用户名: 密码: 验证码:
虚拟样机环境下的紧凑型回旋加速器物理设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紧凑型回旋加速器由于具有灵活和经济特点,是核物理、固态物理等基础研究的重要工具,同时,广泛应用于PET(Positron Emission Tomography)诊断、质子治疗、同位素生产和工业辐照等应用领域。虚拟样机作为一种新兴的基于虚拟现实和数值仿真的数字化技术,目前在复杂制造领域得到了应用。将虚拟样机技术引入到回旋加速器的设计中,有助于产生创新方案、降低工程风险。本文研究了在虚拟样机的集成环境下,以加速器束流动力学为工具,所开展的紧凑型回旋加速器主磁铁和轴向注入系统中相关部件的物理设计,并以实验验证了虚拟样机数值模拟方法的有效性。
     作为全文的理论基础,本文首先对回旋加速器束流动力学作了回顾,包括粒子的横向运动与纵向加速运动及其稳定性,着重讨论了基于数值方法的回旋加速器平衡轨道、粒子滑相和横向自由振荡频率的分析与计算。在此基础上,提出了一种基于对电磁场中粒子运动方程进行数值积分,以跟踪单粒子或束流相空间内多粒子轨迹并进行相关束流动力学分析的算法,设计并实现了了采用该算法的PTP(Particle Tracking Package)程序内核与人机界面,并将该程序的计算结果同TRIUMF实验室的CYCLOP程序作了比对。PTP作为一个分析工具,在论文中加速器各部件的设计中均有应用。
     主磁铁是紧凑型回旋加速器中造价最高的部件,对设计要求极严,要求满足粒子加速的等时性和横向聚焦条件,避免危险的共振线穿越。论文讨论了主磁铁设计上的主要考虑因素,研究了在集成环境下,利用有限元磁场计算与束流动力学分析的协同化作业进行磁铁设计与优化的方法。
     轴向注入系统是提高注入效率和束流强度的关键,本文以一台16 MeV回旋加速器为实例,开展了基于TRACE3D程序的轴向注入的光路设计,并研究了螺旋偏转板解析与数值分析方法。
     本文提出了一种基于Python脚本语言和混合编程方法的回旋加速器虚拟样机集成环境方案,并进行了实现。该方案能够满足虚拟样机设计平台中异构性组件的集成需求,同时具有灵活和易于扩展的特性。
     物理样机上的实验及数据比对是验证虚拟样机有效性的重要手段。在论文的最后部分,介绍了作者参予的两项实验研究:其一为日本京都大学研究用反应堆实验室FFAG(Fixed Field Alternating Gradient)注入环的束流测量实验;其二为中国原子能科学院CYCIAE100回旋加速器中心区实验平台主磁铁测量实验。这两项实验的结果分别验证了束流动力学和磁铁有限元分析在数值模拟上的预测能力和准确性。
The compact cyclotron is a very flexible and economical accelerator, which is not only an important tool for fundamental science such as nuclear and solid-state physics research, but also widely employed in PET (Positron Emission Tomography) system, proton therapy, isotopes production and industrial radiation. We applied VP (Virtual Prototyping) technique in the design and development processes of compact cyclotrons, which conduces to generating innovational schemes and reducing risks. With the guide of beam dynamics theory, this thesis describes the design study for the main magnet, the axial injection system and some related components of cyclotrons in the integrated VP environment. The experimental results agree well with the numerical simulation of magnet fields and beam behavior.
     First of all, the basic beam dynamics including transverse and longitudinal motion with their stability underlying compact cyclotrons are reviewed. The numerical analysis and calculation method of equilibrium orbits, phase shift and tune in cyclotrons is discussed.
     With Runge-Kutta integration on particles motion equations, we can obtain beam particles trajectories and perform related beam dynamics analysis. Base on this method, a code named PTP (Particle Tracking Package) is designed and implemented with C++ and Python languages. The results of PTP agree well with the TRIUMF code CYCLOP.
