
    [75] Ouyang J, Vincent M, Kingston D, Descours P, Boivineau T, Zaman M B, WuX, Yu K. Noninjection, One-Pot Synthesis of Photoluminescent ColloidalHomogeneously Alloyed CdSeS Quantum Dots[J]. The Journal of PhysicalChemistry C2009,113:5193-5200.
    [76] Regulacio M D, Tomson N, Stoll S L. Dithiocarbamate Precursors forRare-Earth Sulfides[J]. Chemistry of Materials2005,17:3114-3121.
    [77] Mirkovic T, Hines M A, Nair P S, Scholes G D. Single-Source Precursor Routefor the Synthesis of EuS Nanocrystals[J]. Chemistry of Materials2005,17:3451-3456.
    [78] Zhao F, Gao S. Pyrolysis of Single Molecular Precursor for MonodisperseLanthanide Sulfide/Oxysulfide Nanocrystals[J]. Journal of Materials Chemistry2008,18:949.
    [79] Huxter V M, Mirkovic T, Nair P S, Scholes G D. Demonstration of BulkSemiconductor Optical Properties in Processable Ag2S and Eus NanocrystallineSystems[J]. Advanced Materials2008,20:2439-2443.
    [80] Zhao F, Sun H-L, Gao S, Su G. Magnetic Properties of EuS NanoparticlesSynthesized by Thermal Decomposition of Molecular Precursors[J]. Journal ofMaterials Chemistry2005,15:4209.
    [81] Tanaka A, Kamikubo H, Kataoka M, Hasegawa Y, Kawai T.Langmuir.
    [82] Adachi T, Tanaka A, Hasegawa Y, Kawai T. Thin Solid Films2008,516:2460–2462.
    [83] Yu K, Ouyang J, Leek D M. In-Situ Observation of Nucleation and Growth ofPbSe Magic-Sized Nanoclusters and Regular Nanocrystals[J]. Small2011,7:2250-2262..
    [84] Jiang W, Bian Z, Hong C, Huang C. A Mild Liquid Reduction Route towardUniform Blue-Emitting EuCl2Nanoprisms and Nanorods[J]. Inorg Chem2011,50:6862-6864.
    [85] Weixia T, Hanfan L. Continuous Synthesis of Colloidal Metal Nanoclusters byMicrowave Irradiation[J]. Chemistry of Materials2000,12.
    [86] Liu S, Lu F, Zhu J J. Highly Fluorescent Ag Nanoclusters: Microwave-AssistedGreen Synthesis and Cr3+Sensing[J]. Chem Commun2011,47:2661-2663.
    [87] Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R.Microwave-Assisted Polyol Synthesis of Copper Nanocrystals without UsingAdditional Protective Agents[J]. Chem Commun2011,47:7740-7742.
    [88] Yue Y, Liu T Y, Li H W, Liu Z, Wu Y. Microwave-Assisted Synthesis ofBsa-Protected Small Gold Nanoclusters and Their Fluorescence-EnhancedSensing of Silver(I) Ions[J]. Nanoscale2012,4:2251-2254.
    [89] Arnim H. Formation and Absorption Spectrum of Copper Nanoparticles fromthe Radiolytic Reduction of Cu(CN)2[J]. The Journal of Physical Chemistry B2000,104:1206-1211
    [90] Peyser L. A, Vinson A. E, Bartko A. P, Dickson R. M. Science2001,291:103.
    [91] Zheng J, Dickson R. Individual Water-Soluble Dendrimer-Encapsulated SilverNanodot Fluorescence[J]. Journal of the American Chemical Society2002,124:13982-13983.
    [92] Zhang J, Xu S, Kumacheva E. Photogeneration of Fluorescent SilverNanoclusters in Polymer Microgels[J]. Advanced Materials2005,17.
    [93] Shen Z, Duan H, Frey H. Water-Soluble Fluorescent Ag Nanoclusters Obtainedfrom Multiarm Star Poly(Acrylic Acid) as “Molecular Hydrogel” Templates[J].Advanced Materials2007,19:349-352.
    [94] Shchukin D G, Radtchenko I L, Sukhorukov G B. Photoinduced Reduction ofSilver inside Microscale Polyelectrolyte Capsules[J]. ChemPhysChem2003,4:1101-1103.
    [95] Biophys J.2005Jul;89(1):572-80. Epub2005Apr15. Water-soluble hybridnanoclusters with extra bright and photostable emissions: a new tool forbiological imaging. Makarava N, Parfenov A, Baskakov IV..
    [96] Hasegawa Y, Thongchant S, Wada Y, Tanaka H, Kawai T, Sakata T, Mori H,Yanagida S. Enhanced Luminescence and Photomagnetic Properties ofSurface‐Modified EuO Nanocrystals[J]. Angewandte Chemie InternationalEdition2002,41:2073-2075.
    [97] Hasegawa Y, Afzaal M, O'Brien P, Wada Y, Yanagida S. A Novel Method forSynthesizing EuS Nanocrystals from a Single-Source Precursor under WhiteLED Irradiat[J]. Chem Commun2005,242-243.
    [98] Manfred T R, Wolfgang H. Size-Selective Synthesis of NanostructuredTransition Metal Clusters[J]. Journal of the American Chemical Society1994,116.
    [99] Noelia V-V, Blanco M C, López-Quintela M A, José R, Carmen S.Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters [J].The Journal of Physical Chemistry C2010,114.
    [100] Santiago Gonzalez B, Rodriguez M J, Blanco C, Rivas J, Lopez-Quintela MA, Gaspar Martinho J M. One Step Synthesis of the Smallest Photoluminescentand Paramagnetic PVP-Protected Gold Atomic Clusters[J]. Nano Lett2010,10:4217-4221.
    [101] Chen J, McLellan J, Siekkinen A, Xiong Y, Li Z-Y, Xia Y. Facile Synthesisof Gold-Silver Nanocages with Controllable Pores on the Surface[J]. Journal ofthe American Chemical Society2006,128:14776-14777.
    [102] Udayabhaskararao T, Sun Y, Goswami N, Pal S K, Balasubramanian K,Pradeep T. Ag7Au6: A13-Atom Alloy Quantum Cluster[J]. Angew Chem IntEd2012,51:2155-2159.
    [103] Xu H, Suslick K S. Water-Soluble Fluorescent Silver Nanoclusters[J]. AdvMater2010,22:1078-1082.
    [104] Arnim H. Physicochemical Properties of Small Metal Particles in Solution:"Microelectrode" Reactions, Chemisorption, Composite Metal Particles, andthe Atom-to-Metal Transition[J]. The Journal of Physical Chemistry1993,97.
    [105] Lee T-H, Gonzalez J, Zheng J, Dickson R. Single-MoleculeOptoelectronics[J]. Accounts of chemical research2005,38:534-541.
