用户名: 密码: 验证码:
抗磁悬浮转子式微器件的相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗磁悬浮转子微器件中转子自由悬浮,从根本上消除了大多数微惯性器件的检测质量块通过支撑梁与衬底相连而存在的接触摩擦的影响,可用于高精度的微惯性器件。结合抗磁体和永磁体的抗磁悬浮具有室温下工作、无源、自主稳定悬浮以及适宜在微器件尺度下使用等优点,其根据原理可以分成抗磁转子悬浮和抗磁稳定永磁转子悬浮。本文是首次对抗磁悬浮转子微器件用于惯性传感器所涉及的工作机理、制作工艺和悬浮转子旋转驱动测控电路进行的系统研究。全文主要研究内容和结论如下:
     对抗磁悬浮系统进行了电磁场和动力学分析,以深入理解抗磁悬浮转子微器件的悬浮和稳定的原理,以及其用作惯性传感器的原理。首先运用电磁场理论详细推导了抗磁悬浮中电磁场矢量、电磁力和电磁力矩的求解方程,稳定悬浮的充要条件,并论证了其在微器件中应用的优势;接着对自由悬浮刚体运动和悬浮微转子小角度运动进行了动力学分析,说明了悬浮刚体转子高速旋转时的陀螺效应;然后设计了两种抗磁悬浮原理的器件结构以及转子的旋转驱动方案;最后对微器件用作惯性传感时转子线加速度、角速度与其位置的关系进行了分析。
     对抗磁悬浮微器件中转子的悬浮、稳定和旋转进行了系统的仿真分析。(1)使用ANSOFT的MAXWELL 3D有限元软件包分析了抗磁转子悬浮微器件的悬浮问题,具体包括:首先分析了永磁体的不同布置形式的影响,并确定了采用同心内外永磁磁环、磁化方向沿轴向且相反的布置方案;接着对悬浮高度与悬浮力的关系、转子悬浮平衡位置高度与永磁体厚度的关系、转子悬浮力与内外永磁体环外侧径向尺寸比值的关系、转子悬浮力与永磁体外环径向尺寸的关系进行了分析;最后通过分析可得在设计的结构参数下抗磁转子为稳定悬浮。(2)采用等效电流环表示永磁体和映像电流表示抗磁效应的解析法,对抗磁稳定永磁转子悬浮系统进行了分析,其中对盘形永磁转子进行了静力学、动力学研究,对齿形永磁转子进行了静力学研究,研究结果表明在设计的结构参数下盘形和齿形永磁转子为稳定悬浮。(3)对基于轴向变电容微电机原理的转子旋转驱动相关问题进行了研究,具体包括:分析确定了旋转驱动相关的转子和定子结构参数、驱动电压的加载方式,使用MAXWELL 3D有限元软件包分析了旋转电容、驱动力矩与转子转角的关系以及涡流阻尼,另外还对空气阻尼的影响进行了分析。
     对抗磁悬浮微器件的制作工艺进行了研究。(1)抗磁转子悬浮微器件包括定子和转子。定子由加工好的硅基底微结构单元和环形永磁组合体装配而成。硅片上微结构采用MEMS工艺制作,环形永磁体和齿形热解石墨转子采用精密加工工艺得到。目前,该器件制作已成功完成。(2)抗磁稳定永磁转子悬浮微器件包括上定子、下定子和转子,其中齿形永磁转子采用精密加工工艺,定子采用MEMS工艺。为实现该器件的制作,本文首次对基底材料为热解石墨的多层结构的MEMS工艺进行了研究,它包括热解石墨基底的处理方法,用于转子重力平衡的环形永磁体的制作以及定子器件整个工艺制作流程。文中研究了分离式和整体式两种方案,目前,分离式微器件已制作完成,而整体式由于工艺复杂,工艺实验研究还在进行之中。
     对悬浮转子旋转驱动测控电路进行了系统研究,研究工作分为微电容检测和旋转驱动控制两方面内容。(1)微电容检测使用电荷积分和锁定放大器原理,具体电路包括载波发生电路、电荷积分放大器、交流放大、模拟乘法器解调电路以及低通滤波。微电容检测研究工作中首先设计了使用DDS芯片的正弦载波发生电路。接着对前置放大器进行了噪声分析,由分析结果得到该电路理论上的检测分辨率为在1.5KHz带宽下可以达到78aF,对应的角度检测分辨率为0.0053o。然后,使用Orcad软件分析了设计的实际检测电路的动态响应以及存在的相位滞后。最后设计了转子转速的获取电路。(2)悬浮转子的旋转驱动是基于轴向变电容静电微电机原理。首先分析了固定频率、变频率开环驱动模式下的动态响应。然后,根据电容变化的特点提出了变驱动力矩、平稳驱动力矩和最大驱动力矩的三种闭环控制逻辑,并研究了变驱动力矩控制中理想模型,考虑低通滤波器和补偿器影响的模型下转子的动态响应响应情况。研究结果表明低通滤波器引起的相位滞后将影响转子所能达到的最高转速,为提高闭环下的最高转速可以增加补偿器。最后设计了驱动电路。
     对抗磁悬浮器件进行了相关实验。实验研究内容主要是抗磁转子悬浮微器件的实验,具体包括:(1)悬浮实验:测量了不同厚度永磁体时转子的悬浮高度,通过悬浮稳定性实验验证了转子的悬浮稳定性,并说明了稳定区间;(2)电容检测实验:测试了制作的用于检测转子高速旋转差分电容电路的性能;(3)旋转驱动实验:测试了固定频率、变频率开环驱动作用下转子转速与驱动电压的关系。另外,对抗磁稳定永磁转子悬浮器件进行了宏观模拟悬浮实验。
     本文为抗磁悬浮转子微器件真正成为高精度惯性传感器的进一步深入研究提供了良好的基础。
Diamagnetic levitation micro device with free rotor can cancel the effect of contact friction, which exist in majority micro inertial device whose proof mass is connect with substrate by flexible beams, has the ability to be used as high resolution micro inertial device. The diamagnetic levitation, which consists of diamagnetic material and permanent magnet, has the advantage of working under room temperature, no energy input, self stable levitation and suitable scale down effect for MEMS (MicroElectroMechanical Systems) device. According to the principle, the diamagnetic levitation can be divided into diamagnetic rotor levitation and diamagnetic stable permanent magnet rotor levitation. The dissertation work discussed herein mainly focus on the system study of the working principle, fabrication process and rotor testing and control circuit for its rotating drive, for the diamagnetic levitation micro device using as inertial sensor. The main research content and results of this dissertation are as follows:
     For understanding the principle of the stable levitation of rotor in the diamagnetic levitation micro device and it’s using as inertial sensor, the electromagnetic field analysis and dynamic analysis have been done. Firstly, based on the electromagnetic field theory, the solution equations of electromagnetic field vectors, forces and torques in the diamagnetic system have been derived in detail and the advantage of diamagnetic system for dimension scale down micro device have been proved. Then, the dynamic analysis has been made on the common motion characteristic of free rotor and the small angular deflection motion of free rotor around its null position, which shows the gyroscope effect of high speed rotating rigid rotor. And then the structure of diamagnetic rotor levitation micro device and diamagnetic stable permanent magnet rotor levitation micro device and their electrode arrangement have been designed. Lastly the relationships between the linear accelerator signal, angular velocity signal and their position have been analyzed when the levitation device with free rotor is used as inertial sensor.
     The system analysis of levitation, stability and rotation of diamagnetic levitation micro device has been carried out. (1) The diamagnetic rotor levitation system has been analyzed, using the FEM analysis software Ansoft MAXWELL 3D. Firstly, four kinds of permanent magnets arrangements have been studied and the scheme with two concentric ring-shaped magnets has been chosen, whose magnetization directions are both along the thickness but opposite to each other. The relationship between levitation height and levitating force, the relationship between levitation balance height and permanent magnets thickness, the relationship between levitating force and the dimension ratio of inner and outer permanent magnets and the relationship between levitating force and the outer permanent magnets size have been studied in detail, respectively. The results show that the diamagnetic rotor can be stably levitated. (2) Using the equivalent surface current denotes PM and image current denotes diamagnetic effect method, the author put forward the analytic model of diamagnetic stable permanent magnet rotor levitation system, in which the rotor is disc shape or gear shape. The static analysis has been done for two kinds of rotor shapes. Because of the computational resource limitation, the dynamic analysis has been implemented only for the disc shape rotor. The result shows the permanent magnet rotor can be stably levitated. (3) The relative problems of rotor rotating drive which based on variable capacitance axial-drive micro motor principle have been studied. Those problems include structure parameters, driving voltage loading, the relationship between rotating capacitance, driving torque and rotor angle, the eddy current damp and air damp.