     The main magnet is the most expansive part in cyclotrons, which has stringent design tolerances. The magnetic field distribution should fulfill requirements of isochronisms and transverse focusing of the beam, as well as to avoid dangerous resonance crossing. The main design considerations of the main magnet are summarized. And an automated magnet design and optimization method with the collaboration between beam dynamics analysis and magnet FEM (finite elements method) calculation is studied.
     The axial injection system is the key facility of achieving high intensity beam and high transport efficiency. This thesis studied the optics design of a 16 MeV cyclotron axial injection line with the TRACE3D code. The analytical and numerical design study of the spiral injector is described.
     The VP integrated platform is a large-scale software and has numerous loose-coupled components. A pythonic approach and implementation with heterogeneous feature is proposed, which achieves a combination of code efficiency, flexibility and compactness.
     Experimental study of physical prototypes is very important to validate numerical results in VP environment. Two experiments are introduced. One is the beam measurement of the Injector ring of FFAG Complex in KURRI. The other is the magnet field measurement of a 10 MeV prototype cyclotron in CIAE. The experiment results show good agreement with the numerical simulation of beam dynamics and magnet field.
引文
[1] Los Alamos Accelerator Code Group. POISSON/SUPERFISH user’s guide: LA-UR-87-115. Los Alamos:LANL, 1987.
    [2] Fan Mingwu,Miao Yixin,Yan Weili. DE2D interactive software package for 2D magnetostatic electrostatic and eddy current field computations. IEEE Trans. On Mag., 1985, 21(6): 2539-2542.
    [3] Houtman H., Jones F. W., Kost C. J. Laplace and poisson equation solution by RELAX3D, Computers in Physics,1994,8(4):469-479.
    [4] Vector Field Limited. OPERA-3D user guide. Oxford: Vector Field Limited, 1998.
    [5] Milton B. F. Cyclone design note: TRI-DN-99-4. TRIUMF, 1999.
    [6] Brown K. L., Rothacker F., Carey D. et al. Transport:a computer program for designing charged particle beam transport systems: SLAC-91. Standford, 1977.
    [7] Crandall K. R., Rusthoi D. P. TRACE 3-D Documentation: LA-UR-97-886. Los Alamos National Lab., 1997.
    [8] Kowalski S., Enge H. A. RAYTRACE-Laboratory for nuclear science and department of physics, Massachusetts: MIT, 1987.
    [9]樊明武,余调琴,熊永前等.小型回旋加速器虚拟样机技术,中国工程科学,2003,5(10):8-13.
    [10] Lawrence E. O., Edlefson N. E. On the production of high speed protons. Science, 1930, 72:376-377.
    [11] Bethe H. E., Rose M. E. Maximum energy obtainable from cyclotron. Phys. Rev., 1937, 52:1254.
    [12] McMillan E. M. The Synchrotron - a proposed high energy particle accelerator. Phys. Rev. 68:143-44.
    [13] Thomas L. H. The Paths of Ions in the Cyclotron. Phys. Rev., 1938,54:580-587
    [14] Willax H.A. Status report. In: Proc. 3rd Int. Conf. on. Sector-focused Cyclotrons: CERN 63-19, 1963. 386.
    [15] Blosser H. G. The Michigan State University superconducting cyclotron program. IEEE Tran. Nucl. Sci., NS-26, (2):2040.
    [16] Stammbach T. Introduction to cyclotrons. In: Proc of CERN Accelerator School on Cyclotrons,Linacs and their Applications: CERN 96–02. Geneva: CERN,1996. 113–138 .
    [17] Sutherland I. E. The ultimate display. In: Proceedings of IFIPS Congress, New York, 1965. 506-508.
    [18] Gobbetti E., Scateni R. Virtual reality: past, present and future. In: Virtual Environment in Clinical Psychology and Neuroscience. Amsterdam, Netherlands, 1998, Ios Press.
    [19] Siddique Z., Rosen D. W. Virtual prototyping approach to product disassembly reasoning. Computer-aided Design, 1997, 29(12): 847-860.
    [20] Ramaswamy S., Yan Y. Interactive modeling and simulation of virtual manufacturing assemblies: an agent-based approach. Journal of Intelligent Manufacturing, 1999, 10(3):503-518.