    [106] Petty J, Zheng J, Hud N, Dickson R. DNA-Templated Ag NanoclusterFormation[J]. Journal of the American Chemical Society2004,126:5207-5212.
    [107] Bidisha S, Caroline M R, Jenna G B, Kenneth R J, Peter M G, Jeffrey T P.Base-Directed Formation of Fluorescent Silver Clusters[J]. Journal of PhysicalChemistry C2008,0.
    [108] Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K.Sequence-Dependent Fluorescence of DNA-Hosted Silver Nanoclusters[J].Advanced Materials2008,20:279-283.
    [109] Goswami N, Giri A, Bootharaju M S, Xavier P L, Pradeep T, Pal S K.Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb2+Ion[J].Anal Chem2011,83:9676-9680.
    [110] Yang Y, Zhao Q, Feng W, Li F. Luminescent Chemodosimeters forBioimaging[J]. Chem Rev2013,113:192-270.
    [111] Diez I, Ras R H. Fluorescent Silver Nanoclusters[J]. Nanoscale2011,3:1963-1970.
    [112] Jin R. Quantum Sized, Thiolate-Protected Gold Nanoclusters[J]. Nanoscale2010,2:343-362.
    [113] Negishi Y, Nobusada K, Tsukuda T. Glutathione-Protected Gold ClustersRevisited: Bridging the Gap between Gold(I)-Thiolate Complexes andThiolate-Protected Gold Nanocrystals[J]. Journal of the American ChemicalSociety2005,127:5261-5270.
    [114] Wu Z H, Suhan J, Jin R. One-pot synthesis of atomically monodisperse,thiol-functionalized Au25nanoclusters, J. Mater. Chem.,2009,19:622–626
    [115] Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T.Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (N=18,21,25,28,32,39): Isolation and Spectroscopic Characterization[J]. Journal ofthe American Chemical Society2004,126:6518-6519.
    [116] Habeeb Muhammed M A, Ramesh S, Sinha S S, Pal S K, Pradeep T. TwoDistinct Fluorescent Quantum Clusters of Gold Starting from MetallicNanoparticles by Ph-Dependent Ligand Etching[J]. Nano Research2010,1:333-340.
    [117] Wang Z, Cai W, Sui J. Blue Luminescence Emitted from MonodisperseThiolate-Capped Au11Clusters[J]. Chemphyschem2009,10:2012-2015.
    [118] Adhikari B, Banerjee A. Facile Synthesis of Water-Soluble FluorescentSilver Nanoclusters and Hgii Sensing[J]. Chemistry of Materials2010,22:4364-4371.
    [119] Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B. Simple Synthesisof Highly Luminescent Water-Soluble CdTe Quantum Dots with ControllableSurface Functionality[J]. Chemistry of Materials2011,23:4857-4862.
    [120] Pitchiaya S, Krishnan Y. First Blueprint, Now Bricks: DNA as ConstructionMaterial on the Nanoscale[J]. Chem Soc Rev2006,35:1111-1121.
    [121] N. Dattagupta, D.M. Crothers, Nucl. Acids Res.9(1981)2971—2985..
    [122] Luk K, Maki A, Hoover R. Studies of Heavy Metal Binding withPolynucleotides Using Optical Detection of Magnetic Resonance. Silver (I)Binding[J]. Journal of the American Chemical Society1975,97:1241-1242.
    [123] Patrick R O N, Lourdes R V, Donald G D, Elisabeth G G, Fygenson D K.Hairpins with Poly-C Loops Stabilize Four Types of Fluorescent Agn:DNA[J].The Journal of Physical Chemistry C2009,113.
    [124] Zhou R, Shi M, Chen X, Wang M, Chen H. Atomically Monodispersed andFluorescent Sub-Nanometer Gold Clusters Created by Biomolecule-AssistedEtching of Nanometer-Sized Gold Particles and Rods[J]. Chemistry2009,15:4944-4951.
    [125] Adhikari B, Banerjee A. Short-Peptide-Based Hydrogel: A Template for thein Situ Synthesis of Fluorescent Silver Nanoclusters by Using Sunlight[J].Chemistry (Weinheim an der Bergstrasse, Germany)2010,16:13698-13705.
    [126] Xie J, Zheng Y, Ying J. Protein-Directed Synthesis of Highly FluorescentGold Nanoclusters[J]. Journal of the American Chemical Society2009,131:888-889.
    [127] Wei H, Wang Z, Yang L, Tian S, Hou C, Lu Y. Lysozyme-Stabilized GoldFluorescent Cluster: Synthesis and Application as Hg(2+) Sensor[J]. Analyst2010,135:1406-1410.
    [128] Xavier P L, Chaudhari K, Verma P K, Pal S K, Pradeep T. LuminescentQuantum Clusters of Gold in Transferrin Family Protein, Lactoferrin ExhibitingFRET[J]. Nanoscale2010,2:2769-2776.
    [129] Habeeb Muhammed M A, Verma P K, Pal S K, Retnakumari A, KoyakuttyM, Nair S, Pradeep T. Luminescent Quantum Clusters of Gold in Bulk byAlbumin-Induced Core Etching of Nanoparticles: Metal Ion Sensing,Metal-Enhanced Luminescence, and Biolabeling[J]. Chemistry2010,16:10103-10112.
    [130] Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. HorseradishPeroxidase Functionalized Fluorescent Gold Nanoclusters for HydrogenPeroxide Sensing[J]. Anal Chem2011,83:1193-1196.
    [131] Narayanan S S, Pal S K. Structural and Functional Characterization ofLuminescent Silver-Protein Nanobioconjugates[J]. Journal of PhysicalChemistry C2008,112.
    [132] Lees E, Gunzburg M, Nguyen T-L, Howlett G, Rothacker J, Nice E, ClaytonA, Mulvaney P. Experimental Determination of Quantum Dot SizeDistributions, Ligand Packing Densities, and Bioconjugation Using AnalyticalUltracentrifugation[J]. Nano letters2008,8:2883-2890.
    [133] Fan H, Leve E, Scullin C, Gabaldon J, Tallant D, Bunge S, Boyle T, WilsonM, Brinker C. Surfactant-Assisted Synthesis of Water-Soluble andBiocompatible Semiconductor Quantum Dot Micelles[J]. Nano letters2005,5:645-648.
    [134] Dubertret B, Skourides P, Norris D. J, Noireaux V, Brivanlou A. H,Libchaber A. Science2002,298:1759.
    [135] Prakash A, Zhu H, Jones C, Benoit D, Ellsworth A, Bryant E, Colvin V.Bilayers as Phase Transfer Agents for Nanocrystals Prepared in NonpolarSolvents[J]. ACS nano2009,3:2139-2146.
    [136] Wu M X, Liu H, Liu J, Haley K N, Treadway J A, Larson J P, Ge N, Peale F,Bruchez M P, Nat. Biotechnol.2003,21,41.
