用户名: 密码: 验证码:
水溶性碳纳米管的制备及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有独特的结构和优异的物理化学性能,在材料科学、生物医药、储氢材料、催化剂载体等领域有着巨大的应用前景,受到了广泛的关注。然而,碳纳米管相互间存在较强的范德华作用力使其不能在溶剂中稳定分散,与其他材料的相容性也不好,这是制约碳纳米管研究和应用的一个主要障碍。因此,对碳纳米管进行改性以提高其在溶剂中的分散性,具有十分重要的理论和现实意义。尤其是水溶性碳纳米管,因其在水处理和生物医药领域的诱人应用前景,更是受到了广泛的关注和研究。迄今为止,已经报道了多种改性碳纳米管的方法,一般可划分为非共价键改性和共价键改性两大类。共价键改性不仅能提高碳纳米管在溶剂中的分散性以及与其他材料的相容性,而且化学官能团的引入也赋予了碳纳米管新的性能,扩大了碳纳米管的应用范围。本文通过自由基反应和碱性条件下的水热反应制备了羧基改性的碳纳米管和羟基改性的碳纳米管;以活泼的羧基和羟基作为靶点,对碳纳米管进行进一步官能化,赋予碳纳米管磁响应性及环境(pH和热)响应性;对制备的改性碳纳米管在水处理和生物医药方面的应用进行了初步研究,并取得了良好的实验结果。主要研究结果如下:
     1.通过自由基引发剂偶氮二异丁腈(AIBN)与碳纳米管之间的自由基反应,制备了氰基改性的碳纳米管,再经过水解反应,得到了羧基改性的碳纳米管。利用碳纳米管表面的羧基与表面氨基修饰的SiO_2包磁纳米粒子发生酰胺化反应,得到了SiO_2包磁纳米粒子修饰的碳纳米管,研究了其在水中痕量芳环化合物分离方面的应用。
     2.利用表面活性剂十二烷基苯磺酸钠(SDBS)辅助碳纳米管在水中分散,通过自由基聚合反应制备了聚丙烯腈改性的碳纳米管,再经过水解得到聚丙烯酸改性的碳纳米管。可以通过调节单体和引发剂的投料比来控制聚丙烯酸的接枝量,最大接枝量可达40wt%左右。由于聚丙烯酸的存在,碳纳米管在水中的分散性可以通过改变溶液的pH值来调节,临界pH分散值为5.0。
     3。通过碱性条件下的水热反应,制备了羟基直接改性的碳纳米管。制备的羟基改性的碳纳米管在水、甲醇、丁酮和四氢呋喃等极性溶剂中具有良好的分散能力。XPS测试结果证明羟基的含量随着所用碱液浓度的升高而增加;红外测试结果证明了羟基主要以半酮缩醛结构存在;透射电镜照片显示经过碱性条件下的水热反应后,碳纳米管的长度和直径没有变化。
     4.利用碳纳米管表面的羟基,通过Ce(Ⅳ)离子引发氧化还原聚合反应在水溶液环境和较低温度(50℃或室温)条件下制备了PAA和PNIPAM改性的碳纳米管。聚合物的接枝量随着单体投料量的增加而增加。制备的PAA改性的碳纳米管在水中的分散性可以通过调节溶液的pH值来调节;PNIPAM改性的碳纳米管在水中的分散性可以通过调节温度来调节。
     5.通过水相化学共沉淀方法制备了磁性Fe_3O_4纳米粒子修饰的碳纳米管。制备的磁性Fe_3O_4纳米粒子修饰的碳纳米管对抗肿瘤药物吉西他滨有良好的吸附作用,研究了其在淋巴示踪和淋巴靶向药物载体方面的应用。
Carbon nanotubes (CNTs) have attracted great attentions, due to their intrinsic structures, outstanding physical and chemical properties as well as their promising potential applications in the area of material chemistry, biomedicine and catalyst carrier etc. However, CNTs cannot be dispersed in most solvents because of the strong Van der Waals force interactions, which hampers their potential utilities. It is of great significance to functionalize the CNTs in order to improve their dispersibility in solvents and matrics. Up to date, various functionalization methods have been reported, including noncovalent and covalent functionalization. The covalent functionalization can not only improve CNT's solubility, but also afford their novel properties. Water-solube CNTs show enticing potential in biomedical and Water treatment. The introducing of responsive chemical species affords responsibility to CNTs, which expands the application scope of CNTs. In this dissertation, carboxyls functionalized CNTs and hydroxyls functionalized CNTs were prepared through radical reaction and hydrothermal reaction. Utilizing the carboxyls and hydroxyls as targets, CNTs were functionalized with magnetic response and environmental response (pH and thermal) species. The applications of functionalized CNTs in water treatment and biomedicine were researched. The main research contents and results are shown as follow:
     1. Cyano groups functionalized CNTs were prepared throught radical reation between AIBN and CNTs, followed by hydrolyzing, carboxyls functionalized CNTs were obtained. Through amidation reaction, magnetic silica nanoparticle functionalized multi-walled carbon nanotubes (MS-MWNTs) were prepared. MS-MWNTs were used for the convenient, rapid and efficient separation of trace aromatic compounds.