    [21]潘志庚,姜晓红,张明敏等.分布式虚拟环境综述.软件学报,2000,11(4):461-467.
    [22] Carolina C. N. Making virtual reality useful: a report on immersive applications at Iowa State University. Future Generation Computer Systems, 1998, 14(1):147-155.
    [23] Chryssolouris G., Mavrikios D., Fragos D. et al. A virtual reality-based experimentation environment for the verification of human-related factors in assembly processes. Robotics and Computer Integrated Manufacturing, 2000, 16(1):267-276.
    [24]张再兴.虚拟现实的技术概念和研究课题.清华大学学报(自然科学版), 1995(5):49-53.
    [25] Balaguer J. F., Gennaro S. de.VENUS:a virtual reality project at CERN. ACM SIGGRAPH Computer Graphics,1996,30(4):40-43.
    [26] Greenfield D. Virtual prototyping at Rolls-Royce. Intelligent Systems, Report 13, 1 (1996).
    [27] McNeely W. Boeing’s high performance visualization software: Flythru. In: CERN Computing Seminar, June 1996.
    [28] Stytz M. R., Banks S. B., Johnson T. D. et al. The virtual SpacePlane. IEEEComputer Graphics and Applications. 2001, vol 2: 42-52.
    [29] Heath M. T., Dick W. A. Virtual prototyping of solid propellant rockets. Computer in Science & Engineering. 2000, March/April. 21-32.
    [30]李伯虎,柴旭东,熊光楞,等.复杂产品虚拟样机工程的研究与初步实践.系统仿真学报,2002年,(3): 336-341.
    [31]裴胤.基于WIDSS的火箭发射装置虚拟样机设计及动力学仿真.博士学位论文.南京:南京理工大学,2002.
    [32]李尚平等.基于虚拟样机技术的丘陵地带小型甘蔗联合收割机开发研究.数字制造科学,2003(1): 230-244.
    [33]贾长治,王兴贵,解璞,等.基于虚拟样机的武器系统性能评估方案.系统仿真学报,2001(2):341-346.
    [34] Luccio A. U. Numerical simulation of particle accelerators. Parallel Computing 2001(27):163-177.
    [35] Alonso J. R. The Spallation Neutron Sources project. In: Proc of the 1999 Particle Accelerator Conference, New York. 574-578.
    [36] Holmes J. A., Galambos J. D., Jeon D. et al. Simulation studies of Space-Charge-Dominated beams in Spallation Neutron Sources. In: Proc of the 1999 PAC, New York. 109-113.
    [37] Kallos E., Katsouleas T., Muggli P. et al. A multibunch plasma wakefield accelerator. In: Proc of the 1999 PAC, New York. 3384-3386.
    [38] Zhou F., Cline D. B., Kimura W. D. Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment, Physics Review Special Topics - Accelerators and Beams, 2003(6): 054201-1-6.
    [39] Ahrens L., Brown K., Glenn J W et al. AGS resonant extraction with high intensity beams. In: Proc of the 1999 PAC, New York. 3291-3293
    [40] Brown K., Niederer J., Satogata T. et al. The RHIC/AGS online model environments: experiences and design for AGS modeling, In: Proc of the 1999 PAC, New York. 2722-2724.
    [41] Satogata T., Brown K., Pilat F. et al. The RHIC/AGS Online Model Environments: Design and Overview, In: Proc of the 1999 PAC, New York. 2728-2730.
    [42] Noriichi K. Virtual accelerator and fundamental guidelines towards sharable software for accelerator control systems. Nuclear Instruments & Methods inPhysics Research, 1994. 497-500
    [43] Yamamoto N. Use of a virtual accelerator for a development of an accelerator control system. In: Proc of the 1997 Particle Accelerator Conference. Vancouver, 1997. 2455-2457.
    [44] Zhang Tianjue,Cheng Yong,Fan Mingwu. Intelligent CAE system of cyclone type cyclotron main magnet and its application. Chin. J. Nucl. Physics,1993,15(1): 82
    [45]严小卫,樊明武. FISHBASE:一个加速器腔设计专用数据库管理系统.核科学与工程, 1998,18(4): 381-384.