    [137] Teresa P, Liberato M, Stefan K, Tim L, Dmitry K, Andrey L R, Simon K,Joachim R, Giovanni N, Wolfgang J P. Hydrophobic Nanocrystals Coated withan Amphiphilic Polymer Shell: A General Route to Water SolubleNanocrystals[J]. Nano Letters2004,4.
    [138] Sperling R A, Pellegrino T, Li J K, Chang W H, Parak W J. ElectrophoreticSeparation of Nanoparticles with a Discrete Number of Functional Groups[J].Advanced Functional Materials2006,16:943-948.
    [139] Yu W, Chang E, Falkner J, Zhang J, Al-Somali A, Sayes C, Johns J, DrezekR, Colvin V. Forming Biocompatible and Nonaggregated Nanocrystals in WaterUsing Amphiphilic Polymers[J]. Journal of the American Chemical Society2007,129:2871-2879.
    [140] Lees E, Nguyen T-L, Clayton A, Muir B, Mulvaney P. The Preparation ofColloidally Stable, Water-Soluble, Biocompatible, Semiconductor Nanocrystalswith a Small Hydrodynamic Diameter[J]. ACS nano2009,3:1121-1128.
    [141] Shang L, Dong S. Facile Preparation of Water-Soluble Fluorescent SilverNanoclusters Using a Polyelectrolyte Template[J]. Chem Commun2008,1088-1090.
    [142] Duan H, Nie S. Etching Colloidal Gold Nanocrystals with Hyperbranchedand Multivalent Polymers: A New Route to Fluorescent and Water-SolubleAtomic Clusters[J]. Journal of the American Chemical Society2007,129:2412-2413.
    [143] Schaeffer N, Tan B, Dickinson C, Rosseinsky M J, Laromaine A, McCombD W, Stevens M M, Wang Y, Petit L, Barentin C; et al. Fluorescent or Not?Size-Dependent Fluorescence Switching for Polymer-Stabilized Gold Clustersin the1.1-1.7Nm Size Range[J]. Chem Commun2008,3986-3988.
    [144] Guo J, Yang W, Deng Y, Wang C, Fu S. Organic-Dye-Coupled MagneticNanoparticles Encaged inside Thermoresponsive Pnipam Microcapsules[J].Small2005,1:737-743.
    [145] Choi J, Kim J C, Lee Y B, Kim I S, Park Y K, Hur N H. Fabrication ofSilica-Coated Magnetic Nanoparticles with Highly PhotoluminescentLanthanide Probes[J]. Chem Commun2007,1644-1646.
    [146] Laurent L, Yudhisthira S, Kyoung-Soo K, Earl J B, Paras N P.Nanochemistry: Synthesis and Characterization of MultifunctionalNanoclinics for Biological Applications[J]. Chemistry of Materials2002,14.
    [147] Rieter W J, Kim J S, Taylor K M, An H, Lin W, Tarrant T, Lin W. HybridSilica Nanoparticles for Multimodal Imaging[J]. Angew Chem Int Ed2007,46:3680-3682.
    [148] Yu L, Yadong Y, Brian T M, Younan X. Modifying the Surface Properties ofSuperparamagnetic Iron Oxide Nanoparticles through a Sol Gel Approach[J].Nano Letters2002,2.
    [149] Yu S L, Si-Han W, Yann H, Yi-Hsin C, Chen C, Meng-Liang L, Chih-Pin T,Chung-Yuan M. Multifunctional Composite Nanoparticles: Magnetic,Luminescent, and Mesoporous[J]. Chemistry of Materials2006,18.
    [150] Kim J, Lee J, Lee J, Yu J, Kim B, An K, Hwang Y, Shin C-H, Park J-G, K imJ; et al. Magnetic Fluorescent Delivery Vehicle Using Uniform MesoporousSilica Spheres Embedded with Monodisperse Magnetic and SemiconductorNanocrystals[J]. Journal of the American Chemical Society2006,128:688-689.
    [151] Jia G, Wuli Y, Changchun W, Jia H, Jiyao C. Poly(N-Isopropylacrylamide)-Coated Luminescent/Magnetic SilicaMicrospheres: Preparation, Characterization, and Biomedical Applications[J].Chemistry of Materials2006,18.
    [152] Ming F, Patrick S G, Michael J M, Gleb B S, Vladimir O G, Yuri M L.Magnetic Bio/Nanoreactor with Multilayer Shells of Glucose Oxidase andInorganic Nanoparticles[J]. Langmuir2002,18.
    [153] Desheng W, Jibao H, Nista R, Zeev R. Superparamagnetic Fe2O3Beads Cdse/Zns Quantum Dots Core Shell Nanocomposite Particles for CellSeparation[J]. Nano Letters2004,4.
    [154] Xia H, Jun L, Meijia W, Jinjie X, Wei G, Jinghong L, Yubai B, Tiejin L.Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-LayerSelf-Assembly Approach[J]. Chemistry of Materials2004,16.
    [155] Okamoto Y, Kitagawa F, Otsuka K. Online Concentration and AffinitySeparation of Biomolecules Using Multifunctional Particles in CapillaryElectrophoresis under Magnetic Field[J]. Analytical chemistry2007,79:3041-3047.
    [156] Feher F J, Wyndham K D, Soulivong D, Nguyen F. J. Chem. Soc. DaltonTrans.1999,9:1491
    [157] Becker C, Hodenius M, Blendinger G, Sechi A, Hieronymus T,Muller-Schulte D, Schmitz-Rode T, Zenke M, J. Magn. Magn. Mater.2007,311:234.
    [158] Vuu K, Xie J W, McDonald M A, Bernardo M, Hunter F, Zhang Y T, Li K,M. et al. Bioconjug. Chem.2005,16:995.
    [159] A.R. Herdt, B.S. Kim, T.A. Taton, Bioconjug. Chem.18,183(2007).
    [160] Mulder W J M, Strijkers G J, Griffioen A W, et al., Bioconjug. Chem.2004,15:799.
    [161] Li X Z, Wang L, Zhou C. et al. Clin. Chim. Acta.2007,378:168.
    [162] Mulder W J M, Strijkers G J. et al. NMR Biomed.2006,19:142.
    [163] Nitin N, Laconte L.E.W, Zurkiya O, Hu X, Bao G, J. Biol. Inorg. Chem.2004,9:706
    [164] Sahoo Y, Goodarzi A, Swihart M, Ohulchanskyy T, Kaur N, Furlani E,Prasad P. Aqueous Ferrofluid of Magnetite Nanoparticles: FluorescenceLabeling and Magnetophoretic Control[J]. The journal of physical chemistry. B2005,109:3879-3885.
    [165] Santra S, Yang H, Holloway P, Stanley J, Mericle R. Synthesis ofWater-Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS:Mn/ZnSQuantum Dots: A Multifunctional Probe for Bioimaging[J]. Journal of theAmerican Chemical Society2005,127:1656-1657.