     2. Through exfoliating the CNT bundles with sodium dodecylbenzene sulfonate (SDBS), individual CNTs have been obtained. Grafting polymerization of acrylonitrile was performed to produce polyacrylonitrile funtionalized CNTs (PAN-CNTs). After hydrolyzing PAN, polyacrylic acid functionalized CNTs (PAA-CNTs) were obtained. The amount of PAA grafted could be controlled by changing the feed ratio of initiator to monomer, and the maximum grafting amount could reach 40 wt%. The solubility of PAA-CNTs in water could be adjusted by pH, and the pH of critical dispersion is 5.0.
     3. CNTs bearing hydroxyl groups (CNTols) on the exterior surface have been synthesized by an alkaline-mediated hydrothermal treatment of CNTs. X-Ray photoelectron spectroscopy shows that the content of hydroxyl groups increases with the concentration of sodium hydroxide utilized. FT-IR spectroscopy shows that hemiketals were incorporated into the structure of MWNTols. The prepared MWNTols are highly soluble in polar solvents such as water, methanol, butanone and tetrahydrofuran, to give robust stable black solutions. Transmission electron microscopy reveals that the diameter, length and morphology of MWNTs are well retained in MWNTols.
     4. Utilizing the hydroxyls on the CNT surface as redox active center, redox polymerization of AA or NIPAM initiated by Ce(IV) ions was conducted at gental temperature (50℃or room temperature) in water. The amount of polymer (PAA or PNIPAM) grafted increased with the increase of feed monomers. The dispersibility of prepared PAA or PNIPAM functionalized CNTs can be controlled by varing the pH or temperature.
     5. Fe_3O_4 nanoparticles functionalied CNTs were prepared through chemical coprecipitation method, and showed good effect on application as dug carrier for lymphatic targeting.
引文
1.Iijima S.,Nature,1991,354:56.
    2.Ajayan P.M.,Chemical Reviews,1999,99:1787.
    3.Robertson N.,McGowan C.A.,Chemical Society Reviews,2003,32:96.
    4.Baughman R.H.,Zakhidov A.A.,de Heer W.A.,Science,2002,297:787.
    5.Hone J.,Batlogg B.,Benes Z.,Johnson A.T.,Fischer J.E.,Science,2000,289:1730.
    6.Tasis D.,Tagmatarchis N.,Bianco A.,Prato M.,Chemical Reviews,2006,106:1105.
    7.Ando Y.,Zhao X.,Inoue S.,Journal of Crystal Growth,2002,199:934.
    8.Zhao T.,Liu Y.,Carbon,2004,42:2765.
    9.Kokai F.,Takahashi K.,Applied Physics A,2001,73:401.
    10.Ma R.Z.,Wei B.Q.,Xu C.L.,Carbon,2000,38:636.
    11.Yokomichi H.,Sakai F.,Ichihara M.,Physica B-Condensed Matter,2002,323:311.
    12.Wang Y.Y.,Gupta S.,Nemanich R.J.,Applied Physics Letters,2004,85:2601.
    13.Li M.,Li T.,Saito K.,Carbon,2003,41:1889.
    14.Gyo W.L.,Jurng J.,Hwang J.,Carbon,2004,42:667.
    15.Vander Wal R.L.,Berger G.M.,Hall L.J.,Journal of Physical Chemistry B,2002,106:3564.
    16.Vander Wal R.L.,Ticich T.M.,Journal of Physical Chemistry B,2001,105:10249.
    17.O'Connell M.J.,Bachilo S.M.,Huffman C.B.,Moore V.C.,Strano M.S.,Haroz E.H.,Rialon K.L.,Boul P.J.,Noon W.H.,Kittrell C.,Ma J.P.,Hauge R.H.,Weisman R.B.,Smalley R.E.,Science,2002,297:593.
    18.Moore V.C.,Strano M.S.,Haroz E.H.,Hauge R.H.,Smalley R.E.,Schmidt J.,Talmon Y.,Nano Letters,2003,3:1379.
    19.Li L.J.,Nicolas R.J.,Chen C.Y.,Darton R.C.,Baker S.C.,Nanotechnology,2005,16:S202.
    20.Wenseleers W.,Vlasov I.I.,Goovaerts E.,Obraztsova E.D.,Lobach A.S.,Bouwen A.,Advanced Functional Materials,2004,14:1105.
    21. Islam M. F., Rojas E., Bergey D. M., Johnson A. T., Yodh A. G., Ratio Letters, 2003,3: 269.
    