    [46]田忠,裴元吉.设计HLS储存环高频腔的有限元分析.核技术,1999,22(2): 109-113.
    [47]谢家麟,王发芽,杨学平等.一个新型电子直线加速器的预制研究.高能物理与核物理. 2004, 28(2): 105-109.
    [48]王书鸿,顾鹏达,王九庆等. BEPCII- Linac束流光学和轨道校正的优化研究. 2003, 27(2): 173-177.
    [49]纪彬,张天爵,彭朝华等. 70MHz回旋加速器谐振腔高频性能的数值研究.原子能科学技术. 2004, 38(2): 121-124.
    [50]邢庆子,林郁正,傅世年等.利用模拟方法研究RFQ加速器中正、负离子束同时加速的动力学问题.高能物理与核物理. 2004, 28(6): 659-663.
    [51]邢庆子,林郁正,傅世年. PIC方法在RFQ加速器z-code和t-code模拟程序中的应用研究.核技术, 2005, 28(5): 342-348.
    [52]唐靖宇,邱静,王生等. Physics design and study of the BSNS RCS injection system.高能物理与核物理. 2006, 30(12):1184-1189.
    [53]段天英,罗璋琳.加速器驱动次临界堆的安全和控制特性初步研究.原子能科学技术. 2000, 34(3): 205-211.
    [54]樊明武,余调琴,熊永前等.小型回旋加速器虚拟样机技术,中国工程科学,2003,5(10): 8-13
    [55] Fan Mingwu, Li Shiqi, Yu Tiaoqin et al. Applying virtual prototyping to the innovative design of low energy accelerator. In: Proceedings of the 2003 Particle Accelerator Conference, May12-16, Portland, 2003. 1560-1562
    [56]陈德智,张黎明,熊永前等.使用ANSYS进行回旋加速器磁铁三维分析.电工技术杂志. 2004(增刊): 3-7
    [57] Qin Bin, Fan Mingwu, Chen Dezhi. Magnet design and shimming of cyclotronsbased on virtual prototyping,强激光与粒子束,2007,19(4): 689-694.
    [58] Dong Tian-lin, Zhan La-min, Hong Yue-ming et al. Cyclotron cavity analysis based on field circuit model. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 513(3): 631-634
    [59] Xiong Jian, Qin Bin, Xiong Yongqian et al. Modeling and beam dynamic visualization in cyclotron virtual prototyping. In: Proceedings of the 2003 Particle Accelerator Conference, May12-16, Portland, 2003. 3509-3511
    [60] Qin Bin, Xiong Yongqian, Jian Xiong et al. A Framework Design for A Cyclotron Virtual Control Platform Based on Object-oriented Methodology. In: Proceedings of the 2003 Particle Accelerator Conference, May12-16, Portland, 2003. 3506-3508
    [61]秦斌,熊健,余调琴,樊明武.基于MVC模式的加速器虚拟控制系统框架与实现.系统仿真学报,2005, 17(1): 104-107
    [62] Bin Qin, Yang Jun, Xiong Yongqian et al. A Pythonic Integrate Solution for Virtual Prototyping of Cyclotrons, Nuclear Instrument and Method in Physics Research, Section B: Beam Interactions with Materials and Atoms, to be published.
    [63] Tanigaki M., Shiroya S., Ishi Y. et al. Construction of FFAG accelerators in KURRI for ADS study, In: Proceedings of the 2003 Particle Accelerator Conference. Knoxville, Tennessee, 2005. 350-352.
    [64] Edwards D. A., Syphers M. J. An introduction to the physics of high energy accelerators. Wiley & Sons Inc,1993
    [65] Craddock M. K. High intensity circular proton accelerators. Vancouver: TRIUMF, 1987.
    [66] Stanley Humphries Jr. Principles of charged particle acceleration. John Wiley and Sons, 1999.
    [67]陈佳洱.加速器物理基础(第一版),北京,原子能出版社,1993.
    [68] Courant E. D., Livingston M. S., Snyder H. S. The strong-focusing synchrotron-a new high energy accelerator. Phys. Rev., 1952, 88(5): 1190 -1196.