    [166] Huh Y-M, Jun Y-w, Song H-T, Kim S, Choi J-S, Lee J-H, Yoon S, Kim K-S,Shin J-S, Suh J-S; et al. In Vivo Magnetic Resonance Detection of Cancer byUsing Multifunctional Magnetic Nanocrystals[J]. Journal of the AmericanChemical Society2005,127:12387-12391.
    [167] Monica T, Laura Ann B, Anne H, Daniel M S, Li S, Daniel H R, Peter C S,Gerald J M. Magnetic Alignment of Fluorescent Nanowires[J]. Nano Letters2001,1.
    [168] Gu H, Xu K, Yang Z, Chang C, Xu B. Synthesis and Cellular Uptake ofPorphyrin Decorated Iron Oxide Nanoparticles-a Potential Candidate forBimodal Anticancer Therapy[J]. Chemical communications2005,4270-4272.
    [169] Gu H, Zheng R, Zhang X, Xu B. Facile One-Pot Synthesis of BifunctionalHeterodimers of Nanoparticles: A Conjugate of Quantum Dot and MagneticNanoparticles[J]. Journal of the American Chemical Society2004,126:5664-5665.
    [170] Kim H, Achermann M, Balet L, Hollingsworth J, Klimov V. Synthesis andCharacterization of Co/CdSe Core/Shell Nanocomposites: BifunctionalMagnetic-Optical Nanocrystals[J]. Journal of the American Chemical Society2005,127:544-546.
    [171] Kwon K, Shim M,-Fe2O3/II-VI Sulfide Nanocrystal Heterojunctions[J], J.Am. Chem. Soc.2005,127:10269-10275.
    [172] Wang W, Gao Y, Jia X, Xi K. A novel Au-Pt@PPy(polypyrrole) coral-likestructure: Facile synthesis, high SERS effect, and good electro catalyticactivity,Journal of Colloid and Interface Science,2013396:23–28.
    [173] Wang X-B, Wang Y-L, Yang J, Xing X-P, Li J, Wang L-S. Evidence ofSignificant Covalent Bonding in Au(CN)2-[J]. Journal of the AmericanChemical Society2009,131:16368-16370.
    [174] Tomasulo M, Sortino S, White A, Raymo F. Chromogenic Oxazines forCyanide Detection[J]. The Journal of organic chemistry2006,71:744-753.
    [175] Badugu R, Lakowicz J, Geddes C. Enhanced Fluorescence CyanideDetection at Physiologically Lethal Levels: Reduced Ict-Based SignalTransduction[J]. Journal of the American Chemical Society2005,127:3635-3641.
    [176] Liu Y, Ai K, Cheng X, Huo L, Lu L. Gold-Nanocluster-Based FluorescentSensors for Highly Sensitive and Selective Detection of Cyanide in Water[J].Advanced Functional Materials2010,20:951-956.
    [177] Ishii A, Seno H, Watanabe-Suzuki K, Suzuki O, Kumazawa T.Determination of Cyanide in Whole Blood by Capillary Gas Chromatographywith Cryogenic Oven Trapping[J]. Analytical chemistry1998,70:4873-4876.
    [178] Holmes P, James K A F, Levy L S. Sci. Total Environ.2009,408:171-182..
    [179] Nolan E, Lippard S. Tools and Tactics for the Optical Detection of MercuricIon[J]. Chemical reviews2008,108:3443-3480.
    [180] Xie J, Zheng Y, Ying J Y. Highly Selective and Ultrasensitive Detection ofHg2+Based on Fluorescence Quenching of Au Nanoclusters by Hg2+-Au+Interactions[J]. Chem Commun2010,46:961-963.
    [181] Huang Z, Pu F, Lin Y, Ren J, Qu X. Modulating DNA-Templated SilverNanoclusters for Fluorescence Turn-on Detection of Thiol Compounds[J].Chem Commun2011,47:3487-3489.
    [182] Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and Colorimetric Probes forDetection of Thiols[J]. Chem Soc Rev2010,39:2120-2135.
    [183] Shang L, Dong S. Biosens. Bioelectron.24(2009)1569—1573.
    [184] Wang L, Li Y. Green Upconversion Nanocrystals for DNA Detection[J].Chem Commun2006,2557-2559.
    [185] Bertorelle F, Wilhelm C, Roger J, Gazeau F, Ménager C, Cabuil V.Fluorescence-Modified Superparamagnetic Nanoparticles: Intracellular Uptakeand Use in Cellular Imaging[J]. Langmuir2006,22:5385-5391.
    [186] Knight J C, Edwards P G, Paisey S J. Fluorinated Contrast Agents forMagnetic Resonance Imaging; a Review of Recent Developments[J]. RSCAdvances2011,1:1415-1425.
    [187] Wang G, Peng Q, Li Y. Lanthanide-Doped Nanocrystals: Synthesis,Optical-Magnetic Properties, and Applications[J]. Accounts of ChemicalResearch2011,44:322-332.
    [188] Ho D, Sun X, Sun S. Monodisperse Magnetic Nanoparticles for TheranosticApplications[J]. Accounts of Chemical Research2011,44:875-882.
    [189] Gao J, Gu H, Xu B. Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications[J]. Accounts of Chemical Research2009,42:1097-1107.
    [190] Trehin R, Figueiredo J L. et al. Neoplasia2006,8:302.
    [191] Weissleder R, Kelly K. et al. Nat. Biotechol.2005,23:1418(2005)
    [192] Yoon T J, Yu K N, Kim E, Kim J S, Kim B G, Yun S H, Sohn B H, Cho M H,Lee J K, Park S B. Specific Targeting, Cell Sorting, and Bioimaging with SmartMagnetic Silica Core-Shell Nanomaterials[J]. Small2006,2:209-215.
    [193] Cengelli F, Maysinger D. et al. J. Pharmacol. Exp. Ther.2006,318:108
    [194] Wang X, Li Y. Monodisperse Nanocrystals: General Synthesis, Assembly,and Their Applications[J]. Chem Commun2007,2901-2910.
    [195] Qian H, Zhu M, Wu Z, Jin R. Quantum Sized Gold Nanoclusters withAtomic Precision[J]. Accounts of chemical research2012,45:1470-1479.
    [196] John D A, Richard G F. Polyoxoanion-and Tetrabutylammonium-StabilizedRh(0) N Nanoclusters: Unprecedented Nanocluster Catalytic Lifetime inSolution[J]. Journal of the American Chemical Society1999,121.
    [197] Karpinski Z, Gandhi S N, Sachtler W. M. H. J. Catal.,1993,141:337–346.
    [198] Green I X, Tang W J, Neurock M, Yates J T.Science,2011,333:736–739.
    [1] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications.[J] Chem. Rev.2004,104:293–346.
