用户名: 密码: 验证码:
磁性纳米材料的修饰及其在铬的形态分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自固相萃取(SPE)创立以来,由于其具有有机溶剂耗量少、快速相分离、稳定性强、选择性好、富集倍数高、吸附容量大、可封闭操作(避免引入污染物)、制备方法简单、易于实现自动化、易与其它检测技术结合等优点,成为分离/富集中最重要的技术之一。本论文的研究目的是开发和研制新的磁固相萃取技术和新型固相萃取材料,建立磁固相萃取(MSPE)-火焰原子吸收光谱法(FAAS)联用测定铬元素形态的新方法。主要研究内容如下:
     (1)建立了以Fe3O4@SiO2-AEAPS作为萃取剂的MSPE-FAAS联用测定环境及生物样品中的痕量铬形态(Cr(Ⅲ)和Cr(Ⅵ)的新方法,系统地考察了影响MSPE的诸因素。在最佳条件下,富集倍数达到100倍,检测限为0.661μg/L。该方法被成功用于环境及生物样品中铬形态的测定。
     (2)建立了Fe3O4@ZrO2 MSPE-FAAS联用测定环境及生物样品中的铬形态(Cr(Ⅲ)和Cr(Ⅵ)的新方法,系统地考察了影响MSPE的诸因素。在最佳条件下,富集倍数达到25倍,检测限为0.69μg/L。该方法被应用于环境及生物样品中的铬形态的测定,取得了满意结果。
     (3)建立了Fe3O4@APDC MSPE-FAAS联用测定环境及生物样品中的铬形态(Cr(Ⅲ)和Cr(Ⅵ))的新方法,系统地考察了影响MSPE的诸因素。在最佳条件下,富集倍数达到8.3倍,检测限为3.1μg/L。该方法被成功用于环境及生物样品中的铬形态的测定,说明了此方法的可行性和可靠性。
Solid phase extraction (SPE) has become one of the most important techniques used for separation and preconcentration due to its advantages of low organic solvents consumption, rapid phase separation, strong stability, good selectivity, high enrichment factor, high adsorption capacity, closed operation without introducting pollutants, simple preparation method, easy automation, good ability of combination with different determination techniques etc.. The aim of this dissertation is to develop new solid phase extraction materials and new magnetic solid phase extraction technology, to establish new technology of combination flame atomic absorption spectrophotometer (FAAS) with magnetic solid phase extraction (MSPE) and new method of chromium species analysis. The main contents are as follows:
     (1) A method has been developed for the determination of trace chromium species (Cr(III) and Cr(VI)) in environmental and biological samples by MSPE combined with FAAS using Fe3O4@SiO2-AEAPS as extractant. Various parameters affecting MSPE were optimized systematically. Under the optimized conditions, an enrichment factor 100 and the determination limit 0.66μg/L were found. The proposed method has been successfully applied to the determination of trace chromium species in environmental and biological samples.
     (2) A method has been developed for the determination of trace chromium species (Cr(Ⅲ) and Cr(Ⅳ)) in environmental and biological samples by MSPE combined with FAAS using Fe3O4@ZrO2 as extractant. Various parameters affecting MSPE were optimized systematically. Under the optimized conditions, an enrichment factor 25 and the determination limit 0.69μg/L were found. The proposed method has been applied to the determination of trace chromium species in environmental and biological samples, and a well result was received.
     (3) A method has been developed for the determination of trace chromium species (Cr(Ⅲ) and Cr(Ⅵ)) in environmental and biological samples by MSPE combined with FAAS using Fe3O4@APDC as extractant. Various parameters affecting MSPE were optimized systematically. Under the optimized conditions, an enrichment factor 8.3 and the determination limit 3.13μg/L were found. The proposed method has been successfully applied to the determination of trace chromium species in environmental and biological samples, demonstrating the feasibility and reliability of the proposed method.
引文
[1]Kot A, Namiesnik J. The role of speciation in analytical chemistry. TrAC,2000,19:69-79.
    [2]Ambushe A A, McCrindle R l, Cheryl M E M, et al. Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom.,2009,24:502-507.
    [3]刘成伦.于晶电化学方法在无机铬形态分析中的应用进展.治金分析,2009,29(8):40-46.
    [4]Kumbasar R A. Selective extraction of chromium(Ⅵ) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier.J. Hazard. Mater.,2010, 178:875-882.
    [5]Tang A N, Jiang D Q, Jiang Y, et al. Cloud point extraction for high-performance liquid chromatographic speciation of Cr(Ⅲ) and Cr(Ⅵ) in aqueous solutions.J. Chromatogr. A, 2004,1036:183-188.
    [6]Unceta N, Seby F, Malherbe J, et al. Chromium speciation in solid matrices and regulation:a review. Anal. Bioanal. Chem.,2010,397:1097-1111.
    [7]Yang W P, Zhang Z J, Wei D. et al. Speciation of chromium by in-capillary reaction and capillary electrophoresis with chemiluminescence detection.J. Chromatogr. A,2003,1014: 203-214.
    [8]Hansen M B. Johansen J D, Menne T, et al. Chromium allergy:Significance of both Cr(Ⅲ) and Cr(Ⅳ). Contact dermatitis,2003,49:206-212.
