用户名: 密码: 验证码:
高梯度磁场下磁性流体流体动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高梯度磁捕获和分离磁技术已经广泛应用到工业、生物医药等众多领域,目前磁导向性药物微球(MDCP)可以靶向定位于作用对象,用体外的磁铁来导引,可以将其固定于患者的预定部位,因此磁性流体或粒子在高梯度磁场下管道中的输运特点有待理论工作者去研究,总体分为研究单个粒子的轨迹行为和磁流体整体行为。
     用Cluster-moving蒙特卡罗方法模拟了纳米磁性粒子在均匀磁场下的凝聚行为,得到了不同作用能量和浓度下的凝聚型貌,粒子的凝聚由高能量的链状逐渐向低能量的分支状、圆团状变化,并且在高浓度下成大片团聚。分析了其尺寸,分形维数,能量变化随蒙特卡罗步变化特点,以及长轴取向,径向分布函数特点,然后模拟了多分散体系的凝聚过程,发现分布函数出现偏移,团簇中主要由大直径粒子构成,大粒径的粒子起到了增强团聚的作用。
     分析了不同形状和尺寸探针在管道内和管道外的捕获模型以及捕获浓度的对流扩散模型,结果表明垂直磁场的捕获效率要大于水平磁场的,不同形状的探针的捕获效率略有差异,这和探针的曲率以及在流体场中流体的冲击面积有关系,随着探针尺寸的增加,虽然捕获半径增加了,但是相对捕获效率减小了。在外加磁体控制分离模型中,磁力和流速的控制可以改变捕获效率,和管道中流体的分离比例,不同磁场取向磁体的组合会导致不同的捕获分离效率,在对流扩散模型中,探针的曲率对浓度场的影响是很显著的,流体场和磁场的共同作用也会改变捕获区域的位置。
     先分析了不同管道中高梯度磁场下磁性流体的整体行为,考虑整个流体在磁场下受到的体积力,流体的整体速度场是不同于低浓度情况下的,流体内的磁性颗粒在平衡力下的速度轮廓也是不一样的,它和流体场是相关的,整个磁性流体在磁场作用下局部的浓度会增加,流体受到的体积力也会增加,通过解流体浓度耦合方程得到流体和浓度轮廓。磁性粒子浓度增加量是与磁速度紧密相关的,而磁体积力和流体场速度只能改变其浓度轮廓,直径10mm管道中由于磁场作用区域有限,流体产生涡流不受管道的限制,因此浓度轮廓不同于直径1mm的管道,当生物体内磁性粒子浓度达到一定范围,我们可以采用这个模型分析其浓度分布,同样磁流体作为阀门和驱动部件时,也可以用上面的模型了模拟浓度分布情况。然后我们分析了管道界面处对磁性粒子有吸附作用的模型,认为减小吸附区域,增加磁作用力,减小吸附系数,减小扩散系数都可以增加捕获区域的粒子量。
     建立了一个磁流体矩形管道中插入磁探针的模型,考虑到磁性流体的磁化率与温度的线性依赖关系,通过解温度场磁场双向强耦合方程得到温度场,流体场,热流和流体特点。流体场受到磁场力的影响产生涡流,磁场力是随温度场变化而变化的,而温度场与流体的对流相关,因此在磁探针附近产生温度波动和流体的涡流,磁体下方的速度明显比上方的大,涡流和温度波动随磁场大小,流体磁化率,流体速度,上下边界的温度差的变化而变化,上表面的热流要大于下表面,上表面剪切力也大于下界面,上下表面热流,剪切力随磁场作用的变化趋势是相反的,磁场的取向也会对温度场,流体场产生影响,本模型也可以用于工业磁性流体中,这对流体的流动行为和热对流引起的温度分布的设计和应用是有指导作用的。
     介绍了多相流的一些计算方法,并用水平集法探讨了外加磁场下磁流体、血液在矩形管道中的两相流行为。我们采用了不同的进口速度,来模拟生物体中注入磁性流体的情形,或者理解为磁性颗粒被大量捕获形成磁性流体的流动状态,两种流体的受力情况的不同和速度的差异产生不同的流体轮廓,磁流体的速度小于血液的速度时会被冲击和挤压,导致集中在磁场附近的区域偏小,当两者速度接近时,界面比较平坦,冲击和挤压的效果减弱,当磁流体的速度大于血液的速度时,也会被血液反方向冲击和挤压产生界面不平坦,同时磁性流体本身的速度与外加磁场的对抗表明,当磁流体受到的磁力可以克服流体力时,适当的速度可以保持磁场附近磁流体区域增加,这样的情形下,两相界面不平坦,容易产生冲击。
HGMS is widely used in magnetic drug targeting (MDT) and industrial fields.Incorporating magnetic particles into drug carriers and using an externally appliedmagnetic field is one way to physically direct these magnetic drug carrier particles(MDCP) to a human vivo. So the particle moving behaviors and the magnetic fluid flowbehaviors are to be investigated.