    22. Nakashima N., Tomonari Y., Murakami H., Chemical Letters, 2002,31: 638.
    
    23. Chen R. J., Zhang Y. G., Wang D. W., Dai H., Journal of the American Chemical Society, 2001,123: 3838.
    
    24. Zhang J., Lee J. K., Wu Y., Murray R. W., Nano Letters, 2003,3: 403.
    
    25. Murakami H., Nomura T., Nakashima N., Chemical Physics Letters, 2003, 378: 481.
    
    26. O'ConnellM J., Boul P., Ericson L. M., Huffman C, Wang Y., Haroz E., Kuper C., Tour J., Ausman K. D., Smalley R. E., Chemical Physics Letters, 2001, 342: 265.
    
    27. Wang J., Musameh L. M., Journal of the American Chemical Society, 2003,125: 2408.
    
    28. Star A., Stoddart J. F., Steuerman D., Diehl M., Boukai A., Wong E. W., Yang X., Chung S. W., Choi H., Heath J. R., Angewandte Chemie International Edition, 2001,40:1721.
    
    29. Carrillo A., Swartz J. A., Gamba J. M., Nano Letters, 2003,3:1437.
    
    30. Star A., Steuerman D. W., Heath J. R., Stoddart J. F., Angewandte Chemie International Edition, 2002, 41: 2508.
    
    31. Kim O. K., Je J., Baldwin J. W., Kooi S., Pehrsson P. E., Buckley L. J., Journal of the American Chemical Society, 2003,125: 4426.
    
    32. Wang Z. H., Wang Y. M., Luo G. A., Analyst, 2002,127:1353.
    
    33. Wang Z. H., Luo G. A., Xiao S. F., Wang G. Y., Wang Y. M., Chemical Journal Chinese Universities-Chinese, 2003, 24: 811.
    
    34. Dieckmann G. R., Dalton A. B., Johnson P. A., Razal J., Chen J., Giordano G. M., Munoz E., Musselman I. H., Baughman R. H., Draper R. K., Journal of the American Chemical Society, 2003,125: 1770.
    
    35. Lago R., Tsang S., Lu K., Chen Y., Green M., Chemical Communications, 1995, 13:1355.
    
    36. Tsang S. C., Chen Y. K., Harris J. P. F., Green M. L. H., Nature, 1994,372: 159.
    
    37. Hwang K. C., Chemical Communications, 1995, 2: 173.
    
    38. Hiura H., Ebbesen T. W., Tanigaki K., Advanced Materials, 1995, 7: 275.
    
    39. Yu R. Q., Chen L. W., Liu Q. P., Lin J. Y., Tan K. L., Ng S. C., Chan H. S. O., Xu G. Q., Hor T. S. A., Chemistry of Materials, 1998,10: 718.
    40. Liu J., Rinzler A. G., Dai H. J., Hafner J . H., Bradley R. K., Boul P. J ., Lu A., Lverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T., Smalley R. E., Science, 1998, 280:1253.
    
    41. Xing Y. C., Journal of Physical Chemistry B, 2004,108:19255.
    
    42. Xing Y. C., Li L., Chusuei C. C., Hull R. V, Langmuir, 2005,21: 4185.
    
    43. Hull R. V., Li L., Xing Y. C., Chusuei C. C., Chemistry of Materials, 2006,18: 1780.
    
    44. Wang Y., Iqbal Z., Mitra S., Carbon, 2005,43:1015.
    
    45. Raghuveer M. S., Agrawal S., Bishop N., Ramanath G., Chemistry of Materials,2006,18: 1390.
    
    46. Shi Z., Lian Y., Zhou X., Chemical Communications, 2000,6: 461.
    
    47. Mawhinney D. B., Naumenko V., Smalley R. E., Chemical Physics Letters, 2000, 324: 213.
    
    48. Hu H., Bhowmik P., Zhao B., Chemical Physics Letters, 2001,345: 25.
    
    49. Banerjee S., Wong S. S., Journal of Physical Chemistry B, 2002,106:12144.
    
    50. Banerjee S., Hemraj-Benny T., Balasubramanian M., Fischer D. A., Misewich J. A., Wong S. S., Chemical Communications, 2004, 7: 772.
    
    51. Banerjee S., Wong S. S., Nano Letters, 2004,4: 1445.
    
    52. Mawhinney D. B., Naumenko V., Kuznetsova A., Yates J. T., Liu J., Smalley R. E., Journal of the American Chemical Society, 2000,122: 2385.
    
    53. Cai L., Bahr J. L., Yao Y., Tour J. M., Chemistry of Materials, 2002,14: 4235.
    
    54. Ko'nya Z., Vesselenyi I., Niesz K., Kukovecz A., Demortier A., Fonseca A., Delhalle J., Mekhalif Z., Nagy J. B., Koo's A. A., Osva'th Z., Kocsonya A., Biro' L. P., Kiricsi I., Chemical Physics Letters, 2002,360: 429.
    
    55. Barthos R., Me'hn D., Demortier A., Pierard N., Morciaux Y., Demortier G., Fonseca A., Nagy J. B., Carbon, 2005, 43: 321.
    
    56. Pan H. L., Liu L. Q., Guo Z. X., Dai L. M., Zhang F. S., Zhu D. B., Czerw R., Carroll D. L., Nano Letters, 2003, 3: 29.
    
    57. Nakajima T., Kasamatsu S., Matsuo Y, Eur. J. Solid State Inorg. Chem., 1996, 33: 831.
    
    58. Hamwi A., Alvergnat H., Bonnamy S., Beguin F., Carbon, 1997,35: 723.
    
    59. Mickelson E. T., Huffman C. B., Rinzler A. G., Smalley R. E., Hauge R. H., Margrave J. L., Chem. Phys. Lett., 1998, 296: 188.
    