    [9]Eastmond D A, MacGregor J T, Slesinski R S, et al. Trivalent chromium:assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. CRC Crit. Rev. Toxicol,2008,38(3):173-190.
    [10]Shah A Q, Kazi T G, Arain M B, et al. Hazardous impact of arsenic on tissues of fish species of the Manchar Lake and Indus River. Pakistan. J. Hazard. Mater.,2009,167:511-515.
    [11]Mustafa T, Ozlem S K, Isa K, et al. Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food Chem. Toxicol.,2010,48:41-46.
    [12]李玉环,壬锋.催化动力学光度法测定植物中的痕量硒(Ⅳ).微量元素与健康研究,2002,19(2):64-66.
    [13]Wu Y W, Jiang Y Y, Han D Y, et al. Speciation of chromium in water using crosslinked chitosan-bound FeC nanoparticles as solid-phase extractant, and determination by flame atomic absorption spectrometry. Microchim. Acta,2007,159(3-4):333-339.
    [14]Gomez V, Callao M P. Chromium determination and speciation since 2000. TRAC-Trends Anal. Chem.,2006,25:1006-1015.
    [15]Huo D W, Lu Y S, Kingston H M, et al. Determination and correction of analytical biases and study on chemical mechanisms in the analysis of Cr(Ⅵ) in soil samples using EPA protocols. Environ. Sci. Technol.,1998,32:3418-3423.
    [16]陈德勋,李玉珍.环境水样中铬形态分析方法研究.岩矿测试,1999,18:171-175.
    [17]李艳廷,李方.环境中无机铬形态分析研究进展.化学研究与应用,2000,12:476-481.
    [18]但德忠,袁东.环境样品分析.分析试验室,2000,19(3):89-108.
    [19]Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environment Pollution,2000,107(3):263-283.
    [20]刘二保,梁建功,韩素琴,等.铬的形态分析研究与进展.理化检验-化学分册,2003,39(6):368-371.
    [21]王畅,谢文兵,刘杰,等.流动注射分离-原子吸收光谱法测定底泥中生物可利用态Cr(Ⅳ)和Cr(Ⅲ).分析化学,2007.35(3):45]-454.
    [22]Foy G P, Pacey G E. Specific extraction of chromium(Ⅵ) using supercritical fluid extraction. Talanta,2000,51(2):339-347.
    [23]Peraniemi S, Ahlgren M. Separaion of microgram quantities of Cr(Ⅲ) and Cr(Ⅵ) in aqueous solutions and detemination by energy dispersive X-Ray fluorescence spectrometry. Anal. Chim. Acta.,1995,315:365-370.
    [24]Raaphorst J G V, Haremaker H M, Deurloo P A, et al. Accurate and precise determination of chromium by isotope dilution on mass spectrometry in some enviroumental materials. Anal. Chim. Acta.,1994,286:291-296.
    [25]Meeravali N N, Jiang S J. A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination. Talanta,2009,80:173-178.
    [26]Wang H J, Du X M, Wang M, et al. Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(Ⅲ) and Cr(Ⅵ) in urine of chromate workers. Talanta,2010,81: 1856-1860.
    [27]游革新,尹诗衡.微柱预富集ICP-AES测定高纯银中铝、铜、铬、镍和锰.光谱实验室,2006,23(4):736-740.
    [28]郑志侠,巫建光,汀家权,等.浊点萃取-高效液相色谱法测定巢湖表层沉积物中铬的形态.分析测试学报,2010,29(12):1125-1129.
    [29]Chen S Z, Zhu L, Lu D B, et al. Separation and chromium speciation by single-wall carbon nanotubes microcolumn and inductively coupled plasma mass spectrometry. Microchim. Acta, 2010,169:123-128.
    [30]杨永坛,康经武,李菊日,等.不同价态铬离子的毛细管电泳分离与测定.分析化学,1997,25(6):738-738.
    [31]Wen B, Shan X Q, Lian J, et al. Separation of Cr(Ⅲ) and Cr(Ⅵ) in river and reservoir water with 8-hydroxyquinoline immobilized polyacrylonitrile fiber for determination by inductively coupled plasma mass spectrometry. Talanta,2002,56(4):681-687.
    [32]Grabarcyk M, Kaczmarek L, Korolczuk M, et al. Determination of Cr(Ⅵ) by catalytic adsorptive stripping voltammetry with application of nitrilotriacetic acid as a masking agent. Electroanalysis,2004,16(18):1503-1507.
    [33]Baytak S, Turker A R. Determination of iron(Ⅲ), cobalt(Ⅱ) and chromium(Ⅲ) in various water samples by flame atomic absorption spectrometry after preconcentration by means of saccharomyces carlsbergensis immobilized on amberlite xad-4. Microchim. Acta,2005, 149(1-2):109-116.
    [34]Abkenar S D, Hosseini M, Dahaghin Z. et al. Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry. Bull. Korean Chem. Soc.,2010,31(10):2813-2818.
    [35]Baytak S, Zereen F, Arslan Z, et al. Preconcentration of trace elements from water samples on a minicolumn of yeast(Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination by ICP-AES. Talanta,2011,84(2):319-323.