     The fabrication process of diamagnetic micro device has been studied. (1) The diamagnetic rotor levitation micro device is composed of rotor and stator. The stator was assembled by the micro structure die on the silicon and two concentric ring-shaped permanent magnets. The micro structure was fabricated by MEMS process. The PMs and rotor were fabricated by Micro electro discharge machine. The fabrication of the device has been done successfully. (2) The diamagnetic stable permanent magnet rotor levitation micro device consists of rotor, up stator and down stator. The rotor was fabricated by conventional precise manufacture and the stators were fabricated by MEMS process. For realizing the fabrication of the device, the MEMS process of multi layer structure on the pyrolytic graphite substrate has been studied for the first time. The study of process is composed of pyrolytic graphite substrate preparing, ring shape PM electroplating and the process flow of the device. Two fabrication schemes have been studied, that are separated scheme and integrative bonded scheme. At present, the separated mode micro device has been fabricated. However, the fabrication experiment of integrative bonded mode micro device is still being studied for its complicated process.
     The systemic study of the detecting and control circuit for the levitated rotor rotating has been carried out. The study work has two aspects that are weak capacitance sensing and rotating drive control. (1) The principle of weak capacitance sensing is based on the charge integral amplifier and Lock-In amplifier. The practical circuit is composed of sine carrier wave generation, charge integral amplifier, AC amplifier, analog multiplier demodulator, and low pass filter. Firstly, the DDS chip has been used for generating the sine carrier wave. Then the noise analysis of front end amplifier has been carried out. According to the analysis result, when the bandwidth is 1.5 KHz, the resolution of the sensing circuit is 78aF corresponds to 0.0053 angle degree under ideal condition. And then, using the Orcad software, the dynamic response of the designed detecting circuit and its phase lag has been analyzed. Lastly, the rotation speed acquiring circuit of rotor has been designed. (2) The rotating drive of the levitated rotor is based on axial variable capacitance electrostatic micro motor principle. Firstly, the dynamic analysis of the fixed frequency and variable frequency open loop drive has been implemented. Then, according to the vary characteristic of differential capacitance, three kinds of close loop control logic, which are variable torque drive, smooth torque drive and maximal torque drive, have been brought forward, respectively. In addition, the dynamic analyses of rotor, whose control logic is variable torque drive, were done under ideal model, with low pass filter and compensator. The results of the analysis show that the phase lag causing by the low pass filter would affect the highest speed of the rotor, and the compensator can increase the speed limit. Lastly, the driving circuit has been designed.
     The experimental investigation for the diamagnetic levitation device was conducted. The mostly experimental studies were conducted for the diamagnetic rotor levitation micro device, which are (1) levitation experiment that are the test of the levitated height under different thickness of PMs, and the stable test which proves the stability of the rotor and declare the stable region; (2) capacitance detection experiment that test the performance of the fabricated differential capacitance sensing circuit using for high speed rotated rotor; (3) rotating drive experiment that test the relationship between the rotation speed and driving voltage under fixed and variable frequency open loop drive. In addition, the levitation experiment was conducted for the macro diamagnetic stable permanent magnet rotor device.
     The works achieved in this dissertation have provided good basis for the further research of the diamagnetic levitation micro device with levitated rotor become high resolution inertial sensor.
引文
[1] Nadim Maluf,Kirt Williams. An Introduction to Microelectromechanical Systems Engineering. London:ARTECH HOUSE,2004
    [2]董景新等.微惯性仪表—微机械加速度计.北京:清华大学出版社, 2003
    [3]王立鼎,刘冲.微机电系统科学与技术发展趋势.大连理工大学学报, 2000, 40 (5): 505-508
    [4] N. Yazdi, F. Ayazi, K. Najafi. Micromachined Inertial Sensors. Proceedings of the IEEE, 1998, 86(8): 1640-1659
    [5] Andrei M. Sh. Micromachined Gyroscopes: Challenges, Design Solutions, and Opportunities. SPIE Vol.4334: 74-85.
    [6] Michael Kraft. Micromachined Inertial Sensors: State of the Art and a Look into the Future. IMC Measurement and Control, 2000, 33(6): 164– 168.
    [7] Sungsu Park, et al Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes. Journal of Microelectromechanical Systems, 2003, 12(1): 101-108.
    [8] E.H.Grandt. Levitation in Physics. Science, 1989, 243: 349-355.
    [9] Vincent Vandaele, Pierre Lambert, Alain Delchambre. Non-contact handling in microassembly Acoustical levitation. Precision Engineering, 2005, 29: 491–505.
    [10]解文军,魏炳波.声悬浮研究新进展.物理,2002,31(9): 551-554.
    [11] E.H.Grandt. Suspended by sound. Nature, 2001, 413: 474-475.
    [12] Sadayuki Ueha a, Yoshiki Hashimoto b, Yoshikazu Koike. Non-contact transportation using near-field acoustic levitation. Ultrasonics, 2000, 38:26–32.
