用户名: 密码: 验证码:
电磁轨道炮电枢特性理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁轨道炮是利用电磁加速技术发射弹丸的一种新概念电能武器,由于具有初速高、射程远、易于操控、发射成本低等特点,在军事领域具有广阔的应用前景。其中,电枢作为电磁轨道炮的关键部件,对于电磁轨道炮的工作性能产生重要影响。由于电枢工作过程复杂,各种变量间存在耦合关系,只通过实验很难明确电枢的特性及其对轨道炮性能的影响,因而有必要利用理论分析与数值仿真技术对其进行研究。
     论文的研究工作主要分为以下三个方面:
     (1)固体电枢电磁及热传导特性研究:建立了固体块状电枢、U形电枢二维、三维磁场扩散与热传导瞬态模型,分别采用有限差分P-R格式以及Douglas格式对模型方程进行数值离散,对电枢内部磁场效应与热效应进行耦合分析,获得了电枢各剖面磁感强度、电流密度、温度等物理参数的分布特点。研究发现,由于速度趋肤效应,电流在电枢与导轨接触面尾端聚集,持续的焦耳加热会导致电枢尾端局部高温区甚至烧蚀的出现;在以上工作的基础上,针对带臂角固体电枢建立了三维瞬态模型,并对外部输入电流、外形、材料等因素对电枢特性的影响进行了详细的分析与讨论,为固体电枢的选择与设计提供了有价值的参考依据;
     (2)等离子电枢电磁及流体特性研究:分别建立了等离子体电枢二维、三维磁流体动力学模型,耦合分析了流场与磁场特性参数的分布特点。计算结果表明,等离子体电枢头部始终保持高压;电枢中部出现高温区,边缘对外界环境存在热辐射,温度显著下降;由于内部表面力与电磁力的不平衡性,流场中部出现速度旋涡,高温区位置及加速度曲线最初均呈现周期性震荡,最终趋于稳定;同时,在二维模型中考察了粘性、烧蚀效应对电枢流场的影响。由于考虑导轨烧蚀质量的加入,电枢头部压强有所减弱,内部整体温度略有降低,密度峰值有所增加。由于考虑粘性,近壁面区域速度矢量分布也发生变化;
     (3) CE/SE方法在磁流体动力学计算领域的应用研究:由于磁流体动力学方程是流体力学方程与麦克斯韦方程的耦合,考虑了磁场对动量项和能量项的影响。因此,与传统气动数值模拟相比,磁流体动力学方程的求解要复杂许多,方法的选择至关重要。本文首先推导了适用于求解一维、二维无粘磁流体动力学方程组的CE/SE方法计算格式,通过求解经典算例,验证了该方法在磁流体动力学领域具有适用性,并具有较高的计算精度;.在以上工作的基础上,根据等离子体电枢的工程实际,推导了包含扩散项的二维、三维CE/SE方法计算格式以及雅可比系数矩阵,实现了对等离子体电枢流场与电磁场的耦合求解。
     论文通过对固体电枢与等离子电枢电磁—热、电磁—流体耦合特性的建模与分析,得到了一些具有重要理论及工程应用价值的成果。研究工作可以减少研制成本,缩短研制周期,对优化电磁轨道炮系统设计等方面具有重要意义。
Railgun is one of the new concept weapons which to use accelerate a projectile by using electromagnetic technology. It has a broad application prospect in military field with the advantages of the high-speed, long range, easy control, low cost and so on. As the key components of the railgun, the armature has an important impact on the performance of launch. Considering the complex working process of the armature and the coupling effect between variables, it is difficult to define the electromagnetic properties of the armature, as well as its impact on the railgun performance only by experiment. So the using of numerical simulation technology is necessary.