     We used Cluster-moving Metropolis Monte Carlo method to simulate the magnetic particles (or magnetic carried particles) aggregation in uniform magnetic field, and once particles aggregate together then permanently attach to each other. The dynamics of aggregation is characterized in terms of particle mean size, fractal dimension, distribution of orientations and radial distribution function on different sized particles. From small to large diameters, the distribution of orientations approach the orientation of magnetic field direction step by step, the larger one forms chain-like clusters, smaller size forms clusters with branched and looped shapes.The fractal dimensions of each diameter indicate fluctuation for 20, 40, 100nm during the process. For the polydisperse system, the radial distribution function shows the peaks shift from the integer multiples of average diameter. It indicates that particles larger than those of average diameter are the most common to be found forming clusters, the behavior of the small particles is not the main factor in the cluster formation.
     We simulated the capture behavior and the advection-diffusion behavior of magnetic particles in the cross-section of different curvature magnetic sources which bring the high gradient magnetic field with the time evolution. The results show that the capture behavior is affected not only by the fluid velocities, dynamic viscosity, particle size, and susceptibility, but also by the shape of magnetic sources. Although the curvature of magnetic source dominates the gradient of the magnetic field, enough large area facing the incoming fluid is still the main factor which affects the capture efficiency. The distribution of concentration in the cross section area and source surface are both affected by the surface curvature, especially under the relatively stronger interaction of magnetic source, the influence by surface curvature becomes much more evident, larger curvature costs shorter time for particles accumulation than the smaller one, the magnetic force competing with the fluid drag force could decides the concentration situation. We also simulated the separation behaviors in the branch vessel, different direction of magnets and inlet velocity would decide the separation efficiency.
     The convection and diffusion behaviors of the moving magnetic fluid or ferrofluid in the vessel in the high gradient magnetic field were simulated using incompressible Navier-Stokes equations. The particles accumulation behavior and the streamlines and the contour of concentration are both affected by the susceptibility, intensity of magnetic field and its gradient, and the flow velocity and also by the different size vessels. The accumulation behaves as a solid obstacle in the flow as result of the competing between magnetic and fluid drag forces and gives rise to a rigidly bound core region followed by a wash away region near the vessel boundary under the condition of 10mm vessel in width. While the vessel is near 1mm in width, the magnetic force exerts almost on the whole vessel area, the vortex is not seen, the wash away area disappears and the concentration changes in the whole vessel. The results of the analysis provide meaningful information on ferrofluid transport and stabilization for various magnetic drug targeting and the magnetic fluid sealing, and other using in industrial and medical circumstance. We also described a theoretical analysis of advection and diffusion behavior of magnetic drug targeting particles moving in the blood vessel especially considering adhesion and detachment behaviors which cause the diffusion to the vessel wall in the high gradient magnetic field located on the boundary of the vessel. The numerical results show that the concentration distribution and other parameters are mainly affected by the magnetic force parameters, adhesion and detachment rate coefficients on the vessel wall, and the diffusion coefficient of the particles in the fluid. The effect of adhesion rate coefficient is especially important in this magnetic targeting model, the peak of concentraion appears while the adhesion rate effect can dominate the magnetic interaction effect.