    [36]El-Shahawi M S, Al-Saidi H M, Bashammakh A S, et al. Spectrofluorometric determination and chemical speciation of trace concentrations of chromium (Ⅲ& Ⅵ) species in water using the ion pairing reagent tetraphenyl-phosphonium bromide. Talanta,2011,84(1): 175-179.
    [37]Motomizu S, Jitmanee K, Oshima M., et al. On-line collection/concentration of trace metals for spectroscopic detection via use of small-sized thin solid phase (STSP) column resin reactors:Application to speciation of Cr(Ⅲ) and Cr(Ⅵ). Anal. Chim. Acta.,2003,499(1-2): 149-155.
    [38]Milacic R, Scancar J, Tusek J, et al. Determination of Cr(Ⅵ) in welding fumes by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometric detection. Anal. Bioanal. Chem.,2002,372(4):549-553.
    [39]Borai E H, El-Sofany E A, Abdel-Halim A S, et al. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination. Trends Anal. Chem.,2002,21(11):741-745.
    [40]Hashemi P, Boroumanda J, Fathi M R, et al. A dual column system using agarose-based adsorbents for preconcentration and speciation of chromium in water. Talanta,2004,64(3): 578-583.
    [41]Kiptoo J K, Ngila J C, Sawula G M, et al. Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta,2004,64(1):54-59.
    [42]Hassan S S M, Abdel-Shafi A A, Mohammed A H K, et al. Flow injection fluorimetric determination of chromium(Ⅵ) in electroplating baths by luminescence quenching of tris (2. 2-bipyridyl) ruthenium(Ⅱ). Talanta,2005,67(4):696-702.
    [43]Bobrowski A, Bas B, Dominik J. et al. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta,2004,63(4): 1003-1012.
    [44]Moghadam M R, Dadfarnia S, Shabani A M H, et al. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry. J. Hazard. Mater,2011,186(1): 169-174.
    [45]Rahman G M M, Kingston H M S, Towns T G, et al. Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials. Anal. Bioanal. Chem.,2005,382(4):1111-1120.
    [46]Korolczuk M, Grabarczyk M. Evaluation of ammonia buffer containing EDTA as an extractant for Cr(VI) from solid samples. Talanta,2005,66(5):1320-1325.
    [47]Eiras Sde P, Custodio U M, Pavanin L A, et al. Determination of chromium(Ⅲ) using a homogenous mixture of water-ethanol-methylisobutylketone solvents. Talanta,2003,59(3): 621-625.
    [48]Abdollahi H. Simultaneous spectrophotometric determination of chromium (Ⅵ) and iron (Ⅲ) with chromogenic mixed reagents by H-point standard addition method and partial least squares regression. Anal. Chim. Acta,2001,442:327-336.
    [49]Panichev N, Mandiwana K, Kataeva M, et al. Determination of Cr(VI) in plants by electrothermal atomic absorption spectrometry after leaching with sodium carbonate. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(5):699-703.
    [50]Cybulski W, Jarosz L, Chalabis-Mazurek A, et al. Contents of zinc, copper, chromium and manganese in silver foxes according to their age and mineral supplementation. Pol. J. Vet. SCI,2009,12(3):339-345.
    [51]Wu P, Chen H, Cheng G L, et al. Exploring surface chemistry of nano-TiO2 for automated speciation analysis of Cr(Ⅲ) and Cr(Ⅵ) in drinking water using flow injection and ET-AAS detection. J. Anal. At. Spectrom,2009,24(8):1098-1104.
    [52]Matos G D, dos Reis E B, Costa A C S, et al. Speciation of chromium in river water samples contaminated with leather effluents by flame atomic absorption spectrometry after separation/preconcentration by cloud point extraction. Microchem. J.,2009,92:135-139.
    [53]Hemmatkhah P. Bidari A. Jafarvand S. et al. Speciation of chromium in water samples using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry. Microchim. Acta,2009,166:69-75.
    [54]Dai S J, Zhang X S, Yu L Y, et al. Simultaneous assay of trace Cr(Ⅵ) and total chromium in tannery effluent. Using flow injection spectrophotometry with ce(iv) as oxidant. J. Soc. Leath. Tech. Ch.,2009,93(6):245-249.
    [55]Leita L, Margon A, Pastrello A, et al. Soil humic acids may favour the persistence of hexavalent chromium in soil. Environ. Pollut.,2009,157(6):1862-1866.
    [56]Themelis D G, Kika F S, Economou A, et al. Flow injection direct spectrophotometric assay for the speciation of trace chromium(Ⅲ) and chromium(Ⅵ) using chromotropic acid as chromogenic reagent. Talanta,2006,69:615-620.
    [57]Revanasiddappa H D, Kumar T N K. A highly sensitive spectrophotometric determination of chromium using leuco Xylene cyanol FF. Talanta,2003,60:1-8.
    [58]Gan W E, Yang L, He Y Z, et al. Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium(Ⅵ) in waste-water. Talanta,2000,51:667-675.
    [59]Grabarczyk M, Tyszczuk K, Korolczuk M, et al. Catalytic adsorptive stripping voltammetric procedure for determination of total chromium in environmental materials. Electroanalysis, 2006,18(12):1223-1226.
    [60]Bas B. Refreshable mercury film silver based electrode for determination of chromium(Ⅵ) using catalytic adsorptive stripping voltammetry. Anal. Chim. Acta,2006,570 (2):195-201.