     The main contents of the dissertation are mainly divided into the following three aspects:
     (1) Research on eletromagnetic characteristics and heat conduction of solid armature: Two- and three-dimensional unsteady computational models are applied to investigate the electromagnetic effect and heat conduction in block and U-shaped solid armatures. Coupling calculations are carried out by P-R and Douglas Finite Difference Method, and the magnetic induction, current density and temperature distributions in different sections are evaluated accurately. The results show a local concentration of current and joule heating at the interface because of the velocity skin effect, and significant ablation occurs at the back edges of the armature. Based on these, three-dimensional unsteady computational models about the solid armature with brachial angles are built. The influence factors on electromagnetic properties, such as input current, shape, material and so on, are analyzed and discussed in detail, which contribute to the choice and design of the solid armature;
     (2) Research on eletromagnetic and fluid characteristics of plasma armature:Possible two- and three-dimensional magnetohydrodynamics (MHD) models are established respectively to investigate the plasma armature. The characteristics and distributions of physical parameters of the plasma have been attained. The results show that extremely high pressure can always be observed ahead of the armature; the temperature distribution is affected by the boundary conditions about the radiative heat flux, with the maximum temperature appearing in the center near the base of the projectile; resulted from the unbalanced force between the Lorentz force and pressure gradient, the circulation patterns of velocity are evident, and the position of the high temperature region and the acceleration curve oscillate in time until a new steady state is achieved; meanwhile, in consideration of the ablation quality of the rail, the pressure ahead of the armature and the internal temperature of the plasma become slightly lower, and the maxmum density becomes much higher.Considering of viscosity, the distribution of the velocity vectors near the wall changes obviously;
     (3) Research on the application of the space-time conservation element and solution element (CE/SE) method in magnetohydrodynamics:The MHD equations consist of fluid dynamics equations coupled with Maxwell's equations. Taking into account the effect of the magnetic field on the momentum and energy items, numerical solution of MHD equations is much more complex than the traditional equations of aerodynamics. So the choice of methods is essential. In this dissertation, the computing scheme of the CE/SE method is derived first for solving one-and two-dimensional inviscid MHD equations. Several standard MHD cases have been solved to verify the applicability and high-accuracy of this method; then, based on the practical MHD engineering problems, two- and three-dimensional computational schemes of the CE/SE method and Jacobian coefficent matrices are derived for solving the coupling flow field and electromagnetic field of plasma armature.
     In this dissertation, by coupling calculations of electromagnetism-heat and electromagnetism-fluid properties about the solid and plasma armatures, some results with great significance of the theoretical and engineering application have been obtained. Meanwhile, the research can reduce the cost and shorten the development cycle, castsing some light on the optimization of the railgun system.
引文
[1]王莹,肖峰.电炮原理.北京:国防工业出版社,1995
    [2]翁春生,王浩.计算内弹道学.北京:国防工业出版社,2006
    [3]王莹,马富学.新概念武器原理.北京:兵器工业出版社,1997
    [4]金志明,翁春生.高等内弹道学.北京:高等教育出版社,2003
    [5]经福谦,陈俊祥.动高压原理与技术.北京:国防工业出版社,2006
    [6]吴汉基,蒋远大,张志远.电推进技术的应用与发展趋势.推进技术,2003,24(5):385-392
    [7]庄国臣.电磁发射及其应用.电工技术杂志,1997,16(6):19-22
    [8]杨世荣,王莹,徐海荣等.电磁发射器的原理与应用.物理学和高新技术,2003,32(4):253-256
    [9]沈金华,贾浩.电磁轨道炮及其应用.爆炸与冲击,1984,(4):90-96