    [2] Yao T J, Wang C X, Wu J, Lin Q, Lv H, Zhang K, Yu K, Yang B. Preparation ofraspberry-like polypyrrole composites with applications in catalysis.[J] Journalof Colloid and Interface Science.2009,338:573–577.
    [3] Park K, Koerner H, Vaia R A. Depletion-Induced Shape and Size Selection ofGold Nanoparticles.[J] Nano Lett.2010,10:1433–1439.
    [4] Rycenga M, Wang Z, Gordon E, Cobley C M, Schwartz A G, Lo C S, Xia Y.Probing the Photothermal Effect of Gold-Based Nanocages withSurface-Enhanced Raman Scattering (SERS).[J] Angew. Chem. Int. Ed.2009,48:9924–9927.
    [5] Wilcoxon J P, Abrams B L. Synthesis, structure and properties of metalnanoclusters.[J] Chem. Soc. Rev.2006,35:1162–1194.
    [6] Zheng J, Petty J T, Dickson R M. High Quantum Yield Blue Emission fromWater-Soluble Au8Nanodots.[J] J. Am. Chem. Soc.2003,125:7780–7781.
    [7] Zhang J, Zicovich P R, Dickson R M. Highly fluorescent noble-metal quantumdots.[J] Phys. Chem.,2007,58:409.
    [8] Valden M, Lai X, Goodman D W. Onset of Catalytic Activity of Gold Clusterson Titania with the Appearance of Nonmetallic Properties.[J] Science.1998,281:1647–1650.
    [9] Lghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. SelectiveColorimetric Detection of Polynucleotides Based on the Distance-DependentOptical Properties of Gold Nanoparticles.[J] Science.1997,277:1078–1081.
    [10]Lee T H, Gonzalez J I, Zheng J, Dickson R M. The Supramolecular Chemistryof Organic-Inorganic Hybrid Materials.[J] Chem. Res.2005,38:534–541.
    [11]Peyser–Capadona L, Zheng J, Gonzalez J I, Lee T H, Patel S A, Dickson R M.Nanoparticle-free single molecule anti-stokes Raman spectroscopy.[J] Phys. Rev.Lett.2005,94:058301.
    [12]Huang C C, Yang Z, Lee K H, Chang H T. Optical Analysis of Hg2+Ions byOligonucleotide–Gold‐Nanoparticle Hybrids and DNA‐Based Machines.[J]Angew. Chem. Int. Ed.2007,46:6824–6828.
    [13]Xu H, Suslick K, Water-Soluble Fluorescent Silver Nanoclusters[J], Adv. Mater.2010,22:1078–1082
    [14]Choi M, Wu Z J, Iglesia E, J. Am. Chem. Soc.2010,132:9129–9137
    [15]Shang L, Dong S J, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:synthesis and biological applications.[J] Nano Today.2011,6:401-418.
    [16]Nishida N, Shibu E S, Yao H, Oonishi T, Kimura K, Pradeep T. Fluorescent goldnanoparticle superlattices.[J] Adv. Mater.2008,20:4719–4723.
    [17]Zhou R J, Shi M M, Chen X Q, Wang M, Chen H Z. Atomically Monodispersedand Fluorescent Sub‐Nanometer Gold Clusters Created by Biomolecule‐Assisted Etching of Nanometer‐Sized Gold Particles and Rods.[J] Chem. Eur.J.2009,15:4944-4951.
    [18]Wang G L, Huang T, Murray R W, Menard L, Nuzzo R G. Near-IR luminescenceof monolayer-protected metal clusters.[J] J. Am. Chem. Soc.2005,127:812-813.
    [19]Chen J Y, McLellan J M, Siekkinen A, Xiong Y J, Li Z Y, Xia Y N. Facilesynthesis of gold-silver nanocages with controllable pores on the surface.[J] J.Am. Chem. Soc.2006,128:14776-14777.
    [20]Moon G D, Ko S, Min Y H, Zeng J, Xia Y N, Jeong U. Chemicaltransformations of nanostructured materials.[J] Nano Today.2011,6:186-203.
    [21]Au L, Zhang Q, Cobley C M, Gidding M, Schwartz A G, Chen J Y, Xia Y N.Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages byTwo-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry.[J] ACS Nano.2010,4:35–42.
    [22]张丹,“新型荧光功能Ag纳米簇的制备与性质”吉林大学硕士论文,2012
    [23]Ma Y Y, Li W Y, Cho E C, Li Z Y, Yu T, Zeng J, Xie Z X, Xia Y N. Au@AgCore Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, ShellThicknesses, and Optical Properties.[J] ACS Nano.2010,4:6725-6734.
    [24]Fluorescent Silver Nanoclusters as Effective Probes for Highly SelectiveDetection of Mercury (II) at Parts‐per‐Billion Levels.[J] Chemistry-AnAsian Journal,2012,7:1652-1656.
    [25]Sun Y G, Xia Y N. Mechanistic Study on the Replacement Reaction betweenSilver Nanostructures and Chloroauric Acid in Aqueous Medium.[J] J. Am.Chem. Soc.2004,126:3892-3901.
    [26]Liu X,Hu J, Li J, Hu Y, Shao Y, Yang H,Tong G, Qian H.FacilesynthesisofAg2WO4/AgCl nanorods forexcellent photocatalyticproperties,Materials Letters,2013,91:129–132
    [27]Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H Z, Zhang H, Yang B. Controllablesynthesis of stable urchin-like gold nanoparticles using hydroquinone to tune thereactivity of gold chloride.[J] J. Phys. Chem. C2011,115:3630-3637.
    [28]Zhou C, Sun C, Yu M X, Qin Y P, Wang J G, Kim M, Zheng J. LuminescentGold Nanoparticles with Mixed Valence States Generated from Dissociation ofPolymeric Au(I) Thiolates.[J] J. Phys. Chem. C2010,114:7727–7732.
    [29]Xie J P, Zheng Y G, Ying J Y. Protein-Directed Synthesis of Highly FluorescentGold Nanoclusters.[J] J. Am. Chem. Soc.2009,131:888-889.
    [30]Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D,Nienhaus G U. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clustersfor Cellular Fluorescence Lifetime Imaging.[J] Small.2011,7:2614-2620.
    [31]Yang J, Ying J Y. Nanocomposites of Ag2S and Noble Metals.[J] Angew. Chem.Int. Ed.2011,50:4637-4643.
    [32]Shang L, D rlich R M, Brandholt S, Schneider R, Trouillet V, Bruns M,Gerthsen D, Nienhaus G U. Facile preparation of water-soluble fluorescent goldnanoclusters for cellular imaging applications.[J] Nanoscale.2011,3:2009-2014.
    [33]Lu X M, Tuan H Y, Chen J Y, Li Z Y, Korgel B A, Xia Y N. Mechanistic Studieson the Galvanic Replacement Reaction between Multiply Twinned Particles ofAg and HAuCl4in an Organic Medium.[J] J. Am. Chem. Soc.2007,129:1733-1742.