    60. Touhara H., Okino F., Carbon, 2000, 38: 241.
    61. Yudanov N. F., Okotrub A. V., Shubin Y. V., Yudanova L. I., Bulusheva L. G., Chuvilin A. L., Bonard J. M., Chem. Mater., 2002,14: 1472.
    
    62. Kelly K. F., Chiang I. W., Mickelson E. T., Hauge R. H., Margrave J. L., Wang X., Scuseria G. E., Radloff C, Halas N. J., Chem. Phys. Lett., 1999,313: 445.
    
    63. Gu Z., Peng H., Hauge R. H., Smalley R. E., Margrave J. L., Nano Lett., 2002,2: 1009.
    
    64. Zhao W., Song C, Zheng B., Liu J., Viswanathan T., J. Phys. Chem. B, 2002, 106: 293.
    
    65. Pehrsson P. E., Zhao W., Baldwin J. W., Song C., Liu J., Kooi S., Zheng B., J. Phys. Chem. B, 2003,107: 5690.
    
    66. Marcoux P. R., Schreiber J., Batail P., Lefrant S., Renouard J., Jacob G., Albertini D., Mevellec J. Y., Phys. Chem. Chem. Phys., 2002,4: 2278.
    
    67. An K. H., Park K. A., Heo J. G., Lee J. Y., Jeon K. K., Lim S. C., Yang C. W., Lee Y. S., Lee Y. H.,J. Am. Chem. Soc, 2003,125: 3057.
    
    68. Khabashesku V. N., Billups W. E., Margrave J. L., Acc. Chem. Res., 2002, 35: 1087.
    
    69. Boul P. J., Liu J., Mickelson E. T., Huffman C. B., Ericson L. M., Chiang I. W., Smith K. A., Colbert D. T., Hauge R. H., Margrave J. L., Smalley R. E., Chem. Phys. Lett., 1999,310: 367.
    
    70. Saini R. K., Chiang I. W., Peng H., Smalley R. E., Billups W. E., Hauge R. H., Margrave J. L.,J. Am. Chem. Soc, 2003,125: 3617.
    
    71. Stevens J. L., Huang A. Y., Peng H., Chiang I. W., Khabashesku V. N., Margrave J. L., Nano Lett., 2003,3: 331.
    
    72. Zhang L., Kiny V. U., Peng H., Zhu J., Lobo R. F. M., Margrave J. L., Khabashesku V. N., Chem. Mater., 2004,16: 2055.
    
    73. Georgakilas V., Kordatos K., Prato, M., Guldi, D. M., Holzinger, M., Hirsch, A., Journal of the American Chemical Society, 2002,124: 760.
    
    74. Coleman K. S., Bailey S. R., Green M. L. H., Journal of the American Chemical Society, 2003,125: 8722.
    
    75. Hu H., Zhao B., Hamon M. A., Journal of the American Chemical Society, 2003, 125:14893.
    
    76. Holzinger M., Abraham J., Whelan P., Journal of the American Chemical Society, 2003,125: 8566.
    77. Holzinger M., Vostrowsky O., Hirsch A., Hennrich F., Kappes M., Weiss R., Jellen F., Angewandte Chemie International Edition, 2001, 40: 4002.
    
    78. Bahr J. L., Yang J., Tour J. M., Journal of the American Chemical Society, 2001, 123: 6536.
    
    79. Bahr J. L., Tour J. M., Chemistry of Materials, 2001,13: 3823.
    
    80. Banerjee S., Kahn M. G. C., Wang S. S., Chemistry - A European Journal, 2003, 9: 1898.
    
    81. Dyke C. A., Tour J. M., Nano Letters, 2003,3:1215.
    
    82. Davis V. A., Ericson L. M., Smalley R. E., Macromolecules, 2004,37:154.
    
    83. Hudson J. L., Casavant M. J., Tour J. M., Journal of the American Chemical Society, 2004,126: 11158.
    
    84. Charles G. R. H., Gregory G. W., Richard G. C., ChemPhysChem, 2004,5:1794.
    
    85. Umek P., Seo J. W., Hernadi K., Chemistry of Materials, 2003,15: 4751.
    
    86. Ying Y. M., Saini R. K., Liang F., Organic Letters, 2003,5:1471.
    
    87. Kong H., Gao C., Yan D. Y., Journal of the American Chemical Society, 2004, 126: 412.
    
    88. Kong H., Gao C., Yan D. Y., Macromolecules, 2004,37: 4022.
    
    89. Kong H., Li W. W., Yan D. Y., Macromolecules, 2004,37: 6683.
    
    90. Wang G. J., Huang S. Z., Wang Y., Liu L., Qiu J., Li Y., Polymer, 2007, 48: 728.
    
    91. Xu G. Y., Wu W. T., Wang Y. S., Pang W. M., Zhu Q. R., Wang P. H., You Y. Z., Polymer, 2006,47: 5909.
    
    92. Zhao X. D., Fan X. H., Chem X. F., Chai C. P., Zhou Q. F., Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44: 4656.
    