     Magnetic fluid flows around magnet in a channel under the influence of high gradient magnetic field and the difference of temperature between upper and lower boundaries of the channel,it is considered that its magnetization of the fluid varies linearly with temperature and magnetic field intensity. The numerical solution of above model is described by a coupled and non-linear system of PDEs. Results indicate that the presence of magnetic field and temperature field appreciable influence the flow field, vortexes are arose almost around the magnetic source, and also appear near the left upper and right lower boundaries, temperature, local skin friction coefficient and the rate of heat transfer fluctuate evidently near the high gradient magnetic field area and are all affected by the magnitude and the position of the magnetic source, velocity, difference of temperature between upper and lower boundaries, the changing of the local skin friction coefficient and rate of heat transfer with above parameters is contrary on the upper and lower boundaries. The orientation of magnetic can also affect the flow and temperature fields.
     We introduced some simulation methods of two phases fluid, then we mainly investigated the numerical simulation of two phases fluid behavior of ferrofluid and blood using level set method in the channel in the HGMF, results show that the difference and the magnitude of inlet velocities of these fluids both make different situations of fluid interface and ferrofluid region distribution with the time evolution. When the velocity of blood is larger or smaller than it of ferrofluid, the interface is not flat and the controlled area is small, when the velocity of blood is nearly equal to the velocity of ferrofluid, the interface is relatively flat. When ferrofluid is strongly controlled by the magnet the controlled area is larger and the interface is not flat. So the choosing suitable inlet velocities would optimize the MDT efficiency. Although here we simulated the two phases in vivo, the behavior is also helpful in other industrial fields such as in MEMs and so on.
引文
[1]S.Odenbach.Magnetic fluids-suspensions of magnetic dipoles and their magnetic control.J.Phys.:Condens.Matter 2003(15):S1497-S1508.
    [2]池长青,王之珊,赵丕智.铁磁流体力学出版社:北京航空航天大学出版社.1993年12月第1版.
    [3]C.K.Kim,S.J.Lim.Recent progress in drug delivery systems for anticancer agents.Pharmaceutical Soc.Korea 2002,25(3):229-239.
    [4]S.Goodwin,C.Peterson.Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy.J.Magn.Magn.Mater.1999(194):132-139.
    [5]S.Sershen,J.West.Implantable.Polymeric systems for modulated drug delivery.Adv Drug Delivery Rev.2002(54):1225-1235.
    [6]A.S.Lubbe,C.Alexiou,et al.Clinical applications of magnetic drug targeting.J.Surg.Res.2001(95):200-206.
    [7]A.S.Lubbe,C.Bergemann,et al.Physiological aspects in magneti drug-targeting.J.Magn.Magn.Mater.1999(194):149-155.
    [8]S.R.Rudge,T.L.Kurtz,et al.Preparation,characterization,and performance of magnetic iron-carbon composites microparticles for chemotherapy.Biomaterials.2000(21):1411-1420.
    [9]J.H.Leach.Magnetic targeted drug delivery,MSc Thesis,Department of Electrical Engineering,Virginia Tech,2002.
    [10]L.A.,Harris.Polymer stabilized magnetite nanoparticles and poly(propylene oxide) modified styrene-dimethacrylate networks.Ph.D.Dissertation,Department of Chemistry Virginia Tech,2002.
    [11]K.W.O'Brien.Synthesis of fictionalized poly(dimethylsiloxane)s and the preparation of magnetite nanoparticle complexes and dispersions.Ph.D.Dissertation,Department of chemistry,Virginia Tech,2003.
    [12]L.A.Harris,J.D.Golf,et al.Magnetite nanoparticle dispersions stabilized with triblock copolymers,Chem.Mater.2003(15):1367-1377.