    [10]周之奎,陈秋华.电磁轨道炮性能的数值模拟.高压物理学报,1989,(12):308-314
    [11]龚兴根,孙承炜,周之奎等.原理性电磁轨道炮的实验研究.爆炸与冲击,1987,7(2):164-168
    [12]陈庆国,张海燕,王永红等.电容器储能型轨道电磁炮的理论分析与动态仿真.电机与控制学报,2006,10(1):23-26
    [13]陈庆国,王永红,魏新劳等.电容驱动型轨道电磁炮电磁过程的计算机仿真.电工技术学报,2006,21(4):68-71
    [14]胡玉伟.电磁轨道炮系统的建模与仿真:[硕士学位论文].哈尔滨:哈尔滨工业大学,2007
    [15]陶孟仙,吕庆敖,任兆杏.固体电枢轨道炮的新概念研究.火炮发射与控制学报,1998(3):56-60
    [16]杨玉东,王建新.电磁炮发射原理数值建模与分析.火炮发射与控制学报,2008(4):9-12
    [17]何大娇.电磁轨道炮内弹道优化设计:[硕士学位论文].南京:南京理工大学,2008
    [18]李迎生.小口径电磁轨道炮内弹道特性初步研究:[硕士学位论文].南京:南京理工大学,2007
    [19]James T E, James D C. Contact Pressure Distribution and Transition in Solid Armatures [EM launchers]. IEEE Transactions on Magnetics,2001,37(1):81-85
    [20]Ellis R L, Poynor J C, McGlasson B T. Influence of Bore and Aail Geometry on an Electromagnetic Naval Railgun System. IEEE Transactions on Magnetics,2005, 41(1):182-187
    [21]Angeli M, Cardelli E, Azzerboni B. Velocity Skin-effect Transition Conditions on Metal-on-metal Sliding Contacts in Muzzle-fed Railguns. IEEE Transactions on Magnetics,1997,33(1):37-42
    [22]McNab I R, Thomas C A. Thermal Control of Railgun Armatures. IEEE Transactions on Magnetics,2001,37(1):92-96
    [23]Beno J H. Three-dimensional Rail-current Distribution Near the Armature of Simple, Square-bore, Two-rail Railguns. IEEE Transactions on Magnetics,1991, 27(1):106-111
    [24]Drobyshevski E M, Rozov S I, Zhukov B G. Physics of Solid Armature Launch Transition into Arc Mode. IEEE Transactions on Magnetics,2001,37(1):62-66
    [25]Cowan M. Solid-armature Railguns without the Velocity-skin Effect. IEEE Transactions on Magnetics,1993,29(1):385-390
    [26]Galanin M P, Popov Y P, Khramtsovsky S S. The Use of Currents Induced within a Conducting Shield for Railgun Performance Control. IEEE Transactions on Magnetics,1997,33(1):544-548
    [27]Newill J F, Powell J D, Zielinski A E. Coupled Finite-element Codes for Armature Design. IEEE Transactions on Magnetics,2003,39(1):148-152
    [28]Levinson S, Parker J V. Electrical and Thermal Effects of Rail Cladding. IEEE Transactions on Magnetics,1999,35(4):417-422
    [29]Drobyshevski E M, Kolesnikova E N, Yuferev V S. Calculating the Liquid Film Effect on Solid Armature Rail-gun Launching. IEEE Transactions on Magnetics, 1999,35(4):53-58
    [30]Stefani F, Levinson S, Satapathy S. Electrodynamic Transition in Solid Armature Railguns. IEEE Transactions on Magnetics,2001,37(1):101-105
    [31]Keshtkar A. Effect of Rail Dimension on Current Distribution and Inductance Gradient. IEEE Transactions on Magnetics,2005,41(1):383-386
    [32]Landen D, Satapathy S. Eddy Current Effects in the Laminated Containment Structure of Railguns. IEEE Transactions on Magnetics,2007,43(1):150-156
    [33]Young F J, Hughes W F. Rail and Armature Current Distribution in Electromagnetic Launchers. IEEE Transactions on Magnetics,1982,18(1):33-41
    [34]Long G C, Weldon W F. Limits to the Velocity of Solid Armatures in Railguns. IEEE Transactions on Magnetics,1989,25(1):347-352
    [35]Zielinski A E, Powell J D. Current and Heat Transport in the Cannon-caliber Electromagnetic Gun Armature. ADA299940,1995
    [36]Powell J D, Zielinski A E. Observation and Simulation of Solid-armature Railgun Performance. IEEE Transactions on Magnetics,1999,35(1):84-89
    [37]Powell J D, Zielinski A E. A Preliminary Study of Wear in the Solid-armature Railgun. ADA339083,1997
    [38]Zielinski A E, Powell J D. Current and Heat Transport in a Double Taper Sabot-armature. ADA393202,2001
    [39]Powell J D, Zielinski A E. Ohmic Heating in a Double-taper Sabot-armature. IEEE Transactions on Magnetics,2003,39(1):153-157
    [40]Galanin M P, Lebedev A D, Milyaev K K. An Investigation of the Effects of Some Properties of Materials on the Characteristics of Armature Acceleration in a Railgun. IEEE Transactions on Magnetics,2001,37(1):411-415
    [41]Rodger D, Leonard P J, Eastman F. Modelling Electromagnetic Rail Launchers at Speed Using 3D Finite Elements. IEEE Transactions on Magnetics,1991,27(1): 314-317