    [13]杨德兴,赵建林.光学悬浮.航空科学技术,1998, 2: 23-25.
    [14] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. Observation of a single beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11: 288–289.
    [15] V.Garces-Chavez, D.Roskey, M.D.Summers,; H.Melville, D.McGloin, E.M.Wright, K.Dholakia. Optical levitation in a Bessel light beam. Applied Physics Letters, 2004, 85(18): 4001-4003.
    [16] Takao Murakoshi, et al. Electrostatically levitated ring-shaped rotational gyro/accelerometer. Jpn J Appl Phys, 2003, 42: 2468-2472.
    [17] Suresh Kumar, Dan Cho, William N. Carr. Experimental study of Electric Suspension for Microbearings. Journal of Microelectromechanical Systems, 1992, 1(1): 23-30.
    [18] A. K. Geim, M. D. Simon, M. I. Boamfa, and L. O. Heflinger. Magnet levitation at your fingertips. Nature, 1999, 400: 323–324.
    [19] M. D. Simon and A. K. Geim,“Diamagnetic levitation: Flying frogs and floating magnets,”J. Appl. Phys., 2000, 87: 6200–6204.
    [20] Yasuhiro Ikezoe, Noriyuki Hirota, Jun Nakagawa, Koichi Kitazawa. Making water levitate. Nature, 1998, 393: 749-750.
    [21] Charles R. Dauwalter, et al. Magnetically suspended MEMS spinning wheel gyro. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(2): 21-26.
    [22] C.Shearwood, et al. Development of a levitated micromotor for application as a gyroscope. Sensors and Actuators, A: Physical, 2000, 83(1): 85-92.
    [23]王欣利,程树康,静电电动机及其研究发展状况,微特电机,2001,第6期:12-15.
    [24] Long-Sheng Fan, Yu-Chong Tai, Richard S. Muller. IC-Processed Electrostatic Micro-motors. IEDM 1988: 666-669.
    [25] Mehran Mehregany, Stephen F. Bart, Lee S. Tavrow, Jeffrey H. Lang. Principles in design and microfabrication of variable-capacitance side-drive motors. J. Vac. Sci. Technol. A 1990, 8(4): 3614-3624.
    [26] U Beerschwinger, N G Milne, S J Yang, et al. Coupled electrosatic and mechanical FEA of a micromotor. J.Microelectromechanical systems, 1994, 3(4):162-170.
    [27] N G Milne,U Beerschwinger, S J Yang, et al. Finite-element analysis of rotor stability in an axial-drive micromotor. J. Micromech. Microeng., 1996,4:74-83.
    [28] Mehran Mehregany,Pradynya Nagarkar et al. Operation of microfabricated harmonic and ordinary side-drive motors, Micro Electro Mechanical Systems,1990:1-8.
    [29] Carol Livermore, Anthony R. Forte, Theodore Lyszczarz et al. A High-Power MEMS Electric Induction Motor. Journal of Microelectromechanical Systems, 2004, 13(3): 465-471.
    [30] Steven F. Nagle, Carol Livermore, et al. An Electric Induction Micromotor. Journal of Microelectromechanical Systems, 2005, 14(5):1127-1143.
    [31] Ahn C.H., Kim Y.J., Allen M.G.. A Planar Variable Reluctance Magnetic Micromotor with Fully Integrated Stator and Coils. Journal of Microelectromechanical Systems, 1993, 2(4):165-173.
    [32] H. Guckel, T.R. Christenson, et al. A First Functional Current Excited Planar Rotational Magnetic Micromotor. IEEE, 1993, 7-11.
    [33] Chunsheng Yang, Xiaolin Zhao, Guifu Ding, Chen Zhang, Bingchu Cai. An axial flux electromagnetic micromoror. J. Micromech. Microeng., 2001, 11: 113-117.
    [34] B. Wagner, M. Kreutzer, W. Benecke. Journal of Microelectromechanical Systems, 1993, 2(1):23-29.
    [35] C.Shearwood, et al. Levitation of a micromachined rotor for application in a rotating gyroscope. Electronics Letters, 1995, 31(21): 1845-1846.
    [36] C.B.Willams, et al. Modelling and testing of a frictionless levitated micromotor. Sensors and Actuators, A: Physical, 1997, 61( n 1-3 pt 2): 469-473.
    [37]吴校生.磁悬浮转子微陀螺的设计制造及其特性研究[博士论文].上海:上海交通大学, 2004.10.
    [38]吴校生,陈文元,张卫平,“磁悬浮转子微陀螺及其悬浮力与稳定性的分析”传感器技术2003,22(12):68-72.