    93. Xu Y. Y., Gao C., Kong H., Yan D. Y., Watts P. C. P., Macromolecules, 2004, 37: 8846.
    
    94. Wu W., Zhang S., Li Y., Li J., Liu L., Qin Y., Guo Z. X., Dai L., Ye C., Zhu D. B., Macromolecules, 2003, 36: 6286.
    
    95. Blake R., Gun'ko Y. K., Coleman J., Cadek M., Fonseca A., Nagy J. B., Blau W. J., Journal of the American Chemical Society, 2004,126: 10226.
    
    96. Coleman J. N., Cadek M., Blake R., Nicolosi V., Ryan K. P., Belton C., Fonseca A., Nagy J. B., Gun'ko Y. K, Blau W. J., Advanced Funcional Materials, 2004, 14: 791.
    97. Liu I. C., Huang H. M., Chang C. Y., Tsai H. C., Hsu C. H., Tsiang R. C. C., Macromolecules, 2004,37: 283.
    
    98. Huang H. M., Liu I. C., Chang C. Y., Tsai H. C., Hsu C. H., Tsiang R. C. C., Journal of Polymer Science: Part A: Polymer Chemistry, 2004,42: 5802.
    
    99. Chen S. M., Wu G. Z., Liu Y. D., Long D. W., Macromolecules, 2006,39: 330.
    
    100. Chen J., Hamon M. A., Hu H., Chen Y. S., Rao A. M., Eklund P. C., Haddon R. C., Science, 1998,282: 95.
    
    101. Riggs J. E., Walker D. B., Calloll D. L., Sun Y. P., Journal of the American Chemical Society, 2000,122: 5879.
    
    102. Huang W. J., Taylor S., Fu K. F., Lin Y., Zhang D. H., Hanks T. W., Rao A. M., Sun Y. P., Nano Letters, 2002,2: 311.
    
    103. Fu K. F., Huang W. J., Lin Y., Zhang D. H., Hanks T. W., Rao A. M., Sun Y. P., Journal of Nanoscience and Nanotechnology, 2002,2: 457.
    
    104. Fu K. F., Huang W. J., Lin Y., Riddle L. A., Carroll D. L., Sun Y. P., Nano Letters, 2001,1: 439.
    
    105. Wong E. W., Sheehan P. E., Lieber C. M., Science, 1997,277:1971.
    
    106. Wang S. F., Shen L., Zhang W. D., Tong Y. J., Biomacromolecule, 2005, 6: 3067.
    
    107. Liu T. X., Phang I. Y., Shen L., Chow S. Y., Zhang W. D., Macromolecules, 2004,37: 7214.
    
    108. Bonard J. M., Salvetat J. P., Stockli T., Applied Physics A, 1999,69: 245.
    
    109. Zhu C. C., Liu W. H., Huangfu L. J., Journal of Vacuum Science Technology B, 2001,19: 1691.
    
    110. Ajayan P. M., Chem. Rev., 1999, 99:1787.
    
    111. Baughman R. H., Science, 1999,284: 1340.
    
    112. Mattson M. P., Haddon R. C., Rao A. M., J. Mol. Neurosci, 2000,14:175.
    
    113. Sayes C. M., Liang F., Hudson J. L., Mendez J., Guo W., Beach J. M., Moore V. C., Doyle C. D., West J. L., Billups W. E., Ausman K. D., Colvin V. L., Toxicol. Lett, 2006,16,135.
    
    114. Singh R., Pantarotto D., Lacerda L., Pastorin G., Klumpp C., Prato M., Bianco A., Kostarelos K., Proc. Natl. Acar. Sci. U.S.A., 2006,103, 3357.
    
    115. Dumortier H., Lacotte S., Pastorin G., Marega R., Wu W., Bonifazi D., Briand J. P., Prato M., Muller S., Bianco A., Nano Lett., 2006, 6,1522.
    116.Usui Y.,Aoki K.,Narita N.,Murakami N.,Nakamura I.,Nakamura K.,Ishigaki N.,Yamazaki H.,Horiuchi H.,Kato H.,Taruta S.,Kim Y.A.,Endo M.,Saito N.,Small,2008,4:240.
    117.Cui D.X.,Tian F.R.,Ozkan C.S.,Wang M.,Gao H.J.,Toxicol.Lett.,2005,155:73.
    118.Lam C.W.,James J.T.,McCluskey R.,Hunter R.L.,Toxicol.Sci.,2004,77:126.
    119.Pantarotto D.,Singh R.,McCarthy D.,Erhardt M.,Briand J.P.,Prato M.,Kostarelos K.,Bianco A.,Angew.Chem.Int.Ed.,2004,43:5242.
    120.Singh R.,Pantarotto D.,McCarthy D.,Chaloin O.,Hoebeke J.,Partidos C.D.,Briand J.P.,Prato M.,Bianco A.,Kostarelos K.,J.Am.Chem.Soc.,2005,127:4388.
    121.Liu Z.,Sun X.M.,Nakayama-Ratchford N.,Dai H.J.,ACSNANO,2007,1:50.
    1. Sung J. H., Kim H. S., Jin H. J., Choi H. J., Chin I. J., Macromolecules, 2004, 37: 9899.
    