    [42]Yun H D, Price J H. Electromagnetic and Structural Analyses of Electric Gun and Integrated Launch Package Systems. IEEE Transactions on Magnetics,1995,31(1): 253-258
    [43]Hsieh K T. A Lagrangian Formulation for Mechanically, Thermally Coupled Electromagnetic Diffusive Processes with Moving Conductors. IEEE Transactions on Magnetics,1995,31(1):604-609
    [44]Zowarka R C, Yun H D, Alexander A. Railgun solid armature scaling model. IEEE Transactions on Magnetics,1997,33(1):169-174
    [45]Watt T, Stefani F. Experimental and Computational Investigation of Root-radius Melting in C-shaped Solid Armatures. IEEE Transactions on Magnetics,2005, 41(1):423-428
    [46]Galanin M P, Khalimullin Y A, Lototsky A P.3-D Modeling of Electromagnetic Fields in Application to Electromagnetic Launchers. IEEE Transactions on Magnetics,2003,39(1):134-138
    [47]Watt T J, Bryant M D. Cracking and Dominant Stresses in the Throat Region of C-Shaped Solid Armatures. IEEE Transactions on Magnetics,2007,43(1):418-421
    [48]Hopkins D A, Stefani F, Kuo-Ta Hsieh. Analysis of Startup Behavior in a "C-shaped" Armature Using Linked EMAP3D/DYNA3D Finite Element Codes. IEEE Transactions on Magnetics,1999,35(1):59-64
    [49]刘志明,孙江生,王莹.轨道炮固体电枢的设计.华北工学院测试技术学报,2000,14(3):158-162
    [50]陶孟仙,任兆杏.电磁发射中固体电枢的设计和实验.嘉应大学学报(自然科学),1996(1):18-21
    [51]陶孟仙,任兆杏.固体电枢电热物理特性研究.火炮发射与控制学报,2001,(1):52-54
    [52]陶孟仙.电磁轨道炮固体电枢特性研究:[博士学位论文].合肥:中科院等离子体研究所,1999
    [53]陶孟仙,任兆杏,吕庆敖.固体电枢电磁场扩散效应研究.弹道学报,1998,10(2):29-32
    [54]曹昭君.电磁发射中C型固体电枢的特性研究:[硕士学位论文].武汉:华中科技大学,2006
    [55]Liu Yuanqing, Li Jun, Chen Duo, et al. Numerical Simulation of Current Density Distributions in Graded Laminated Armatures. IEEE Transactions on Magnetics, 2007,43(1):163-166
    [56]Batteh J H, Rolander G E. Thermodynamic and Electrical Properties of Railgun Plasma Armatures. IEEE Transactions on Plasma Science,1989,17(3):439-445
    [57]Batteh J H, Rolander G E. Modeling of Transient Effects in Railgun Plasma Armatures. AD-A181085,1987
    [58]Pascale Lehmann, Joseph Wey, Hans Mach. Study of Railgun Plasma Armature. IEEE Transactions on Plasma Science,1989,17(3):371-377
    [59]Yamori A, Kohno M, Kawashima N. Secondary Arc Dynamics in a Railgun Bore. IEEE Transactions on Magnetics,1999,35(1):452-456
    [60]Dirr B. Numerical Investigation of an Ablation-dominated Plasma Armature. IEEE Transactions on Magnetics,1997,33(1):47-52
    [61]Jamison K, Burden H, Powell J D, et al. Non-steady Phenomena in Railgun Plasma Armatures. IEEE Transactions on Magnetics,1986,22(1):1546-1551
    [62]Thio Y, Frost L. Non-ideal Plasma Behavior of Railgun Arcs. IEEE Transactions on Magnetics,1986,22(6):1757-1762
    [63]Batteh J D, Thornhill L D. A Perspective on the Modeling of Plasma Armatures. AIAA Paper, A93-46632
    [64]Yamori A, Ono Y, Sasaki S. Development of a Plasma Armature Railgun with Two Distributed Power Supplies.2004 12th Symposium on Electromagnetic Launch Technology,2005,149-154
    [65]Shvetsov G A, Anisimov A G, Matrosov A D. Analysis of physical effects on the electrode surfaces in rail launchers. IEEE Transactions on Magnetics,2003,39(1): 82-85
    [66]Dmitri K, Keefer D R.3-D MHD Simulation of a Railgun Hybrid Armature. IEEE Transactions on Magnetics,1997,33(1):249-253
    [67]Dennis K, Robert T. The Role of Fluid Mechanics in Plasma Armature Railguns. AIAA Paper,92-3165
    [68]Zowarka R C, Werst M D, Hotz T J. The Plasma Pressure in Transitioned Metal Armatures and Its Structural Implications on Railguns. AIAA Paper, A93-46641
    [69]Karhi R W, Mankowski J J, Dickens J C, et al. Secondary Arc Formation Within a Distributed Energy Railgun. IEEE Trans on Plasma Sci,2008,36(5):2738-2746
    [70]Wetz D A, Stefani F, Parker J V, et al. Advancements in the Development of a Plasma-Driven Electromagnetic Launcher. IEEE Transactions on Magnetics,2009, 45(1):495-500
    [71]Powel J D, Batteh J H. Plasma Dynamics of an Arc-driven, Electromagnetic, Projectile Accelerator. Journal of Applied Physics,1981,52:2717-2730.