    [34]Cui Y, Gong X Q, Zhu S J, Li Y H, Su W Y, Yang Q H, Chang J. An effectivemodified method to prepare highly luminescent, highly stable water-solublequantum dots and its preliminary application in immunoassay.[J] J. Mater.Chem.2012,22:462-469.
    [35]Adhikari B, Nanda J, Banerjee A. Pyrene-Containing Peptide-Based FluorescentOrganogels: Inclusion of Graphene into the Organogel.[J] Chem. Eur. J.2011,17:11488-11496.
    [36]Zhang J, Badger P D, Geib S J, Petoud S. Sensitization ofNear-Infrared-Emitting Lanthanide Cations in Solution by Tropolonate Ligands.[J] Angew. Chem. Int. Ed.2005,44:2508-2512.
    [37]Breus V V, Heyes C D, Tron K, Nienhaus G U, Zwitterionic. BiocompatibleQuantum Dots for Wide pH Stability and Weak Nonspecific Binding to Cells.[J]ACS Nano.2009,3:2573-2580.
    [38]Lin C J, Yang T Y, Lee C H, Huang S H, Sperling R A, Zanella M, Li J K, ShenJ L, Wang H H, Yeh H I, Parak W J, Chang W H. Synthesis, characterization,and bioconjugation of fluorescent gold nanoclusters toward biological labelingapplications.[J] ACS Nano.2009,3:395-401.
    [39]He Y, Zhong Y L, Peng F, Wei X P, Su Y Y, Lu Y M, Su S, Gu W, Liao L S, LeeS T. One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto-andpH-Stable, and Highly Fluorescent Silicon Quantum Dots.[J] J. Am. Chem. Soc.2011,133:14192-14195.
    [40]Guo W, Yuan J, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novelfluorescence probes for the highly selective and sensitive detection of the Hg2+ion, Chem. Commun.,2009,3395–3397
    [41]Cathcart N, Mistry P, Makra C, Pietrobon B, Coombs N, Niaraki M J, Kitaev V.Chiral Thiol-Stabilized Silver Nanoclusters with Well-Resolved OpticalTransitions Synthesized by a Facile Etching Procedure in Aqueous Solutions.[J]Langmuir.2009,25,5840-5846.
    [42]Baruwati B, Polshettiwa V, Varm R S. Glutathione promoted expeditious greensynthesis of silver nanoparticles in water using microwaves.[J] Green Chem.2009,11:926–930.
    [1] Hong G S, Tabakman S M, Welsher K, Chen Z, Robinson J T, Wang H L, ZhangB, Dai H J. Near‐Infrared‐Fluorescence‐Enhanced Molecular Imaging ofLive Cells on Gold Substrates.[J] Angew. Chem. Int. Ed.2011,50:4644–4648.
    [2] Yu K, Ouyang J Y, Leek D M. In-situ observation of nucleation and growth ofPbSe magic-sized nanoclusters and regular nanocrystals.[J] Small.2011,7:2250.
    [3] Sun H Z, Zhang H, Ju J, Zhang J H, Qian G, Wang C L, Yang B, Wang Z Y.One-Step Synthesis of High-Quality Gradient CdHgTe Nanocrystals: APrerequisite to Prepare CdHgTe-Polymer Bulk Composites with Intense NearInfrared Photoluminescence.[J] Chem. Mater.2008,20:6764–6769.
    [4] Miao S D, Hickey S G, Rellinghaus B, Waurisch C, Eychmüller A. Synthesisand Characterization of Cadmium Phosphide Quantum Dots Emitting in theVisible Red to Near-Infrared.[J] J. Am. Chem. Soc.2010,132:5613–5615.
    [5] Zhao H G, Wang D F, Zhang T, Chaker M, Ma D L. Two-step synthesis ofhigh-quality water-soluble near-infrared emitting quantum dots via amphiphilicpolymers.[J] Chem. Commun.2010,46:5301–5303.
    [6] Sahu A, Qi L J, Kang M S, Deng D, Norris D J. Facile synthesis of silverchalcogenide (Ag2E; E=Se, S, Te) semiconductor nanocrystals.[J] J. Am. Chem.Soc.2011,133:6509–6512.
    [7] Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner R T, Fritz–Popovski G,Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi M A, Paris O, Hesser G,Wolfgang Heiss W. From Highly Monodisperse Indium and Indium TinColloidal Nanocrystals to Self-Assembled Indium Tin Oxide Nanoelectrodes.[J]ACS nano.2011,5:3758–3765.
    [8] Du Y P, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q B. Near-InfraredPhotoluminescent Ag2S Quantum Dots from a Single Source Precursor.[J] J.Am. Chem. Soc.2010,132:1470–1471.
    [9] Valden M, Lai X, Goodman D W. Onset of Catalytic Activity of Gold Clusterson Titania with the Appearance of Nonmetallic Properties.[J] Science.1998,281:1647–1650.
    [10]Lghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. SelectiveColorimetric Detection of Polynucleotides Based on the Distance-DependentOptical Properties of Gold Nanoparticles.[J] Science.1997,277:1078–1081.
    [11]Lee T H, Gonzalez J I, Zheng J, Dickson R M. The Supramolecular Chemistryof Organic-Inorganic Hybrid Materials.[J] Chem. Res.2005,38:534–541.
    [12]Peyser–Capadona L, Zheng J, Gonzalez J I, Lee T H, Patel S A, Dickson R M.Nanoparticle-free single molecule anti-stokes Raman spectroscopy.[J] Phys. Rev.Lett.2005,94:058301.
    [13]Zheng J, Petty J T, Dickson R M. High Quantum Yield Blue Emission fromWater-Soluble Au8Nanodots.[J] J. Am. Chem. Soc.2003,125:7780–7781
    [14]Motte L, Pileni M P. Influence of Length of Alkyl Chains Used To PassivateSilver Sulfide Nanoparticles on Two-and Three-Dimensional Self-Organization.[J] J. Phys. Chem. B,1998,102:4104–4109.
    [15]Leiggener C, Brühwiler D, Calzaferri G. Luminescence properties of Ag2S andAg4S2in zeolite A.[J] J. Mater. Chem.2003,13:1969–1977.
    [16]Li G, Lei Z, Wang Q M. Luminescent Mol eScu laNr anAocgluster[Ag62S13(SBut)32](BF4)4.[J] J. Am. Chem. Soc.2010,132:17678–17679.
    [17]Shen J S, Li D H, Cai Q G, Jiang Y B. Highly selective iodide-responsivegel–sol state transition in supramolecular hydrogels.[J] J. Mater. Chem.,2009,19:6219–6224.
    [18]Kalasad M N, Rabinal1M K, Mulimani B G. Facile synthesis of bioconjugatedfluorescent CdS nanoparticles of tunable light emission.[J] J. Phys. D: Appl.Phys.2010,43:305301.