    2. Zhang W. D., Shen L., Phang I. Y., Liu X, Macromolecules, 2004,37: 256.
    
    3. Wang C. C., Guo Z. X., Fu S. K., Wu W., Zhu D. B., Progress in Polymer Science, 2004,29: 1079.
    
    4. Grossiord N., Loos J., Regev O., Koning C. E., Chemistry of Materials, 2006,18: 1089.
    
    5. Girifalco L. A., Hodak M., Lee R. S., Physical Review B, 2000,62:13104.
    
    6. Bahr J. L., Yang J. P., Kosynkin D. V., Bronikowski M. J., Smalley R. E., Tour J. M., Journal of the American Chemical Society, 2001,123: 6536.
    
    7. Bahr J. L., Tour J. M., Chemistry of Materials, 2001,13: 3823.
    
    8. Dyke C. A., Tour J. M., Nano Letters, 2003,3:1215.
    
    9. Hudson J. L., Casavant M. J., Tour J. M., Journal of the American Chemical Society, 2004,126:11158.
    
    10. Umek P., Seo J. W., Hernadi K., Mrzel A., Dragan P. P., Mihailovic D., Forro L. S., Chemistry of Materials, 2003, 75: 4751.
    
    11. Bahr J. L., Tour J. M., Journal of Material Chemistry, 2002,12: 1952.
    
    12. Chen J., Hamon M. A., Hu H., Chen Y, Rao A. M., Eklund P. C, Haddon R. C., Science, 1998,282: 95.
    
    13. Sun Y. P., Fu K., Lin Y, Huang VS., Account Chemistry Research, 2002, 35: 1096.
    
    14. Sano M., Kamino A., Okamura J., Shinkai S., Langmuir, 2001,17: 5125.
    
    15. Niyogi S., Hamon M. A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M. E., Haddon R. C., Account Chemistry Research, 2002, 35: 1105.
    
    16. Pompeo F., Resasco D. E., Nano Letters, 2002,2: 369.
    
    17. Liu J., Rinzler A. G., Dai H. J., Hafner J . H., Bradley R. K., Boul P. J ., Lu A., Lverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T., Smalley R. E., Science, 1998, 280: 1253.
    
    18. Chen J., Hamon M. A., Hu H., Chen Y. S., Rao A. M., Eklund P. C., Haddon R. C., Science, 1998, 282: 95.
    
    19. Riggs J. E., Walker D. B., Calloll D. L., Sun Y. P., Journal of the American Chemical Society, 2000,122: 5879.
    20.WHO Guidelines for Drinking Water Quality.Vol 2.2~(nd) ed.Geneva:WHO,1996,461.
    21.尹先仁,秦钰慧,环境卫生国家应用手册,北京:中国标准出版社,2000,49.
    22.邓勇辉,功能性磁性聚合物微球的制备、表征及初步应用,复旦大学博士论文,2005.
    23.HirschA.,Angew.Chem.,Int.Ed.,2004,41:1853.
    1. Liu J., Rinzler A. G., Dai H. J., Hafner J. H., Bradley R. K., Boul P. J., Science, 1998,280:1253.
    
    2. Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., Science, 1998, 282: 95.
    
    3. Zhao W., Song C. H., Pehrsson P. E., J. Am. Chem. Soc., 2002,124:12418.
    
    4. Hiura H., Ebbesen T. W., Tanigaki K., Adv. Mater., 1995, 7: 275.
    
    5. Mickelson E. T., Chaiang I. W., Zimmerman J. L., Boul P. J., Lozano J., Liu J., J. Phys. Chem. B, 1999,103: 4318.
    
    6. Hamon M. A., Chen J., Hu H., Chen Y, Itkis M. E., Rao A. M., Adv. Mater., 1999, 11: 834.
    
    7. Georgakilas V., Tagmatarchis N., Pantarotto D., Bianco A., Briand J. P., Prato M., Chem. Commun., 2002, 3050.
    
    8. Zhang Y. J., Li J., Shen Y. F., Wang M. J., Li J. H., J. Phys. Chem. B, 2004,108: 15343.
    
    9. Chen W. W., Tzang C. H., Tang J. X., Yang M. S., Lee S. T, Appl. Phys. Lett., 2005,86(10): 10311.
    
    10. Zhao B., Hu H., Yu A. P., Perea D., Haddon R. C., J. Am. Chem. Soc, 2005,127: 8197.
    
    11. Chen C. S., Chen X. H., Xu L. S., Yang Z., Li W. H., Carbon, 2005,43: 1660.
    
    12. Qin S. H., Qin D. Q., Ford W. T, Herrera J. E., Resasco D. E., Bachilo S. M., Macromolecules, 2004,37: 3965.
    
    13. Kong H., Li W. W., Gao C., Yan D. Y, Jin Y. Z., Walton D. R. M., Macromolecules, 2004,37: 6683.
    
    14. Min K. W., Ray W. H.,J. Macromol. Sci. Chem., 1974,11: 177.
    
    15. Ge J. J., Hou H., Li Q., Graham M. J., Greiner A., Reneker D. H., J. Am. Chem. Soc, 2004,126: 15754.
    
    16. Sreekumar T. V., Liu T, Min B. G., Guo H., Kumar S., Hauge R. H., Adv. Mater., 2004,16: 58.
    17.Zhou S.X.,Weng Z.X.,Huang Z.M.,Pan Z.R.,J.Appl.Polym.Sci.,2001,79:1431.
    1. Liu J., Rinzler A. G., Dai H. J., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T., Smalley R. E., Science, 1998,280:1253.
    