    [69] Hagedoorn H. L., Verster N F.Orbits in an AVF cyclotron. Nuclear Instruments and Methods,1962,18(19):201-228
    [70] Kost C. J., Mackenzie G. H. COMA– a linear motion code for cyclotrons. IEEE Trans on Nucl Sci,1975,NS-22(3):1922-1925 .
    [71]刘乃泉,加速器理论(第二版).北京,清华大学出版社,2004.
    [72] Berz M., Erdelyi B., Makino K. Fringe field effects in small rings of large acceptance. Phy. Rev. ST, 2000, 3: 124001-1-11.
    [73] Berz M., Makino K. COSY INFINITY 9.0 beam physics manual: MSU report MSUHEP 060804. Augurst 2006, Michigan State University.
    [74] Minty M. G., Zimmermann F.. Measurement and control of charged particle beams. Springer, 2003.
    [75] Matplotlib user manual. http://matplotlib.sourceforge.net/
    [76] pyOpenGL user manual. http://pyopengl.sourceforge.net/
    [77] Python User Guide. http: //python.sourceforge.net/
    [78] Beazley D. M. Automated scientific software scripting with SWIG. Future Generation Computer Systems,2003,(19): 599
    [79] Breymann U. Designing components with the C++ STL (3rd electronic edition). 2002.
    [80] Jongen Y., Zaremba S. Cyclotron magnet calculations. In: Proc of CERN Accelerator School on Cyclotrons,Linacs and their Applications: CERN 96–02. Geneva:CERN,1996.
    [81]樊明武,秦斌,陈德智等.回旋加速器虚拟样机技术.湖北科学技术出版社.
    [82] Bigham C B, Davies W G, Heighway E A, et al. First operation of the Chalk River superconducting cyclotron. NIMA, 1992, vol.254(2):237-251.
    [83] Ryckewaert G. H. Axial injection systems for cyclotrons. In: 9th Int. Conf. on cyclotrons and their applications, Caen, Sept. 1981. 241.
    [84] Mandrillon P. Injection into cyclotrons. In: Proc of CERN Accelerator School on Cyclotrons,Linacs and their Applications: CERN 96–02. Geneva:CERN,1996.
    [85] Fan Mingwu, Zhang Tianjue, Cui Baoqun et al. Some R&D for the update project of Beijing tandem laboratory. In: IEEE Proc. of the 2001 Particle Accelerator Conference, Chicago, 2001. 2816-2818.
    [86]肖美琴,张天爵,樊明武. CYCIAE型回旋加速器轴向注入系统的概念设计.原子能科学技术,1996,30(5): 392-398.
    [87] Jongen Y., Kleeven W., Zaremba S. New cyclotron developments at IBA. CYCLOTRONS International Conference 2004, Tokyo, 2004. 110-114.
    [88] Chengjie Chu, Tianjue Zhang and Mingwu Fan. Operation experience ofCYCIAE30 injector. In: Proc of the 1999 PAC, New York. 1940-1942.
    [89] Baartman R. Matching of ion sources to cyclotron inflectors. In: Proc. of 1st European Part. Acc. Conf., Rome, 1988. 947-948.
    [90] Kuo T., Baartman R., Root L. et al., A comparison of two injection line matching sections for compact cyclotrons. In: Proc. PAC95, Dallas: IEEE, 1995. 1858-1860.
    [91] Dehnel M., Erdman K., Kuo T. et al. Injection system design and tests for the TR13 cyclotron, In: Proc. of EPAC 1994, London, England, 1994. 2367-2369.
    [92] Zhang T., Yao H., Guan X. et al. Numerical investigation for high intensity H- beam injection to a 100 MeV compact cyclotron. Review of Scientific Instruments, 2004, 75(5): 1796-1798.
    [93] Maggiore M. Design of a superconducting cyclotron for exotic nuclei production and therapy. PhD Thesis. Catania, Italy, 1995.
    [94]姚红娟,张天爵,贾先禄等. 100MeV强流质子回旋加速器轴向注入系统和中心区物理设计.高能物理与核物理,2006, 30(supp I):141-143.