    [13]赵强,庞小峰.磁性纳米生物材料研究进展及其应用[J].原子与分子物理学报.2005,22(2):222-225.
    [14]徐雪青,沈辉,许家瑞等.纳米水基磁性液体在肿瘤治疗领域的研究进展[J],化工进展.2006,25(4):480-484.
    [15]陈功,殷王君.磁性纳米材料在生物医学领域的应用[J].中国医学装备.2006,3(8):30-32.
    [16]贾秀鹏,张东生.磁流体在肿瘤学治疗领域的应用进展[J].国外医学肿瘤学分册,29(3):29(3):187-191.
    [17]Q.A.Pankhurst.J Connolly Applications of magnetic nanoparticles in biomedicine.J.Phys.D.-Appl.Phys.2003,(36):R167-R181.
    [18]R.M.wingo,et al.Capture and retrieval of plutonium oxide particles at ultra-low concentrations using high-gradient magnetic separation.Separation Science and Technology.2002,37(16):3715-3726.
    [19]T.Y.ying,C.Jchin,et al.Magtetic-seeding filtration.Separation Science and Technology.1999,34(6&7):1371-1392.
    [20]S.Nedelcu,J.H.P.Watson.Magnetic separator with transversally magnetized disk permanent magnets.Minerals Engineering.2002(15):355-359.
    [21]C.Hoffmann,M.Franzreb.A Novel Repulsive-Mode High Gradient Magnetic Separator-Ⅰ.Design and Experimental Results.IEEE Trans.Magn.2004,40(2):456-461.
    [22]C.Hoffmann,M.Franzreb.A Novel Repulsive-Mode High-Gradient Magnetic Separator-Ⅱ.Separation Model.IEEE Trans.Magn.2004,40(2):462-468.
    [23] G. Dobby, D. Kelland. Magnetite-coal separation by continuous HGMS. IEEE Trans.Magn. 1982, 18 (6) : 1698-1700.
    [24] J.A. Oberteuffer.High gradient magnetic separation. IEEE Trans.Magn. 1973,MAG-9: 303-306.
    [25] J. H .P Watson. Theory of capture of particles in magnetic high-intensity filters.IEEE Trans.Magn. 1975, 11 (5): 1597-1601.
    [26] F. Luborsky, B. Drummond, et al. High gradient magnetic separation: Theory versus experiment. IEEE Trans.Magn. 1976, 11 (6): 1696-1700.
    [27] F.Luborsky, B. Drummond, et al. Buildup of particles on fibers in a high field-high gradient separator.IEEE Trans.Magn.1976, 12(5): 463-465.
    [28] C. Cown , F. Friedlaender, et al. Single wire model of high gradient magnetic separation processes I.IEEE Trans.Magn. 1976, 12(5): 466-470.
    [29] C. Cown, F. Friedlaender, et al. Single wire model of high gradient magnetic separation processes II.IEEE Trans.Magn. 1976, 12(6): 899-900.
    [30] F.Riedlaender, M .Takayasu, et al. Studies of single wire parallel stream type HGMS.IEEE Trans.Magn. 1978, 14(5): 404-407.
    [31] J.Nesset, I.Todd, et al. A loading equation for high gradient magnetic separation.IEEETrans.Magn. 1980, 1 (5): 833-835.
    [32] J.Nesset, et al. The Static (Buildup) Model of Particle Accumulation on Single Wires in High Gradient Magnetic Separation: Experimental Confirmation. IEEE Trans.Magn. 1980, 17(4): 1506-1509.
    [33] K. Hayashi, S. Uchiyama, et al. On particle trajectory and capture efficiency around many wire.IEEE Trans.Magn.1980, 16(5): 827-829.
    [34] H. Greiner, G Reger, et al. The (comparative) performance of HGMS--Filters with a strictly ordered wire matrix in the axial and transverse configuration. IEEE Trans.Magn. 1984, 20(5): 1171-1176.