    2. Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., Science, 1998, 282: 95.
    
    3. Zhao W., Song C. H., Pehrsson P. E., J. Am. Chem. Soc., 2002,124:12418.
    
    4. Hiura H., Ebbesen T. W., Tanigaki K., Adv. Mater., 1995, 7: 275.
    
    5. Mickelson E. T., Chaiang I. W., Zimmerman J. L., Boul P. J., Lozano J., Liu J., J. Phys. Chem. B, 1999,103: 4318.
    
    6. Hamon M. A., Chen J., Hu H., Chen Y, Itkis M. E., Rao A. M.,Adv. Mater., 1999, 11:834.
    
    7. Georgakilas V., Tagmatarchis N., Pantarotto D., Bianco A., Briand J. P., Prato M., Chem. Commun., 2002, 3050.
    
    8. Zhang Y. J., Li J., Shen Y. E, Wang M. J., Li J. H., J. Phys. Chem. B, 2004,108: 15343.
    
    9. Chen W. W., Tzang C. H., Tang J. X., Yang M. S., Lee S. T., Appl. Phys. Lett., 2005,56(70): 10311.
    
    10. Zhao B., Hu H., Yu A. P., Perea D., Haddon R. C., J. Am. Chem. Soc, 2005, 727: 8197.
    
    11. Chen C. S., Chen X. H., Xu L. S., Yang Z., Li W. H., Carbon, 2005,43:1660.
    
    12. Niyogi S., Hamon M. A., Hu H., Zhao B., Browmik P., Sen R., Itkis M. E., Haddon R. C.,Acc. Chem. Res., 2002,55: 1105.
    
    13. Chen J., Hamon M. A., Hu H., Chen Y, Rao A. M., Eklund P. C., Haddon R. C., Science, 1998, 282: 95.
    
    14. Liu Z., Shen Z., Zhu T., Hou S., Ying L., Shi Z., Gu Z., Langmuir, 2000,16: 3569.
    
    15. Diao P., Liu Z., Wu B., Nan X., Zhang J., Wei Z., ChemPhysChem, 2002, 3: 898.
    
    16. Banerjee S., Wong S. S.,J. Phys. Chem. B, 2002,106: 12144.
    
    17. Pan H. L., Liu L. Q., Guo Z. X., Dai L. M., Zhang F. S., Zhu D. B., Czerw R., Carroll D.L.,Nano Lett.,2003,3:29.
    18.Zhang L.,Kiny V.U.,Peng H.Q.,Zhu J.,Lobo R.F.M.,Margrave J.L.,Khabashesku V.N.,Chem.Mater.,2004,16:2055.
    19.Chiang L.Y.,Upasani R.B.,Swirczewski J.W.,Soled S.,J.Am.Chem.Soc.,1993,115:5453.
    20.Collins P.G.,Bradley K.,Ishigami M.,Zettl A.,Science,2000,287:1801.
    21.Kong J.,Franklin N.R.,Zhou C.,Chapline M.G.,Peng S.,Cho K.,Dai H.,Science,2000,287:622.
    1. Georgakilas V., Kordatos K., Prato, M., Guldi, D. M., Holzinger, M., Hirsch, A., Journal of the American Chemical Society, 2002,124: 760.
    
    2. Coleman K. S., Bailey S. R., Green M. L. H., Journal of the American Chemical Society, 2003,125: 8722.
    
    3. Hu H., Zhao B., Hamon M. A., Journal of the American Chemical Society, 2003, 125: 14893.
    
    4. Holzinger M., Abraham J., Whelan P., Journal of the American Chemical Society, 2003,125: 8566.
    
    5. Holzinger M., Vostrowsky O., Hirsch A., Hennrich F., Kappes M., Weiss R., Jellen V.,Angewandte Chemie International Edition, 2001,40: 4002.
    
    6. Bahr J. L., Yang J., Tour J. M, Journal of the American Chemical Society, 2001, 123: 6536.
    
    7. Bahr J. L., Tour J. M., Chemistry of Materials, 2001,13: 3823.
    
    8. Banerjee S., Kahn M. G. C., Wang S. S., Chemistry - A European Journal, 2003, 9: 1898.
    
    9. Dyke C. A., Tour J. M., Nano Letters, 2003,3:1215.
    
    10. Kong H., Gao C., Yan D. Y., Journal of the American Chemical Society, 2004, 126: 412.
    
    11. Kong H., Gao C., Yan D. Y., Macromolecules, 2004,37: 4022.
    
    12. Kong H., Li W. W., Yan D. Y., Macromolecules, 2004,37: 6683.
    
    13. Wu W., Zhang S., Li Y., Li J., Liu L., Qin Y., Guo Z. X., Dai L., Ye C., Zhu D. B., Macromolecules, 2003,36: 6286.
    
    14. Blake R., Gun'ko Y. K., Coleman J., Cadek M., Fonseca A., Nagy J. B., Blau W. J., Journal of the American Chemical Society, 2004,126: 10226.
    