    [61]Safavi A, Maleki N, Shahbaazi H R, et al. Indirect determination of hexavalent chromium ion in complex matrices by adsorptive stripping voltammetry at a mercury electrode. Talanta, 2006,68(4):1113-1119.
    [62]Jorge E O, Rocha M M, Fonseca I T E, et al. Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode. Talanta, 2010,81:556-564.
    [63]Zhu W W, Li N B, Luo H Q, et al. Simultaneous determination of chromium(Ⅲ) and cadmium(Ⅱ) by differential pulse anodic stripping voltammetry on a stannum film electrode. Talanta,2007,72:1733-1737.
    [64]Levine K E, Stout M D, Ross G T. et al. Validation of a method for the determination of total chromium in rat feces by inductively coupled plasma optical emission spectrometry. Anal. Lett.,2009.42(17):2729-2746.
    [65]Kurosaki Y, Mizukami Y, Imamura N, et al. Determination of total chromium in the marine sediment certified reference material by inductively coupled plasma optical emission spectrometry after pressurized acid decomposition. Bunseki Kagaku,2009,58(9):827-832.
    [66]Sawalha M F, Gardea-Torresdey J L, Parsons J G, et al. Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP-OES. Microchem. J.,2005,81:122-132.
    [67]Li Y J, Hu B, Jiang Z C, et al. Speciation of chromium in water samples by cloud point extraction combined with low temperature electrothermal vaporization ICP-OES. Anal. Lett., 2006,39:809-822.
    [68]Batista B L,Grotto D,Rodrigues J L,et al.Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammoniumlm hydroxide solubilization at room temperature.Anal,Chim.Acta,2009,646(1-2):23-29.
    [69]D'llio S,Petrucci F,D'Amato M,et al.Metod validation for determination of arsenic, cadmium,cllromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry.Anal.Chim.Acta,2008,624(1):59-67.
    [70]Zhang N,Suleiman J S,He M,et al.Chromium(Ⅲ)-imprinted silica gel for speciation analysis Of chromium in environmental water samples with ICP-MS detection.Talntan,2008, 75:536-543.
    [71]Hu W L,Zheng F,Hu B,et al.Simultaneous separation and speciation of inorganic As(Ⅲ)/As(V)and Cr(Ⅲ)/Cr(Ⅵ)in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3 prior to their on-line determination by ICP-MS.J.Hazard Mater.,2008,151:58-64.
    [72]Chen Z L,Megharaj M,Naidu R,et al.Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry.Talanta,2007,72:394-400.
    [73]Wang L L, Wang J Q,Zheng Z X,et al.Cloud point extraction combined with high一performance liquid chromatography for speciation of chromium(Ⅲ)and chromium(Ⅵ) in environlllental sediment samples.J.Hazard.Mater,2010,177(1-3):114-118.
    [74]冯宁川,王妍,金利通,等.Nafion修饰钨丝圆盘预富集-石墨炉原子吸收法测定煤飞灰中Cr3,环境与健康杂志,2001,18(3):168-169.
    [75]Donais M K.Henry R.Rettberg T,et al.Chromium speciation using an automated liquid handling system with inductively coupled plasma-mass spectrometric detection.Talanta, 1999,49:1045-1050.
    [76]Menendez-Alonso E,Hill J,Foulkes M E,et al.Speciation and preconcentration of CrⅢ and CrⅥ in waters by retention on ion exchange media and determination by EDXRF.J.Anal.At. Spectrom.,1999,14:187-192.
    [77]Saverwyns S,Hecke K V,Vanllaecke F,et al.Evaluation of a commercially available microbore anion exchange column for chromium speciation with detection by ICP-mass spectrometry and hyphenation with microconcentric nebulization.Fresenius J. Anal.Chem., 1999,363:490-494.
    [78]Demirata B. Speciation of Cr(Ⅲ) and Cr(Ⅵ) by means of melamine-urea-formaldehyde resin and FAAS. Mikrochim. Acta,2001,136:143-146.
    [79]Stasinakis A S, Thomaidis N S, Lekkas T D, et al. Speciation of chromium in wastewater and sludge by extraction with liquid anion exchanger Amberlite LA-2 and electrothermal atomic absorption spectrometry. Anal. Chim. Acta,2003,478:119-127.
    [80]Zybin A, Schaldach G, Berndt H, et al. Metal speciation in the ppt range by HPLC and diode laser atomic absorption spectrometry in a flame. Anal.Chem.,1998,70:5093-5096.
    [81]Lavilla I, Costas M, Pena-Pereira F, et al. Quantitative ultrasound-assisted extraction for trace-metal determination:an experiment for analytical chemistry.J.Chem. Educ.,2011, 88(4):480-483.
    [82]Dag B, Kilicel F. Determination of Cu contamination in some spring and mineral waters around van by AAS after enrichment of activated carbon. Journal of animal and veterinary advances,2011,10(5):656-658.
    [83]Poursharifi M J, Moghimi A. Determination of ultratrace amounts of bismuth in water samples by electrothermal atomic absorption spectrometry (ET-AAS) after aloud point extraction. Asian J. Chem.,2011,23(4):1424-1428.