    [35] R. Birss, R. Gerber, et al. Theory and performance of axial magnetic filters in laminar flow conditions.IEEE Trans.Magn. 1978, 14(5): 389-392.
    [36] R. Birss, R. Gerber, et al. Laminar flow model of particle capture of axial magnetic filters.IEEE Trans.Magn. 1978, 14(6): 1165-1169.
    [37] Teymuraz Abbasov. Estimation of optimum fluid velocity in high gradient magnetic filtration. Separation Science and Technology. 1998, 33 (7): 975-989.
    [38] Teymuraz Abbasov. Theory of high-gradient magnetic filter performance. IEEE Trans.Magn. 1999, 35 (4) : 2128-2132.
    [39] J.H.P.Watson. Approximate solutions of the magnetic separator equations. IEEE Trans.Magn. 1978, 14 (4): 240~243.
    [40] H .Collan, M. Kokkala, et al. Analysis of magnetic filter experiments with polydisperse particle suspensions. IEEE Trans.Magn. 1979, 15 (6): 1529—1531.
    [41] I.Akoto. Mathematical modelling of high-gradient magnetic separation devices.IEEE Trans.Magn. 1977, 13(5): 1486-1489.
    [42] A.D.Ebner, J. A. Ritter, et al. New magnetic field-enhanced process for the treatment of aqueous wastes. Separation Science and Technology. 1999, 34(6&7): 1277-1300.
    [43] A.D. Ebner, J. A. Ritter, et al. Feasibility and limitations of nanolevel high gradient magnetic separation. Separation and Purification Technology. 1997(11) : 199-210.
    [44] A. D. Ebner, J. A. Ritter, et al. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles. J. Colloid Interface Sci. 2000 (225) : 39-46.
    [45] G. B. Cotten. Nanolevel magnetic separation model. Separation Science and Technology. 2002, 37 (16) : 3755-3779.
    [46] A.D. Ebner, J. A. Ritter, et al. Magnetic field orientation and spatial eefects on the retention of paramagnetic nanoparticles with magnetite.Separation Science and Technology. 2002, 26 (16) : 3727-3253.
    [47] J. A. Ritter, A.D. Ebner, et al. Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magn. Magn. Mater. 2004(280) : 184-201.
    [48] H. Chena, A. D. Ebner, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: Parametric study with multi-wire two-dimensional model. J. Magn. Magn. Mater.2005 (293) :616-632.
    [49] H.Chena, A. D. Ebner, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater. 2004 (284) : 181-194.
    [50] M.O. Avile's, A. D. Ebner, et al. Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles . J. Magn.Magn. Mater. 2005 (293) : 605-615.
    [51] R. Goleman. Macroscopic model of particles'capture by the elliptic cross-section collector in magnetic separator. J. Magn. Magn. Mater. 2004(272-276) : 2348-2349.
    [52] J.H.P.Watson. Approximate solutions of the magnetic separator equations IEEE.Trans.Magn. 1978, 14 (4): 240-243.
    [53] H .Collan , M. Kokkala, et al. Analysis of magnetic filter experiments with polydisperse particle suspensions. IEEE Trans.Magn. 1979, 15 (6): 1529-1531.
    [54] I.Akoto. Mathematical modelling of high-gradient magnetic separation devices.IEEE Trans.Magn. 1977, 13(5): 1486-1489.
    [55] O. Rotariu, J.C.N. Strachan. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. J. Magn. Magn. Mater.2005(293) : 639-646.
    [56] V. Murariu, N. Rezlescu. Modelling of density separation of solids in ferrofluids in a cell with HGMS-axial structure J. Magn. Magn. Mater. 1999 (196-197) : 571-572.
    [57] P. Todd, R.P. Cooper. Multistage magnetic particle separator.J. Magn. Magn.Mater. 2001 (225) : 294-300.