    [19]Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. ph-Dependent Synthesis ofPepsin-Mediated Gold Nanoclusters with Blue Green and Red FluorescentEmission.[J] Adv. Funct. Mater.2011,21:3508–3515.
    [20]Negishi Y, Nobusada K, Tsukuda T. Glutathione-Protected Gold ClustersRevisited: Bridging the Gap.[J] J. Am. Chem. Soc.2005,127:5261–5270.
    [21]Richards C, Choi S, Hsiang J C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y L,Dickson R M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores.[J] J.Am. Chem. Soc.2008,130:5038–5039.
    [22]Kalasad M N, Rabinal M K, Mulimani B G. Ambient Synthesis andCharacterization of High-Quality CdSe Quantum Dots by an Aqueous Route.[J]Langmuir.2009,25:12729–12735.
    [23]Yang J, Ying J Y. Nanocomposites of Ag2S and Noble Metals.[J] Angew. Chem.Int. Ed.2011,50:4637–4643.
    [24]Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L.Dual-Responsive Surfaces That Switch between Superhydrophilicity andSuperhydrophobicity.[J] Adv. Mater.2006,18:432–436.
    [25]Shibu E S, Pradeep T. Quantum Clusters in Cavities: Trapped Au15inCyclodextrins.[J] Chem. Mater.2011,23:989–999.
    [1] Hancox C I, Doret S, Hummon M T, et al. Magnetic trapping of rare-earth atomsat millikelvin temperatures[J], Nature2004,431:281–284.
    [2] Zhao F, Yuan M, Zhang W, Gao S, Monodisperse Lanthanide OxysulfideNanocrystals[J], J. Am. Chem. Soc.2006,128:11758–11759.
    [3] Binnemans K, Lanthanide-Based Luminescent Hybrid Materials[J], Chem. Rev.2009,109:4283–4374.
    [4] Wang F, Han Y, et al. Simultaneous phase and size control of upconversionnanocrystals through lanthanide doping[J], Nature2010,463:1061–1065.
    [5] Prondzinski N, Cybinskaab J, Mudring A, Easy access to ultra long-time stable,luminescent europium(II) fluoride nanoparticles in ionic liquids[J], Chem.Commun.2010,46:4393–4395.
    [6] Hasegawa Y, Adachi T, et al. Remarkable Magneto-Optical Properties ofEuropium Selenide Nanoparticles with Wide Energy Gaps[J], J. Am. Chem. Soc.2008,130:5710–5715.
    [7] Bierman M. J, Van Heuvelen K. M et al. Ferromagnetic Semiconducting EuONanorods[J], Adv. Mater.2007,19:2677–2681.
    [8] Zhao F, Sun H.-L, et al. Synthesis and Size-Dependent Magnetic Properties ofMonodisperse EuS Nanocrystals[J], Small2006,2:244–248.
    [9] Hasegawa Y, Afzaal et al. A novel method for synthesizing EuSnanocrystals froma single-source precursor under white LED irradiation[J], Chem. Commun.2005:242–243.
    [10]Ouyang J. Y, Vincent M, et al. One-Pot Synthesis of Photoluminescent ColloidalHomogeneously Alloyed CdSeS Quantum Dots[J], J. Phys. Chem. C.,2009,113:5193-5200
    [11]Huynh W. U, Dittmer J. J, Alivisatos A. P, Hybrid Nanorod-Polymer SolarCells[J], Science,2002,295:2425–2427
    [12]Anikeeva P. O, Halpert J. E, et al. Quantum Dot Light-Emitting Devices withElectroluminescence Tunable over the Entire Visible Spectrum[J], Nano.Lett.2009,9:25322536
    [13]Peng Z A, Peng X. G, Nearly Monodisperse and Shape-ControlledCdSeNanocrystals via Alternative Routes: Nucleation and Growth[J], J. Am.Chem. Soc2002,124:3343-3353
    [14]Zhang H, Han, J S, et al. Fabrication and Functional Modulation ofNanoparticle-Polymer Composites[J], Adv. Funct. Mater.,2010,20:1533.
    [15]Rogach A. L, Talapin D. V, et al. Organization of Matter on Different Size Scales:MonodisperseNanocrystals and Their Superstructures[J], Adv. Funct. Mater.2002,12:653
    [16]Pellegrino T, Manna L, et al. Hydrophobic Nanocrystals Coated with anAmphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals[J],Nano Lett.,2004,4:703.
    [17]Fan H, Nanocrystal-micelle: synthesis, self-assembly and application[J], Chem.Commun.,2008,1383–1394
    [18]Fan H. Y, Leve E, et al. Ordered Two-and Three-Dimensional ArraysSelf-Assembled from Water-Soluble Nanocrystal–Micelles[J], Adv. Mater.,2005,17:2587
    [19]Gao M. Y, Richter B, et al. Electroluminescence Studies on Self-Assembled Filmsof PPV and CdSe Nanoparticles[J], J. Phys. Chem. B1998,102:4096.
    [20]Euliss L. E, Grancharov S. G, et al. Cooperative Assembly of MagneticNanoparticles and Block Copolypeptides in Aqueous Media[J], Nano Lett.,2003,3:1489
    [21]Kar S, Boncher W. L, et al. Gadolinium Doped Europium Sulfide[J], J. Am.Chem. Soc.2010,132:13960–13962
    [22]Chen W, Zhang X, Huang Y, Luminescence enhancement of EuS nanoclusters inzeolite[J], Appl. Phys. Lett.2000,76:2328–2330
    [23]Huxter V. M, Mirkovic T, et al. Demonstration of Bulk Semiconductor OpticalProperties in Processable Ag2S and EuS Nanocrystalline Systems[J], Adv. Mater.2008,20:2439–2443
    [24]Hasegawa Y, Thongchant S, et al. Enhanced Luminescence and PhotomagneticProperties of Surface-Modified EuO Nanocrystals[J], Angew. Chem. Int. Ed.2002,41:2073–2075
    [25]Hasegawa Y, Okada Y, et al. Synthesis and Photophysical Properties of EuSNanoparticles from the Thermal Reduction of Novel Eu(III) Complex[J], J. Phys.Chem. B.2006,110:9008–9011.