    [84]Kilinc E. Bakirdere S, Yaman M. et al. Trace level determination of beryllium in natural and flavored mineral waters after pre-concentration using activated carbon. Food additives and contaminants part a-chemistry analysis control exposure & risk assessment,2011,28(4): 455-460.
    [85]Godet.J P. Demuynck S. Waterlot C, et al. Growth and metal accumulation in porcellio scaber exposed to poplar litter from Cd-, Pb-, and Zn-contaminated sites. Eecotoxicology and environmental safety,2011,74(3):451-458.
    [86]Ayata S, Bozkurt S S, Ocakoglu K, et al. Separation and preconcentration of Pb(Ⅱ) using ionic liquid-modified silica and its determination by flame atomic absorption spectrometry. Talanta,2011,84(1):212-215.
    [87]Matusiewicz H, Krawczyk M. Determination of germanium and tin and inorganic tin species by hydride generation in situ trapping flame atomic absorption spectrometry. Anal. Lett., 2010,43(16):2543-2562.
    [88]Yousefi S R, Shemirani F, Jamali M R, et al. Determination of antimony(Ⅲ) and total antimony in aqueous samples by electrothermal atomic absorption spectrometry after dispersive liquid-liquid microextraction (dllme). Anal. Lett.,2010,43(16):2563-2571.
    [89]Deng Q, Wang Q, Huang Q F, et al. Determination of Pb in the leaves by graphite atomic absorption spectrophotometry.2009 3RD International conference on bioinformatics and biomedical engineering,2009,1-11:3768-3771.
    [90]Ezoddin M, Shemirani F, Khani R, et al. Application of mixed-micelle cloud point extraction for speciation analysis of chromium in water samples by electrothermal atomic absorption spectrometry. Desalination,2010,262(1-3):183-187.
    [91]Moghimi. Preconcentration of ultra trace amounts bismuth in water samples using cloud point extraction with Na-DDTC and determination by electrothermal atomic absorption spectrometry (ET-AAS). J. Korean Chem. Soc.,2008,52:140-147.
    [92]朱霞石,江祖成,胡斌,等.浊点萃取-电热原子吸收光谱法分析铬的形态.分析化学研究报告,2003,31(11):1312-1316.
    [93]Kumbasar R A. Extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using TOPO as extractant.J. Hazard. Mater,2009,167(1-3): 1141-1147.
    [94]Liu J T, Zhang W D, Ren Z Q, et al. The separation and concentration of Cr(Ⅵ) from acidic dilute solution using hollow fiber renewal liquid membrane. Ind. Eng. Chem. Res.,2009, 48(9):4500-4506.
    [95]Choudhury A, Sengupta S, Bhattacharjee C, et al. Extraction of hexavalent chromium from aqueous stream by emulsion liquid membrane (elm). Sep. Sci. Technol.,2010,45:178-185.
    [96]Singh D K, Bharadwaj R K, Srivastava B, et al. Extraction of hexavalent chromium from aqueous solution by emulsion liquid membrane. J. Sci. Ind. Res.,2002,61:538-542.
    [97]Chen H, Du P, Chen J, et al. Separation and preconcentration system based on ultrasonic probe-assisted ionic liquid dispersive liquid-liquid microextraction for determination trace amount of chromium(Ⅵ) by electrothermal atomic absorption spectrometry. Talanta,2010, 81:176-179.
    [98]Tehrani M S, Azar P A, Husain S W, et al. Dispersive liquid-liquid microextraction of Cr(Ⅵ) in water and hair samples by electrothermal atomic absorption spectrometry. Asian J. Chem., 2010,22:6302-6310.
    [99]Li Z H, Chang X J, Hu Z, et al. Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples. J. Hazard. Mater.,2009,166(1):133-137.
    [100]Huang Y F, Li Y, Jiang Y, et al. Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium. J. Anal. At. Spectrom.,2010,25: 1467-1474.
    [101]Chen D H, He M, Huang C Z, et al. Speciation of chromium in environmental water samples using chitosan-modified ordered mesoporous silica as solid phase extraction material and determination by inductively coupled plasma optical emission spectrometry. At. Spectrosc,2008,29:165-171.
    [102]Uluozlu O D, Tuzen M, Mendil D, et al.3-Ethyl-4-p-chlorobenzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one (EPHBAT) as precipitant for carrier element free coprecipitation and speciation of chromium(Ⅲ) and chromium(VI). J. Hazard Mater.,2009,172:395-399.
    [103]Karatepe A, Korkmaz E, Soylak M, et al. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters. J. Hazard. Mater.,2010,173: 433-437.
    [104]Aydin F A, Soylak M. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta,2007,73:134-141.
    [105]Uluozlu O D, Tuzen M, Soylak M, et al. Speciation and separation of Cr(Ⅵ) and Cr(Ⅲ) using coprecipitation with Ni-/2-Nitroso-1-naphthol-4-sulfonic acid and determination by FAAS in water and food samples. Food Chem. Toxicol.,2009,47(10):2601-2605.
    [106]Narukawa T, Riley K W, French D H, et al. Short communication:Speciation of chromium in Australian fly ash. Talanta,2007,73:178-184.
    [107]Kocaoba S, Akcin G. Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta,2002,57:23-30.