    [39]吴校生,陈文元,赵小林,张卫平,何淼,“磁悬浮转子微陀螺的微细加工技术”,微细加工技术,2004, No.1:12-14
    [40] Wu X.-S., Chen W.-Y., Zhao X.-L., Zhang W.-P., Micro-motor with electromagnetically levitated rotor using separated coils. Electronics Letters, 2004, 40(16):
    [41] Wu X.-S., Chen W.-Y., Zhao X.-L., Zhang W.-P., Micromachined rotating gyroscope with electromagnetically levitated rotor. Electronics Letters, 2006, 42(16):
    [42] Wu X.-S., Chen W.-Y., Zhao X.-L., Zhang W.-P., Development of a micromachined rotating gyroscope with electromagnetically levitated rotor. J. Micromech. Microeng., 2006, 16: 1993-1999.
    [43] Zhang Weiping, ChenWenyuan, Zhao Xiaolin, Wu Xiaosheng, Liu Wu, Huang Xiaogang, Shao Shiyi. The study of an electromagnetic levitating micromotor for application in a rotating gyroscope.Sensors and Actuators, A: Physical, 2006, 132(2): 651-657.
    [44] Charles R. Dauwalter, et al. A high performance magnetically suspended MEMS spinning wheel gyro. IEEE PLANS, Position Location and Navigation Symposium, PLANS - 2004 Position Location and Navigation Symposium, 2004: 70-77.
    [45] Charles R. Dauwalter. Magnetic actuator and position control system. US Patent 5,959,382.
    [46] R. Torti, V. Gondhalekar, H.Tran, et al.. Electrostatically suspended and sensed micromechanical rate gyroscope. SPIE Vol. 2220. Orlando, Apr. 04 - 08, 1994: 27-38.
    [47] T. Hawkey et al. Eletrostatically controlled micromechanical gyroscope. US Patent , 5,353,656, 1994.
    [48] FUKATSU K, MURAKOSHI T, ESASHI M. Electrostatically levitated micro motor for inertia measurement system[C]. Technical Digest of Transducers'99, 1999, 3P2.16: 1558-1561.
    [49] M.Esashi. Saving energy and natural resource by micro-nanomachinng. The 15th IEEE int. conf. on MEMS, 2002: 220-227.
    [50] Keisuke F, Takao M, Satoshi K. Acceleration detection type gyro device. Europe Patent, EP1275934. 2003-01-15.
    [51] Murakoshi T, Fukatsu K, Nakamura S, et al. Electrostatically levitated ring-shaped rotational gyro/accelerometer. Jpn J Appl Phys, 2003, 42, Pt.1 (4B): 2468-2472.
    [52] Nakamura S, Tochigi Y. MEMS inertial sensor toward higher accuracy & multi-axis sensing [C]. The 4th IEEE Conf. on sensors, Irvine, Nov. 2005: 939-942.
    [53] Kraft M., Farooqui M.M. and Evans A.G.R. Modelling and design of an electrostatically levitated disk for inertial sensing applications. J. Micromech. Microeng., 2001, 11(4): 423-427.
    [54] Houlihan, R., Kukharenka, A., Gindila, M. and Kraft, M. Analysis and design of a capacitive accelerometer based on a electrostatically levitated micro-disk. Proc. SPIE Conf. on Reliability, Testing and Characterization of MEMS/MOEMS, San Francisco, 2001: 277-286.
    [55] Kraft M., Evans A.. System level simulation of an electrostaticcally levitated disk. Proc. 3rd conf. On modelling and simulation of Microsystems. San Diego, 2000: 130-133.
    [56] R.Houlihan, M. Kraft. Modeling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 2002, 12(4): 493-503.
    [57] Ruth Houlihan, Elena Koukharenko, Harald Sehr, Michael Kraft. Optimisation, Design and Fabrication of a Novel Accellerometer. Transducers’03 2003: 1403-1406.
    [58] M V Gindila, M Kraft. Electronic interface design for an electrically floating micro-disk. J. Micromech. Microeng., 2003, 13: S11-S16.
    [59] Damrongsak B, Kraft M. A micromachined electrostatically suspended gyroscope with digital force feedback [C]. The 4th IEEE Conf. on sensors, Irvine, Nov. 2005: 401-404.
    [60] Damrongsak B, Kraft M. Design and simulation of a micromachined electrostatically suspended gyroscope [C]. The IET seminar & exhibition on MEMS sensors & Actuators, Savoy Place, London, 27-28 Apr., 2006: 267-272.