    15. Coleman J. N., Cadek M., Blake R., Nicolosi V., Ryan K. P., Belton C., Fonseca A., Nagy J. B., Gun'ko Y. K., Blau W. J., Advanced Funcional Materials, 2004, 14: 791.
    
    16. Liu I. C., Huang H. M., Chang C. Y., Tsai H. C., Hsu C. H., Tsiang R. C. C., Macromolecules, 2004,37: 283.
    
    17. Huang H. M., Liu I. C., Chang C. Y., Tsai H. C., Hsu C. H., Tsiang R. C. C., Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42: 5802.
    18.Xu Y.Y.,Gao C.,Kong H.,Yan D.Y.,Watts P.C.P.,Macromolecules,2004,37:8846.
    19.Xia H.S.,Wang Q.,Qiu G.H.,Chemistry of Materials,2003,15:3879.
    20.Hwang G.L.,Shich Y.T.,Hwang K.C.,Advanced Functional Materials,2004,14:487.
    1.Iijima S.,Nature,1991,354:56.
    2.Bethune D.S.,Kiang C.H.,de Vries M.S.,Gorman G.,Savoy R.,Vazques J.,Beyers R.,Nature,1993,363:605.
    3.Niyogi S.,Hamon M.A.,Hu H.,Zhao B.,Bhowmik P.,Sen R.,Itkis M.E.,Haddon R.C.,Acc.Chem.Res.,2002,35:1105.
    4.Baughman R.H.,Zakhidov A.A.,de Heer W.A.,Science,2002,297:787.
    5.Dresselhaus M.S.,Dresselhaus G.,Avouris P.,Carbon Nanotubes:Synthesis,Structure,Properties,and Applications,Springer-Verlag,New York,2001.
    6.Dai H.,Acc.Chem.Res.,2002,35:1035.
    7.Qu L.T.,Dai L.M.,Journal of the American Chemical Society,2005,127:10806.
    8.Liu Y.Y.,Tang J.,Chen X.Q.,Carbon,2006,44:381.
    9.Wu H.Q.,Cao Y.J.,Yuan P.S.,Chemical Physics Letters,2005,406:148.
    10.Yao Y.L.,Ding Y.,Ye L.S.,Carbon,2006,44:61.
    11.Jiang L.Q.,Gao L.,Chemistry of Materials,2003,15:2848.
    12.Sun Z.Y.,Liu Z.M.,Wang Y.,Jouranl of Materials Chemistry,2005,15:4497.
    13.Yu Y.,Ma L.L.,Huang W.Y.,Carbon,2005,43:670.
    14.Jiang L.Q.,Gao L.,Materials Chemistry and Physics,2005,91:313.
    15.Huang L.,Lau S.P.,Yang H.Y.,Journal of Physical Chemistry B,2005,109:7746.
    16.Qian L.,Yang X.R.,Colloid Surface A,2001,180:311.
    17.Safarik I.,Safarikova M.,Mon.Chem.,2002,133:737.
    18.Fricker J.,Drug Discov.Today,2001,6:387.
    19.Schutt W.,Gruttner C.,Teller J.,Artif Organs,1999,23:98.
    20.Molday R.S.,Yen S.P.S.,Rembaum A.,Nature,1977,268:437.
    21.Rembaum A.,Dreyer W.J.,Science,1980,208:364.
    22.Senyei A.E.,Widder K.J.,USP,4 230 685,1980.
    23.Ugelstad J.,Stenstad P.,Kilaas L.,USP,5 763 203,1998.
    24.Hirsch R.,Katz E.,Willner I.,J.Am.Chem.Soc.,2000,122:12053.
    25.Weizmann Y.,Patolsky F.,Katz E.,J.Am.Chem.Soc.,2003,125:3452.
    26.Katz E.,Willner I.,J.Am.Chem.Soc.,2002,124:10290.
    27.Correa-Duarte M.A.,Grzelczak M.,Salgueirino-Maceira V.,Giersig M.,Liz-Marzan L.M.,Farle M.,Sierazdki K.,Diaz R.,J.Phys.Chem.B,2005,109:19060.
    28.Stoffelbach F.,Aqil A.,Jerome C.,Jerome R.,Detrembleur C.,Chem.Commun.,2005,4532.
    29.Gao C.,Li W.W.,Morimoto H.,Nagaoka Y.,Maekawa T.,J.Phys.Chem.B,2006,110:7213.
    30.Jiang L.Q.,Gao L.,Chem.Mater.,2003,15:2848.
    31.Jin J.,Li R.,Wang H.L.,Chen H.N.,Liang K.,Ma J.T.,Chem.Commun.,2007,386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700