    [58] A.J. Rosengarta, M. D. Kaminskib. Magnetizable implants and functionalized magnetic carriers: Anovel approach for noninvasive yet targeted drug delivery.J. Magn. Magn. Mater.2005 (293) : 633-638.
    [59] E. J. Furlani, P. Edward. A model for predicting magnetic targeting of multifunctional particles in the microvasculature J. Magn. Magn. Mater. 2007(312) : 187-193
    [60] B. B. Yellena, Z. G. Forbes. Targeted drug delivery to magnetic implants for therapeutic applications J. Magn. Magn. Mater. 2005 (293) : 647-654.
    [61] A.D.Ebner, J.A.Ritter, et al. Retention of iron oxide particles by stainless steel and magnetite magnetic matrix elements in high -gradient magnetic separation .Separation Science and Technology. 2004, 39 (12) :2863-2890.
    [62] G. p.hatch, R.Stelter. Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J.Magn. Magn. Mater. 2001 (225) : 262-276.
    [63] K. Gilmoura, etal. Modeling of magnetic bandages for drug targeting: Button vs. Halbach arrays J. Magn. Magn. Mater.2007 (311) :323-329.
    [64] C. Alexiou, D. Diehl. A high field gradient magnet for magnetic drug targeting IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2006, 16 (2) :1527-1530.
    [65] H. Hartshorne, C. J. Backhouse. Ferrofluid-based microchip pump and valve .Sensors and Actuators B. 2004 (99) : 592-600.
    [66] A .Hatch, A.E.Kamholz. A Ferrofluidic Magnetic Micropump . Joural of Microelectromechanicalsystems. 2001, 10 (2) : 215-221.
    [67] R. Ganguly, A. P. Gaind. Analyzing ferrofluid transport for magnetic drug targeting. J. Magn. Magn. Mater. 2005 (289) : 331-334.
    [68] K.C. Warnke. Finite-Element Modeling of the Separation of Magnetic Microparticles in Fluid. IEEE Trans.Magn. 2003, 39 (3) : 1771-1777.
    [69] C. Tsouris. T. C. Scott. Flocculation of Paramagnetic Particles in a Magnetic Field . J. Colloid Interface Sci. 1995 (171) : 319-330.
    [70] A .Satoh. A new technique for metropolis Monte Carlo simulation to capture aggregate structures of fine particles: Cluster-moving Monte Carlo algorithm.J.Colloid Interface Sci. 1992 (150) : 461-472.
    [71] A .Satoh. Three dimensional monte carlo simulations of thick chainlike clusters composed of ferromagnetic fine particles. J. Colloid Interface Sci. 1996(181) : 422-428.
    [72] A .Satoh. Two-dimensional monte carlo simulations to capture thick chainlike cluster of ferromagnetic particles in collidal dispersions. J. Colloid Interface Sci.1996 (178) : 620-627.
    [73] O.Rotariu. N. J. C. Strachan. Magnetic-field-induced order in assemblies of superparamagnetic carrier particles . Powder Technology. 2003 (132) :226-232,
    [74] A. D. Grief, G. Richardson. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 2005 (293) : 455-463.
    [75] Y. Haik, J.C. Chen.Development of bio-magnetic fluid dynamics, in: S.H.Winoto, Y.T. Chew, N.E. Wijeysundera (Eds.) . Proceedings of the IX International Symposium on Transport Properties in Thermal Fluids Engineering, Singapore, Pacific Center of Thermal Fluid Engineering,Hawaii, USA, June 25-28, 1996, pp. 121-126.
    
    [76] Y. Haik, V. Pai. Biomagnetic fluid dynamics, in: W. Shyy, R.Narayanan (Eds.) , Fluid Dynamics at Interfaces. Cambridge University Press, 1999 pp.439-452.
    [77] T. Higashi, A. Yamagishi, et al. Orientation of erythrocytes in a strong static magnetic field. Journal of Blood. 1993, 82 (4) : 1328-1334.