    [61] B Damrongsak, M Kraft, S Rajgopal, M Mehregany. Design and fabrication of a micromavhined electrostatically suspended gyroscope. Proc. IMechE Part C: J. Mechanical Engineering Science, 2008, 222: 53-63.
    [62]崔峰.基于UV-LIGA技术的静电悬浮转子微陀螺的相关技术研究.上海交通大学博士论文.2007.
    [63] Cui Feng, Chen Wenyuan, Su Yufeng, Zhang Weiping, Zhao Xiaolin. Design of electrostaticallylevitated micromachined rotational gyroscope based on UV-LIGA technology. Proceedings of SPIE, Beijing, 10-12 Nov., 2004, 5641: 264-275.
    [64]韩丰田,吴秋平,吴黎明,董景新.基于静电悬浮转子的硅微陀螺技术.中国惯性技术学报, 2008, 16(3): 339-342, 347.
    [65] Daniel Bachmann, Christofer Hierold. Determination of the Pull-Off Forces and Pull-Off Dynamics of an Electrostatically Actuated Silicon Disk. Journal of Microelectromechanical Systems, 2008, 17(3): 643-652.
    [66] Charles D. Ellis, Bogdan M. Wilamowski. Fabrication and Control of an Electrostatically Levitated Rotating Gyro. Proceedings of SPIE, 2008, 6959: 69590Q1-10.
    [67] Berkeley Sensor and Actuator Center Research Project BPN 318.
    [68] R. Toda, N. Takeda, T. Murakoshi, S. Nakamura, M.Esashi. electrostatically levitated spherical 3-axis accelerometer.The 15th IEEE int. conf. on MEMS,2002: 710-713.
    [69] Dinesh J.Alladi, et al. An IC for closed-loop control of a micromotor with an electrostatically levitated rotor. Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on Volume 6, 30 May-2 June 1999 Page(s):489– 492.
    [70] Suresh Kumar, Dan Cho. Electrostatically levitated microactuators. J. Micromech. Microeng., 1992, 2: 96-103.
    [71] He G., Chen K., Tan S. Wang W. Electrical levitation for micromotors, microgyroscopes and microaccelerometers. Sensors and Actuators A, 1996, 54: 741-745.
    [72]何国鸿.微机械静电陀螺研究.电子学报, 1997, 25(5): 86-88.
    [73] Gerald Kustler. Diamagnetic levitation– Historical Milestones. Rev. Roum. Sci. Techn., 2007, 52(3): 265-282.
    [74] W. Braunbeck. Freischwebende Korper im elecktrischen und magnetischen Feld . Zeitschrift fur Physik, 1939, 112: 753–763.
    [75] W. Braunbeck. Freies schweben diamagnetischer korper im magnetfeld. Zeitschrift fur Physik, 1939 , 112: 764–779.
    [76] A. B. Boerdijk,“Technical aspects of levitation,”Phillips. Res. Rep., 1956, 11: 45–46.
    [77] Robert D. Waldron. Diamagnetic levitation using pyrolytic graphite. Rev. Sci. Instrum., 1966, 37: 29–34.
    [78] Ivan Simon, et al. Sensitive Tiltmeter Utilizing a Diamagnetic Suspension. Rev. Sci. Instrum. 1968, 39(11): 1666-1671.
    [79] E. Beaugnon, R. Tournier. Levitation of organic materials. Nature, 1991, 349: 470.
    [80] E. Beaugnon, R. Tournier. Levitation of water and organic substances in high static magnetic fields. J. Phys. I, France, 1991, 1: 1423-1428.
    [81] M V Berryy, A K Geim. Of flying frogs and levitrons. Eur. J. Phys., 1997, 18: 307–313.
    [82] M. D. Simon, A. K. Geim. Diamagnetic levitation: Flying frogs and floating magnets. J. Appl. Phys., 2000, 87: 6200–6204.
    [83] Yasuhiro Ikezoe, Noriyuki Hirota, Jun Nakagawa, Koichi Kitazawa. Making water levitate. Nature, 1998, 393: 749-750.
    [84] M. D. Simon, L. O. Heflinger, A. K. Geim. Diamagnetically stabilized magnet levitation. Am. J. Phys., 2001, 69(6): 702-713.
    [85] A.K. Geim, H.A.M.S. ter Tisha. Detection of earth rotation with a diamagnetically levitatinggyroscope. Physica B, 2001, 294-295: 736-739.
    [86] Mehdi Boukallel, et al. Micromanipulation tasks using passive levitated force sensing manipulator. Proceedings of the 2003 IEEURSJ Intl. Conference on Intelligent Robots and Systems Las Vegas, Nevada ' October 2003: 529-534.