    [108]Sahu S K, Meshram P, Pandey B D, et al. Removal of chromium(Ⅲ) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy,2009,99(3-4):170-174.
    [109]Kocaoba S, Akcin G. A kinetic investigation of removal of chromium from aqueous solutions with a strong cation exchange resin. Monatsh. Chem..2008,139(8):873-879.
    [110]梁沛,李春香,秦永超,等.纳米二氧化钛分离富集和ICP-AES测定水样中Cr(Ⅵ)/Cr(Ⅲ).分析科学学报,2000,16(4):300-303.
    [111]Wang Z, Song M, Ma Q, et al. Two-phase aqueous extraction of chromium and its application to speciation analysis of chromium in plasma. Mikrochim. Acta,2000,134(1-2): 95-99.
    [112]Wu Y, Hu B, Peng T, et al. In-situ separation of chromium (Ⅲ) and chromium(Ⅵ) and sequential ETV-ICP-AES determination using acetylacetone and PTFE as chemical modifiers. Fresenius J. Anal. Chem.,2001,370(7):904-908.
    [113]Bermejo-Barrera P, Barciela-Alonso M C, Perez-Fernandez B, et al. Direct speciation analysis of Cr(VI) by electrothermal atomic absorption spectrometry, based on the volatilization of Cr(Ⅲ)-thenoyltrifluoracetonate from the graphite furnace. Spectrochim. Acta, Part B,2003,58(1):167-173.
    [114]Xu Q, Yin X Y, Wu S Y, et al. Determination of phthalate esters in water samples using Nylon-6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim. Acta,2010,168:267-275.
    [115]Adalet T, Rehber T A. Speciation of Cr(Ⅲ) and Cr(Ⅵ) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS. Talanta,2002,57(6):1199-1204.
    [116]Narin Ⅰ, Soylak M, Kayakirilmaz K, et al. Speciation of Cr(Ⅲ) and Cr(Ⅵ) in tannery wastewater and sediment samples on ambersorb 563 resin. Anal.Lett.,2002,35:1437-1452.
    [117]Adria-Cerezo D M, Llobat-Estelles M, Mauri-Aucejo A R, et al. Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry. Talanta,2000,51:531-536.
    [118]马红梅,朱志良,张荣华,等.弱碱性阴离子交换树脂富集ICP-AES测定环境水体中Cr(Ⅵ)和有机态Cr(Ⅲ)的研究.光谱学与光谱分析,2007,27(1):165-168.
    [119]Arthur C. Pawliszyn J The principle and application of solid-phase micro-extraction (SPME). Anal. Chem.,1990,62:2145-2148.
    [120]Bigham S, Medlar J, Kabir A, et al. Sol-gel capillary microextraction. Anal. Chem.,2002,74: 752-761.
    [121]禹春鹤,胡斌,江祖成,等.搅拌棒吸附萃取研究进展.分析化学评述与进展,2006,34:289-294.
    [122]Liu Y, Liang P, Guo L, et al. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanla,2007,68(1):25-30.
    [123]Abollino O, Aceto M, Sarzanini C, et al. The retention of metal species by different solid sorbents mechanisms for heavy metal speciation by sequential three column uptake. Anal. Chim. Acta,2000,411(1-2):223-237.
    [124]Suleiman J S, Hu B, Peng H Y, et al. Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-Ⅱ-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta,2009,77(5):1579-1583.
    [125]Chang X J, Li Z H, Cui Y M, et al. Silica gel-immobilized-vanillin derivatives as selective solid-phase extractants for determination of chromium(Ⅲ) in environmental samples by ICP-OES. Microchem.J.,2008,90:71-76.
    [126]Kim M, Stripeikis J, Tudino M, et al. Flow injection solid phase extraction electrothermal atomic absorption spectrometry for the determination of Cr(Ⅵ) by selective separation and preconcentration on a lab-made hybrid mesoporous solid microcolumn. Spectrochim. Acta, Part B..2009,64:500-505.
    [127]吴惠明,郭慧清,李锦文,等.含偕胺肟基纤维对铬离子吸附性能的初步研究.离子交换与吸附,2000,16(1):78-82.
    [128]Shemirani F, Rajabi M. Preconcentration of chromium(Ⅲ) and speciation of chromium by electrothermal atomic absorption spectrometry using cellulose adsorbent. Fresenius J. Anal. Chem.,2001,371:1037-1040.
    [129]孔庆安,吴奇藩.活性氧化铝富集材料火焰原子吸收法测定铬(Ⅲ)和铬(Ⅵ).分析测试学报,1996,15(4):74-76.
    [130]Manzoori J L, Sorouraddin M H, Shemiran F, et al. Proconcentration and spectrophotometric determination of chromium(Ⅵ) and total chromium in drinking water by the sorption of chromium di-phenyl arbazane with surfactant coated alumina. Anal. Lett.,1996,29:2007-2014.
    [131]Yu J C, Wu X, Chen Z, et al. Separation and determination of Cr(Ⅲ) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Anal. Chim. Acta, 2001,436:59-67.
    [132]Romero M, Williamx C, Gardiner P, et al. The application of deal-ginated seaweed as a cation exchanger for on-line preconcentration and chemical speciation of trace metals. J. Anal. At. Spectrom.,2000,15(8):1009-1013.