    [78] A.N. Shaylgin, S.B. Norina, et al. Behavior of erythrocytes in high gradient magnetic field. J. Magn. Magn. Mater. 1983 (31): 555-556
    [79] J.M.R. Carlton, C.A. Yowell. Biomagnetic separation of contaminating host leukocytes from plasmodium-infected erythrocytes. Experimental Parasitology.2001 (97) : 111-114.
    [80] C.B. Fuh, L.Y. Lin. Analytical magnetapheresis of magnetically susceptible particles. Journal of Chromatography A. 2000 (874) : 131-142.
    [81] P.A. Voltairas, D.I. Fotiadis. Hydrodynamics of magnetic drug targeting. Journal of Biomechanics. 2002 (35) : 813-821.
    [82] Y. Haik, V. Pai. Development of magnetic device for cell separation. J. Magn.Magn. Mater. 1999 (194) : 254-261.
    [83] V. Badescou, O. Rotariu. Transverse high gradient magnetic filter cell with bounded flow field. IEEE Trans.Magn. 1997, 33 (6) : 4439-4444.
    [84] E.K. Ruuge, A.N. Rusetski. Magnetic fluid as drug carriers: targeted transport of drugs by a magnetic field. J. Magn. Magn. Mater. 1993 (122) : 335-339.
    [85] J. Plavins, M. Lauva. Study of colloidal magnetite binding erythrocytes:prospects for cell separation. J. Magn. Magn. Mater. 1993 (122) 349-353.
    [86] Ranjan Ganguly, Swarnendu Sen, et al. Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 2004(271) : 63-73.
    
    [87] R.E. Rosensweig. Ferrohydrodynamics. Dover, New York, 1997.
    [88] B.A. Finlayson. Convective instability of ferromagnetic fluids. J. Fluid Mech.1970, 40 (4) : 753-767.
    [89] B.M. Berkovsky, V.F. Medvedev, et al. Magnetic Fluids—Engineering Applications. Oxford Science Publications, Oxford, 32.1993
    [90] H. Matsuki, K. Yamasawa, et al. Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid.ffiEE.Trans.Magn. 1977, 13 (5) : 1143-1145.
    [91] V.G. Bashtovoy, B.M. Berkovsky. Introduction to Thermomechanics of Magnetic Fluids. Hemisphere Publishing Co., Springer-Verlang, 1988.
    [92] B. Berkovski, V. Bashtovoy. Magnetic fluids and applications handbook.Begell House Inc., New York, 1996.
    [93] E. Blums, A. Cebers, M.M. Maiorov. Magnetic Fluids. Walter de Gruyter,Berlin, 1997.
    [94] V.C. Loukopoulos, E.E. Tzirtzilakis. Biomagnetic channel flow in spatially varying magnetic field International. Journal of Engineering Science.2004( 42):571-590.
    [95] S.Q.Unverdi, GTryggvason. A Front-tracking Method for Viscous,Incompressible, Muti-fluid Flows. J. Comput.Phy. 1992 (100): 25-37.
    [96] J.M.Boulton-stone, Blake. Gas Bubbles Bursting at a Free Surface. J. Fluid Mesh. 1993 (254): 437-466.
    [97] W.J.Rider, D.B.Kothe. Reconstruction Volume Tracking. J.Comput.Phy. 1998(141): 112-152.
    [98] N.Takada, M.Misawa, A.Tomiyama, et al. Numericial Simulation of Two-and Three-dimensional Two-phase Fluid Motion by Lattice Boltzman Method.Comp.Phys.Comm. 2000 (129): 233-246.
    [99] M.Verschueren, F.N. vande Vosse, et al. Diffuse Interface Modeling of Thermocapillary Flow Instabilities in a Hele-Shaw Cell. J.Fluids Mech. 2001(434): 153-166.
    
    [100] M. Sussman, A.S.Almgren, et al. An adaptive Level Set Approach for Incompressible Two-phase Flows. J.Comput.Phys. 1999 (148): 81-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700