    [87] Mehdi Boukallel, et al. Passive diamagnetic levitation: theoretical foundations and application to the design of a micri-nano force sensor. Proceedings of the 2003 IEEE/RSJ InU. Conference on Intelligent Robots and Systems Las Vegas. Nevada. October 2003: 1062-1067.
    [88] Ahmet Cansiz, et al. Stable Load-Carrying and Rotational Loss Characteristics of Diamagnetic Bearings. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40(3): 1636-1641.
    [89] Ahmet Cansiza. Static and dynamic analysis of a diamagnetic bearing system. J. Appl. Phys., 2008, 103: 103–107.
    [90] I. F. Lyuksyutov, D. G. Naugle, K. D. D. Rathnayaka. On-chip manipulation of levitated femtodroplets. Applied Physics Letters, 2004, 85(10): 1817-1819.
    [91] Adam Winkleman, Katherine L. Gudiksen, et al. A magnetic trap for living cells suspended in a paramagnetic buffer. Applied Physics Letters, 2004, 85(12): 2411-2413.
    [92] Adam Winkleman, Raquel Perez-Castillejos, et al. Density-Based Diamagnetic Separation: Devices for Detecting Binding Events and for Collecting Unlabeled Diamagnetic Particles in Paramagnetic Solutions. Anal. Chem. 2007, 79: 6542-6550.
    [93] David W. Inglisa, Robert Riehn, James C. Sturm, Robert H. Austin. Microfluidic high gradient magnetic cell separation. J. Appl. Phys., 2006, 99: 08K101-1~3.
    [94] Ki-Ho Han, A. Bruno Fraziera. Continuous magnetophoretic separation of blood cells in microdevice format. J. Appl. Phys., 2004, 96(10): 5797-5802.
    [95] Ki-Ho Han, A. Bruno Frazier. Diamagnetic Capture Mode Magnetophoretic Microseparator for Blood Cells. Journal of Microelectromechanical Systems, 2005, 14(6): 1422-1431.
    [96] E P Furlani. Magnetophoretic separation of blood cells at the microscale. J. Phys. D: Appl. Phys., 2007, 40: 1313–1319.
    [97] Francois Barrot, Jan Sandtner, Hannes Bleuler. Acceleration Sensor based on Diamagnetic Levitation. IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, 2005:81–90.
    [98] D. Garmire, H. Choo, R. Kant, S. Govindjee, C. H. Séquin, R. S. Muller, J. Demmel. Diamagnetically levitated MEMS accelerometers. IEEE Transducers 2007: 1203-1206.
    [99]冯慈璋编著,静态电磁场,西安交通大学出版社.
    [100] Edward J. Rothwell, Michael J. Cloud. ELECTROMAGNETICS. New York: CRC Press, 2001.
    [101] J.A.斯特莱顿著,方能航译.电磁理论.科学出版社, 1992.
    [102] Heinz E.Knoepfel. Magnetic fields. JOHN WILEY & SONS INC. 2000.
    [103] K. Muramatsu, T. Nakata, N. Takahashi and K. Fujiwara. Comparison of coordinate systems for eddy current analysis in moving conductors. IEEE Trans. Magn., 1992, 23(2): 1186-1189.
    [104] P. Zhou, Z. Badics, D. Lin, Z.J. Cendes. Nonlinear T-? formulation including motion for multiply connected 3-D problems. IEEE Trans. Magn., 2008, 44(6): 718-721.
    [105] N. Allen, H. C. Lai, D. Rodger, P. J. Leonard. On the validity of two A-ψfinite element formulations for modeling eddy current problems with velocity. IEEE Trans. Magn., 1998, 34: 2535–2538.
    [106] Kim K B and Zabar Z. Restoring Force Between Two Noncoaxial Circular Coils[J]. IEEE Trans.Magn., 1996, 32(2): 478–484.
    [107] S. Earnshaw. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Cambridge Philos. Soc., 1842, 7:97–112.
    [108] O. Cugat, J. Delamare, G. Reyne. MAGnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn., 2003, 39(6): 3607–3612.
    [109]刘延柱.陀螺力学.北京:科学出版社,1986.
    [110]刘延柱.静电陀螺仪技术.北京:国防工业出版社,1979.
    [111] Chetouani H, Delinchant B, Reyne G. Efficient modeling approach for optimization of a system based on passive diamagnetic levitation as a platform for bio-medical applications. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 26(2): 345-355.
    [112] Isabelle Dufoury, Emmanuel Sarraute, Ahmed Abbas. Optimization of the geometry of electrostatic micromotors using only analytical equations. J. Micromech. Microeng., 1996,6 : 108–111.