    [72]Powel J D. Interchange Instability in Railgun Arcs. Physics Review A,1986,34(4): 3262-3269
    [73]Batteh J H, Rolader G E, Powel J D. A Time-dependent Model for Railgun Plasma Armatures. Physics of Fluids,1988,31(6):1757-1765
    [74]Rolader G E, Batteh J H, Powel J D. Transient Modelling of Railgun Plasma Armatures. IEEE Transactions on Plasma Science,1989,25(1):489-494
    [75]Powel J D, Batteh J H. Two-dimensional Plasma Model for the Arc-driven Rail Gun. Journal of Applied Physics,1983,54:2242-2245
    [76]Boynton G C, Huerta M A. Two-dimensional MHD Simulation of Isothermal Plasma Armatures. IEEE Transactions on Magnetics,1989,17(3):468-475
    [77]Boynton G C, Huerta M A. Two-dimensional Heat Conducting Simulation of Plasma Armatures. IEEE Transactions on Magnetics,1991,27(1):261-265
    [78]Boynton G C, Huerta M A. Secondary Arcs in 2-D MHD Numerical Simulations of EML Plasma Armatures. IEEE Transactions on Magnetics,1995,31(1):564-569
    [79]Boynton G C, Huerta M A. Two Dimensional Time Dependent MHD Simulation of Plasma Armatures. IEEE Transactions on Magnetics,1989,25(1):238-242
    [80]Boynton G C, Huerta M A, Thio Y C.2-D MHD Numerical Simulations of EML Plasma Armatures with Ablation. IEEE Transactions on Magnetics,1993,29(1): 751-756
    [81]Michael H F. The Internal Structure and Dynamics of the Railgun Plasma Armature between Infinitely Wide Ablating Rails. IEEE Transactions on Magnetics, 1991,27(1):233-239
    [82]Cardelli E, Esposito N, Huerta M A. Numerical Comparison between a Differential and an Integral Approach in MHD Simulations of Electromagnetic Railgun Plasma Armatures. IEEE Transactions on Magnetics,1997,33(1):219-224
    [83]Esposito N, Raugi M, Tellini A. A Novel Equivalent Electric Network Approach for the 3-D MHD Modelling of EML Plasma Armatures. IEEE Transactions on Magnetics,1995,31(1):293-298
    [84]Esposito N, Raugi M, Tellini A.3-D Numerical Simulation of Plasma Armature Railguns. IEEE Transactions on Magnetics,1997,31(1):225-230
    [85]Dmitri K, Dennis K.3-D Plasma Armature Railgun Simulation. IEEE Transactions on Magnetics,1995,31(1):634-639
    [86]秦实宏,邹积岩,何俊隹,等.离子体电枢电磁轨道电枢电弧长度的测量.华中理工大学学报,1998,26(11):38-41
    [87]秦实宏,刘克富,潘垣,等.减轻轨道炮炮膛烧蚀的研究.弹道学报,2001,13(2):74-77
    [88]秦实宏,刘克富,潘垣.基于B点磁探针膛内电枢电弧长度与速度分布测量的计算机控制系统的研究.兵工学报,2003,24(2):149-152
    [89]Zou Jiyan, He Junjia, Qin Shihong, et al. Investigations on Magnetic Field in the Interface Regions between Plasma Armature and Rail Electrodes in a Railgun. IEEE Transactions on Magnetics,1999,35(1):65-67
    [90]陶孟仙,任兆杏.503轨道炮等离子体电枢发射的仿真计算.火炮发射与控制学报,1999,(4):61-64
    [91]吴其芬,李桦.磁流体力学.长沙:国防科技大学出版,2007
    [92]胡希伟.等离子体理论基础.北京:北京大学出版,2006
    [93]Shimizu K, Okuno Y, Yamasaki H, et al. Numerical Simulation of Plasma and Fluid Flow in a Shock-tube-driven Disk MHD Generator. IEEE Transactions on Plasma Science,2000,28(5):1706-1712
    [94]Chang S C. The Method of Space-time Conservation Element and Solution Element-a New Approach for Solving the Navier-Stokes and Euler Equations. Journal Computational physics,1995,119:295-324
    [95]Chang S C, Wang X Y, To W M. Application of the Space-time Conservation Element and Solution Element Method to One-dimensional Convection-diffusion Problems. Journal of Computational Physics,2000,165:189-215
    [96]Zhang Z C, Yu S T, Chang S C. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes. Journal of Computational Physics,2002,175:168-199