    [133]朱曾惠.化学工业中的纳米技术.化工新型材料,2004,32(1):41-42.
    [134]Chmielewski A G, Chmielewska D K, Michalik J, et al. Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials. Nucl Instrutm Methods Phys Res. Sect B,2007,265(1):339-346.
    [135]Gleiter H. Nanocrystalline materials. Progress in Materials Science,1989,33:223-315.
    [136]Huseyin B, Rehber T A, Mustafa L, et al. Separation and speciation of Cr(III) and Cr(VI) with saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS. Talanta,2000,51(5):895-902.
    [137]Latva S, Jokiniemi J, Peraniemi S, et al. Separation of picogram quantities of Cr(Ⅲ) and Cr(Ⅵ) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry.J. Anal. At. Spectrom..2003.18:84-86.
    [138]Xue A, Qian S, Huang G, et al. Separation and preconcentration of chromium speciation on chitosan and determination by graphite furnace atomic absorption spectrometry.J. Anal. At. Spedrom.,2000.15:1513-1515.
    [139]Bielicka-Daszkiewicz K. Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta,2009,80(2):614-621.
    [140]Howard A G. On the challenge of quantifying man-made nanoparticles in the aquatic environment. J. Environ. Monit.,2010,12:135-142.
    [141]Lei Z L, Pang X L, Li N, et al. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. J. Mater. Process. Technol.,2009,209(7): 3218-3225.
    [142]Pu X L, Jiang Z C, Hu B, et al. γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom,2004.19:984-989.
    [143]张阳德.纳米生物技术学.北京:科学出版社,2005:1-6.
    [144]Liu Z L, Wang H B. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of magnetism and magnetie materials,2004,283:258-262.
    [145]Michael T K, Mark Y. Biomimetie magnetie. Nanoparticles materials today,2005,9: 28-37.
    [146]Pedro T, Maria P M, Sabino V V. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D:Appl. Phys.,2003,36(13):182-197.
    [147]Battle X, Labarta A. Finite-size effects in fine particles:magnetic and transport properties. J. Phys. D:Appl. Phys.,2002,35(6):15-42.
    [148]Vazquez M, Luna C, Morales M P, et al. Magnetic nanoparticles:synthesis, ordering and properties. Physica B,2004,354(1):71-79.
    [149]赵丽萍,杨斌.固相萃取对环境样品中痕量元素的分析.中国科技信息,2008,12:30-31.
    [150]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001:140-144.
    [151]徐滨十,梁秀兵,马世宁,等.实用纳米表面技术.中国表面工程,2001,3:13-17.
    [152]杜金花,李国祥,武红茹,等.磁性纳米复合材料的研究进展.内蒙古石油化工,2008,11:8-9.
    [153]白宗武,冯威,金日光,等.原位聚合法分子复材料的研究进展.高分子通报,1997,1:37-42.
    [154]欧玉春,杨锋,庄严,等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究.高分子学报,1997,(2):199-205.
    [155]熊传溪,闻荻江,皮止杰,等.超微细A1203增韧增强聚苯乙烯的研究.高分子材群科学与工程,1994,10(4):69-73.
    [156]中条澄.高分子-无机复合体.高分子加工(日),1989,38(11):540-546.
    [157]王琪,徐僖.磨盘形力化学反应器及其在高分子材料制备中的应用.高等学校化学学报,1997,18(7):1197-1201.
    [158]Liu Y, Wang A, Claus R, et al. Molecular self-assembly of TiO2/polymer nanocomposite films. J. Phys. Chem. B,1997,101(8):1385-1388.
    [159]杨柏,黄金满,郝恩才,等.半导体纳米微粒在聚合物基体中的复合与组装.高等学报化学学报.1997,18(7):1219-1226.
    [160]王伟,吴尧,顾忠伟,等.磁性纳米材料的表面改性及其在生物医学领域的应用.中国材料进展,2009,28(1):43-48.
    [161]Gaspar A, Sogor C, Posta J, et al. Possibilities for the simultaneous preconcentration and flame atomic absorption spectrometric determination of Cr(Ⅲ) and Cr(Ⅵ) using a C18 column and sorption loop. Fresenius J. Anal.Chem.,1999,363:480-483.
    [162]Paleologos K. E, Stalikas C D, Tzouwara-Karayanni S M, et al. Micelle-mediated methodology for speciation of chromium by flame atomic absorption spectrometry. J. Anal. At. Spectrom.,2000,15:287-291.
    [163]Mondal B C, Das D, Das A K, et al. Synthesis and characterization of a new resin functionalized with 2-naphthol-3,6-disulfonic acid and its application for the speciation of chromium in natural water. Talanta,2002,56:145-152.
    [164]Imran A, Enein A, Hassan Y, et al. Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere,2002,48:275-278.
    [165]Ganeshjeevan R, Chandrasekar R, Yuvaraj S, et al. Determination of hexavalent chromium by on-line dialysis ion chromatography in a matrix of strong colourants and trivalent chromium. J. Chromatogr. A,2003,988:151-159.
    [166]Xi Y Q, Zhuang H S. Fabrication of centrifugal microfluidic solid phase extraction devices and its application in chromium speciation analysis. Chinese J. Anal. Chem.,2010,38(10): 1523-1527.