    [113] V. Behjat, A. Vahedi. Minimizing the torque ripple of variable capacitance electrostatic micromotors. Journal of Electrostatics, 2006, 64: 361–367.
    [114] T.B. Johansson, M. Van Dessel, R. Belmans, W. Geysen. Technique for finding the optimum geometry of electrostatic micromotors. IEEE 2003: 1823-1830.
    [115] H.Schliting, Boundary-Layer Theory, 7th edn. New York: McGraw-Hill, 1979.
    [116] S F Bart, M Mehregany, L S Tavrow, et al. Electric micromotor dynamics. IEEE Trans. on electron devices, 1992, 39(3): 566-575.
    [117]郭秀中.惯导系统陀螺仪理论.北京,国防工业出版社,1996.
    [118]张立国,陈迪,杨帆,李以贵.SU-8光刻工艺研究.光学精密工程,2002,10(2): 266-269.
    [119] Chetouani H, Jeandey C, Haguet V, et al. Diamagnetic levitation with permanent magnets for contactless guiding and trapping of microdroplets and particles in air and liquids. IEEE Trans. Magn., 2006, 42(10): 3557–3559.
    [120] Chetouani H, Jeandey C, Haguet V, et al. Principle and analysis of a two-dimensional onchip magnetophoresis of bioparticles for contamination-free biochemical reactors. IEEE Trans. Magn., 2007, 43(4): 1673–1676.
    [121] A del Campo,C Greiner. SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng., 2007, 17: R81–R95.
    [122] Cui F, Chen WY, Zhao XL, Jing XM, Wu XS. Metal foundation construction to consolidate electroplated structures for successful removal of SU-8 mould. Electronics Letters, 2006, 42 (12): 690-691.
    [123] Xuekun Lu, Hui Huang, Nikolay Nemchuk, and Rodney S. Ruoff. Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters, 1999, 75(2): 193-195.
    [124] Yufeng Su, Hong Wang, Guifu Ding, Feng Cui, Weiping Zhang, Wenyuan Chen. Investigation on electroplated hard magnetic material and its application in Micro-Electro-Mechanical system (MEMS). IEEE Transactions on Magnetics, 2005, 41(12): 4380-4383.
    [125] S.M. Huang, et al. Electronic transducers for industrial measurement of low value capacitances. J. Phys. E: Sci. Instrum. 1988, 21: 212-250.
    [126] D. M. G. Preethichandra, et al. A Simple Interface Circuit to Measure Very Small Capacitance Changes in Capacitive Sensors. IEEE TRANSACTIONS ON INSTRUMENTATION ANDMEASUREMENT, 2001, 50(6): 1583-1586.
    [127] Yili Liu, et al. Limitations of a Relaxation Oscillator in Capacitance Measurements. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2000, 49(5): 980-983.
    [128] Naiyavudhi Wongkomet, Bernhard E. Boser, Correlated double sampling in capacitive position sensing circuits for micromachined applications. IEEE Asia-Pacific Conference on Circuits and Systems - Proceedings, 1998:723-726.
    [129] Sumant Ranganathan, et al. Sub-Femtofarad Capacitive Sensing for Microfabricated Transducers Using Correlated Double Sampling and Delta Modulation. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47(11): 1170-1176.
    [130] Jiangfeng Wu, Gary K, Fedder, L Richard Carley. A low-noise low-offset capacitive sensing amplifier for a 50-mu g root Hz monolithic CMOS MEMS accelerometer.IEEE Journal of Solid-States circuits, 2004, 39(5):722-730.
    [131]曾庆勇.微弱信号检测.浙江:浙江大学出版社, 1994.
    [132] Javier Gaspar, et al. Digital lock in amplifier: study, design and development with a digital signal processor. Microprocessors and Microsystems, 2004, 28: 157–162.
    [133] A. Restelli, et al. Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76:093112.
    [134] Joost C. Lotters, et al. A sensitive differential capacitance to voltage converter for sensor applications. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1999, 48(1): 89-96.
    [135] A. Gaiber, et al. New digital readout electronics for capacitive sensors by the example of micro-machined gyroscopes. Sensors and Actuators A, 2002, 97-98: 557-562.
    [136] David Buchanan. Choosing DACs for Direct Digital Synthesis. http://www.analog.com
    [137] ADI Company. AD9832 Analog Devices datesheet.
    [138] D.E.约翰逊, J.L.希尔伯恩[美].有源滤波器的快速实用设计.北京,人民邮电出版社, 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700