    [95] Brown K. L., Rothacker F., Carey D. et al. Transport:a computer program for designing charged particle beam transport systems: SLAC-91. Stanford, 1977.
    [96] Heighway E. A., Hutcheon R. M. Transoptr—A second order beam transport design code with optimization and constraints. Nuclear Instruments and Methods, 1981, 187(1):89-95.
    [97] Baartman R., Yuan D. Space charge neutralization studies of an H- Beam. In: Proc. of EPAC 88. Rome, 1988. 949-950.
    [98]张天爵,樊明武.强流回旋加速器静电偏转板设计方法研究.北京:原子能科学技术, 1996, 30(5): 399-404
    [99] Muller R. W. Novel inflectors for cyclic accelerators. NIM, 1967, 54:29.
    [100] Root L. W. Design of an inflector for the TRIUMF cyclotron. M.S. thesis. April 1972, University of British Columbia.
    [101] Root L. W. Experimental and theoretical studies of the behavior of an H- ion beam during injection in the TRIUMF central region model cyclotron. Ph.D. thesis. April 1974, University of British Columbia.
    [102] Milton B. F. and Pearson J. B. CASINO user’s guide and reference manual: TRI-DN-89-19, July 1998.
    [103] Toprek D., Subotic K. Some optical properties of the spiral inflector. NIMA, 1999,431: 38-45.
    [104] Toprek D. Theory of the central ion trajectory in the spiral inflector. NIMA, 2000, 440:285-295.
    [105]贾先禄,回旋加速器轴向注入偏转板的束流光学特性研究与设计方法研究.硕士学位论文, 2004.7.中国原子能科学研究院.
    [106] The virtual reality modeling language specification, version 2.0, ISO/IEC WD 14772, August 4, 1996. http://graphcomp.com/info/specs/sgi/vrml/spec/
    [107] Deitel H. M., Deitel P. J., Liperi J. P. et al. Python编程金典.周靖译.北京:清华大学出版社,2003.
    [108] http://www.parallelgraphics.com/cortona.
    [109] MINITrace Manual. GE ltd.
    [110]秦斌.回旋加速器虚拟控制系统设计与实现.硕士学位论文,2004.7.武汉:华中科技大学.
    [111] Symon K. R., Kerst D. W., Jones L. W. et al. Fixed-field alternating-gradient particle accelerators. Phys. Rev., 1956, 103(6): 1837-1859.
    [112] Cole F. T., Haxby R. O., Jones L. W. et al. Electron Model Fixed Field Alternating Gradient Accelerator. Rev. Sci. Instr., 1957, 28(6): 403-420.
    [113] Mori Y. Developments of FFAG Accelerator. In: The International Workshop on FFAG Accelerators, Tsukuba, Japan, 2004. 1-3.
    [114] Aiba M. Study of Resonance Crossing in Strong Focusing Accelerator. PhD thesis, Tokyo Univ., 2005.
    [115] Mori Y., Fujieda M., Koba K. et al. A New Type of RF Cavity for High Intensity Proton Synchrotron Using High Permeability Magnetic Alloy. In: Proc. of EPAC 98, Stockholm, 1998. 299-301.
    [116] Aiba M., Koba K., Machida S. et al. Development of a FFAG Proton Synchrotron. In: Proc. of EPAC 2000, Vienna, Austria. 581-583.
    [117] Berg J. S. Summary of FFAG Workshop 2005. In: The International Workshop on FFAG Accelerators, KURRI, Osaka, Japan, Dec. 5, 2005. 93-102.
    [118] Tanigaki M., Mori Y., Inoue M. et al. Present Status of FFAG Accelerators in KURRI for ADS Study. In: Proc. of EPAC 2006, Edinburgh, Scotland, 2006. 2367- 2369.
    [119] Fan Mingwu,Zhang Tianjue,Cui Baoqun,et al. Some R&D for the update projectof Beijing Tandem Laboratory. In: Proc. of the 2001 PAC. Chicago: IEEE,2001. 2816~2818.
    [120] ANSYS中国. ANSYS电磁场分析指南. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700