    [26]Li L S, Pradhan N, et al. High Quality ZnSe and ZnSNanocrystals Formed byActivating Zinc Carboxylate Precursors[J], Nano. Lett.2004,4:2261–2264
    [27]Si R, Zhang Y-W, et al. Rare-Earth Oxide Nanopolyhedra, Nanoplates, andNanodisks[J], Angew. Chem. Int. Ed.2005,44:3256–3260
    [28]Dinh C-T, Nguyen T-D, et al. Shape-Controlled Synthesis of Highly CrystallineTitaniaNanocrystals[J], ACS Nano.2009,3:3737–3743
    [29]Jiang W, Bian Z, et al. A Mild Liquid Reduction Route toward UniformBlue-Emitting EuCl2Nanoprisms and Nanorods[J], Inorg. Chem.2011,50:6862–6864
    [30]Jiang Y, Yang X, et al. Photoluminescent Smart Hydrogels with Reversible andLinear Thermoresponses[J], Small2010,6:2673–2677
    [31]Joo, J. M, Pietryga, J. A, et al. A Reduction Pathway in the Synthesis of PbSeNanocrystal Quantum Dots[J], J. Am. Chem. Soc.2009,131:10620–10628
    [32]Jun Y, Jung Y, Cheon J, Architectural Control of Magnetic SemiconductorNanocrystals[J], J. Am. Chem. Soc.2002,124:615–619
    [1] Wang X, Du Y, Ding S, Wang Q, Xiong G, Xie M, Shen X, Pang D. Preparationand Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSe-ZnSCore-Shell Quantum Dots Multilayer Films[J]. J Phys Chem B2006,110:1566-1570.
    [2] Gao J, Gu H, Xu B. Multifunctional Magnetic Nanoparticles: Design, Synthesis,and Biomedical Applications[J]. Accounts of Chemical Research2009,42:1097-1107.
    [3] Xu S, Ma W F, You L J, Li J M, Guo J, Hu J J, Wang C C. Toward DesignerMagnetite/Polystyrene Colloidal Composite Microspheres with ControllableNanostructures and Desirable Surface Functionalities[J]. Langmuir2012,28:3271-3278.
    [4] Zhang X, Chen Y, Liu H, Wei Y, Wei W. Controllable Synthesis, FormationMechanism and Magnetic Properties of Hierarchical α-Fe2O3with VariousMorphologies[J]. Journal of Alloys and Compounds2013,555:74-81.
    [5] Di Corato R, Palumberi D, Marotta R, Scotto M, Carregal-Romero S, Rivera GilP, Parak W J, Pellegrino T. Magnetic Nanobeads Decorated with SilverNanoparticles as Cytotoxic Agents and Photothermal Probes[J]. Small2012,8:2731-2742.
    [6] Straight A F. Fluorescent Protein Applications in Microscopy[J].2007,81:93-113.
    [7] Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V, Collins G.Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte ElectrochemicalBiosensor[J]. J Am Chem Soc2006,128:2228-2229.
    [8] Huang C-C, Liao H-Y, Shiang Y-C, Lin Z-H, Yang Z, Chang H-T. Synthesis ofWavelength-Tunable Luminescent Gold and Gold/Silver Nanodots[J]. Journal ofMaterials Chemistry2009,19:755.
    [9] Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S. Silica-CoatedManganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonanceand Fluorescence Imaging of Cancer Cells[J]. Advanced Functional Materials2010,20:1733-1741.
    [10]Fernández B, Gálvez N, Cuesta R, Hungría A B, Calvino J J, Domínguez-Vera JM. Quantum Dots Decorated with Magnetic Bionanoparticles[J]. AdvancedFunctional Materials2008,18:3931-3935.
    [11]Santra S, Jativa S, Kaittanis C, Normand G, Grimm J, Perez J.Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable Nmr/MriContrast Agent[J]. ACS nano2012,6:7281-7294.
    [12]Wang M, Wang C, Young K L, Hao L, Medved M, Rajh T, Fry H C, Zhu L,Karczmar G S, Watson C; et al. Cross-Linked Heterogeneous Nanoparticles asBifunctional Probe[J]. Chemistry of Materials2012,24:2423-2425.
    [13]P selt E, Schmidtke C, Fischer S, Peldschus K, Salamon J, Kloust H, Tran H,Pietsch A, Heine M, Adam G; et al. Tailor-Made Quantum Dot and Iron OxideBased Contrast Agents for in Vitro and in Vivo Tumor Imaging[J]. ACS nano2012,6:3346-3355.
    [14]Corr S A, Rakovich Y P, Gun’ko Y K. Multifunctional Magnetic-FluorescentNanocomposites for Biomedical Applications[J]. Nanoscale Research Letters2008,3:87-104.
    [15]Lee J A, Krogman K C, Ma M, Hill R M, Hammond P T, Rutledge G C. HighlyReactive Multilayer-Assembled TiO2coating on Electrospun PolymerNanofibers[J]. Advanced Materials2009,21:1252-1256.
    [16]Constantine C A, Gattás-Asfura K M, Mello S V, Crespo G, Rastogi V, ChengT-C, DeFrank J J, Leblanc R M. Layer-by-Layer Biosensor AssemblyIncorporating Functionalized Quantum Dots[J]. Langmuir2003,19:9863-9867.
    [17]Lu Y, Chen W. Sub-Nanometre Sized Metal Clusters: From SyntheticChallenges to the Unique Property Discoveries[J]. Chem Soc Rev2012,41:3594-3623.
    [18]Shang L, Dong S. Facile Preparation of Water-Soluble Fluorescent SilverNanoclusters Using a Polyelectrolyte Template[J]. Chem Commun2008,1088-1090.
    [19]Santra S, Kaittanis C, Grimm J, Perez J M. Drug/Dye-Loaded, MultifunctionalIron Oxide Nanoparticles for Combined Targeted Cancer Therapy and DualOptical/Magnetic Resonance Imaging[J]. Small2009,5:1862-1868.
    [20]Li Z, Zhang Y, Shuter B, Muhammad Idris N. Hybrid Lanthanide Nanoparticleswith Paramagnetic Shell Coated on Upconversion Fluorescent Nanocrystals[J].Langmuir2009,25:12015-12018.
    [21]Georgios A S, Melanie S, Sotiris E P. Color-Tunable Nanophosphors byCodoping Flame-Made Y2O3with Tb and Eu [J]. The Journal of PhysicalChemistry C2011,115.
    [22]Liang S, Liu Y, Tang Y, Xie Y, Sun H, Zhang H, Yang B. A User-FriendlyMethod for Synthesizing High-Quality NaYF4:Yb,Er(Tm) Nanocrystals inLiquid Paraffin[J]. Journal of Nanomaterials2011,2011:1-7.
    [23]Shang L, Dong S. Silver Nanocluster-Based Fluorescent Sensors for SensitiveDetection of Cu(Ii)[J]. Journal of Materials Chemistry2008,18:4636.
    [24]Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L. Dual-ResponsiveSurfaces That Switch between Superhydrophilicity and Superhydrophobicity[J].Advanced Materials2006,18:432-436.
    [25]Rafik N, Fiorenzo V, Venkataramanan M, Louis A C, John A C. ControlledSynthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+Nanoparticles[J]. Chemistry of Materials2009,21.
    [26]Potapova I, Mruk R, Prehl S, Zentel R, Basché T, Mews A. SemiconductorNanocrystals with Multifunctional Polymer Ligands[J]. Journal of the AmericanChemical Society2003,125:320-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700