    [97]Zhang Z C, Yu S T, Wang X Y, et al. The CE/SE Method for Navier-Stokes Equations Using Unstructured Meshes for Flows at All Speeds. AIAA Paper, 2000-0393
    [98]Yu S T, Chang S C. Direct Calculations of Detonation with Multi-step Finite-rate Chemistry by the Space-time Conservation Element and Solution Element Method. AIAA Paper,1999-3772
    [99]Zhang Z C, Yu S T, He Hao, et al. Direct Calculations of Plume Dynamics of a Pulse Detonation Engine by the CE/SE Method. AIAA Paper,2001-3614
    [100]Wang X Y, Chang S C, Jorgenson Philip C E. Accuracy Study of the Space-time CE/SE Method for Computational Aeroacoustics Problems Involve Shock Waves. AIAA Paper,2000-0474
    [101]Wang X Y, Chang S C, Ananda Himansu. Gust Acoustic Response of a Single Airfoil Using the Space-time CE/SE Method. AIAA Paper,2002-0801
    [102]Loh C Y, Hultgren L S, Wang X Y, et al. Aeroacoustics Computation for Nearly Fully Expanded Supersonic Jets Using the CE/SE Method. AIAA Paper,2000-2010
    [103]Loh C Y, Ananda H, Wang X Y, et al. Computation of an Under Expanded 3-D Rectangular Jet by the CE/SE Method. AIAA Paper,2001-0986
    [104]Loh C Y, Hultgren L S, Jorgenson Philip C E. Near Field Screech Noise Computation for an Underexpanded Super Sonic Jet by the CE/SE Method. AIAA Paper,2001-2252
    [105]Qin Jianrong, Yu S T, Zhang Z C, et al. Direct Calculations of Cavitating Flows by the Space-Time CE/SE Method. AIAA Paper,2001-1043
    [106]Sorin C, Theo G K, Florin D. Particularities of the CE/SE Numerical Method to Flows in Fluid Films. AIAA Paper,2005-4357
    [107]He Hao, Yu S T, Zhang Moujin. Three-dimensional Simulations of Cavity Flows by the Space-Time CE/SE Method. AIAA Paper,2006-1381
    [108]Wang X Y, Chen C L, Liu Y. The Space-time CE/SE Method for Solving Maxwell's Equations in Time-domain. IEEE Antennas and Propagation Society International Symposium,2002,1:164-167
    [109]Zhang M J, Henry Lin S C, John Yu S T. Application of the Space-time Conservation Element and Solution Element Method to the Ideal Magnetohydrodynamic Equations. AIAA Paper,2002-3888
    [110]俎栋林.电动力学.北京:清华大学出版社,2006
    [111]William H, Hayt Jr, John A Buck.工程电磁学.北京:电子工业出版社,2004
    [112]王秉中.计算电磁学.北京:科学出版社,2002
    [113]威尔戴JR,任泽,罗棣庵.工程传热学.北京:人民教育出版,1983
    [114]张韵华,奚梅成,陈效群.数值计算方法与算法.北京:科学出版社,2000
    [115]Brio M, Wu C C. An Upwind Difference Scheme for the Equations of Ideal Magnetohydrodynamics. Journal of Computational Physics,1988,75:400-422
    [116]Dai W, Woodward P R. Extention of the Piecewise Parabolic Method to Multidimensional Ideal Magneto-hydro-dynamics. Journal of Computational Physics,1994,115:200-212
    [117]Jiang G S, Wu C C. A High-order WENO Finite Difference Scheme for the Equations of Ideal Magneto-hydro-dynamics. Journal of Computational Physics, 1999,150:561-594
    [118]关磊.高功率脉冲放电等离子体电导率的初步研究:[硕士学位论文].南京:南京理工大学,2006
    [119]Meger R A, Giuliani J L, Jenkins J R, et al. NRL Experimental and Theoretical Research on the Acceleration of Plasma Armatures in Railguns. AIAA Paper, A93-46633
    [120]Kovitya P. Physical Properties of High-Pressure Plasmas of Hydrogen and Copper in the Temperature Range 5000-60000 K. IEEE Transactions on Plasma Science, 1985,13(6):587-594
    [121]Keefer D R. Arc Motion in Railgun Plasma Armatures. IEEE Transactions on Plasma Science,1989,17(3):446-449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700