    [167]Inui T, Fujita K, Kitano M, et al. Determination of Cr(Ⅲ) and cr(Ⅵ) at sub-ppb levels in water with solid-phase extraction/metal furnace atomic absorption spectrometry. Anal. Sci., 2010,26(10):1093-1098.
    [168]Chen M L, Zhao Y N, Zhang D W, et al. The immobilization of hydrophilic ionic liquid for Cr(Ⅵ) retention and chromium speciation. J. Anal. At. Spectrom.,2010,25(11):1688-1694.
    [169]Soylak M, Unsal Y E. Chromium and iron determinations in food and herbal plant samples by atomic absorption spectrometry after solid phase extraction on single-walled carbon nanotubes (SWCNTs) disk. Food Chem. Toxicol.,2010,48(6):1511-1515.
    [170]Vellaichamy S, Palanivelu K. Speciation of chromium in aqueous samples by solid phase extraction using multiwall carbon nanotubes impregnated with D2EHPA. Indian journal of chemistry section a-inorganic bio-inorganic physical theoretical & analytical chemistry, 2010,49(7):882-890.
    [171]Saputro S, Yoshimura K, Matsuoka S, et al. Improved solid-phase spectrophotometry for the microdetermination of chromium(Ⅵ) in natural water. Anal. Sci.,2009,25(12):1445-1450.
    [172]Rajesh N, Jalan R K, Hotwany P, et al. Solid phase extraction of chromium(Ⅵ) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column. J. Hazard. Mater,2008,150(3):723-727.
    [173]Kondo A, Kamura H, Higashitani K, et al. Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Appl. Microbiol. Biotechnol,1994, 41 (1):99-105.
    [174]Goetz V, Remaud M, Graves D J, et al. A novel magnetic silica support for use in chromatographic and enzymatic bioprocessing. Biotechnol. Bioeng,1991,37:614-626.
    [175]Li X H, Sun Z H. Synthesis of magnetic polymer microspheres and application for immobilization of proteinase of balillus sublitis. J. Appl. Polym. Sci,1995,58:1991-1997.
    [176]Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization.J. Ferment. Bioeng,1997,84:337-341.
    [177]Guesdon J G, Avrameas S. Magnetic solid phase enzyme-immunoassay. Immunochemistry, 1977,14:443-447.
    [178]Sonti S V. Bose A. Cell separation protein-a-coated magnetic nanoclusters.J. Colloid Interface Sci.1995,170:575-585.
    [179]Khng H P, Cunliffe D, Davies S, et al. The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. Biotechnol. Bioeng,1998,60(4):419-424.
    [180]Shinkai M, Suzuki M, Iijima S, et al. Antibody-conjugated magneto-liposomes for targeting cancer cells and their application in hyperthermia. Biotechnol. Appl. Biochem,1994,21: 125-137.
    [181]Whitehead R A, Chagnon M S, Groman E V, el al. USP 4554088,1985.
    [182]Josephson L. USP 4672040,1987.
    [183]Shinkai M, Honda H, Kobayashi T, et al. Reparation of fine magnetic particles and application for enzyme immobilization. Biocatalysis,1991,5:61-69.
    [184]Kobayashi H, Matsunaga T. Aminosilane modified superparamagnetic particles with surface-immobilized enzyme.J. Colloid Interface Sci.1991,141:505-511.
    [185]Zou J, Xu Y, Hou B, et al. Self-assembly Ag2O nanoparticles into nanowires with the aid of amino-functionalized silica nanoparticles. Powder technology,2008,183(1):122-126.
    [186]Tatar P, Kiraz N, Asilturk M, et al. Antibacterial thin films on glass substrate by sol-gel process. Journal of inorganic and organometallic polymers and materials,2007,17(3): 525-533.
    [187]Threepopnatkul P, Teppinta W, Sombatsompop N, et al. Effect of comonomer content on rheological property of sawdust/abs composites. Functionalized and sensing materials (Advanced materials research),2010,93-94:611-614.
    [188]Liu X Q, Ma Z Y, Xing J M, et al. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater,2004,270:1-6.
    [189]Liu X Q, Xing J M, Guan Y P, et al. Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization. Colloids and Surfaces A: Physicochem. Eng. Aspects,2004,238:127-131.
    [190]Prakash A, McCormick A V, Zachariah M R, et al. Aero-sol-gel synthesis of nanoporous iron-oxide particles:apotential oxidizer for nanoenergetic materials. Chem. Mater,2004,16: 1466-1471.
    [191]Morris B W, MacNeiL S, Hardisty C A, et al. Chromium homeostasis in patients with type 11 (NIDDM) diabetes. J. Trace Elem. Med Biol.1999,13:57-61.
    [192]Li X, Yu Q F, Zhi G S, et al. Nonaqueous capillary electrophoresis using a zirconia-coated capillary. Anal. Chim. Acta,2004,514:179-184.
    [193]Shi Z G, Feng Y Q, Xu L, et al. Preparation and evaluation of zirconia-coated silica monolith for capillary electrochromatography. Talanta,2004,63:593-598.
    [194]Dominguez Crespoa M A, Garcia Murillo A, Torres-Huerta A M, et al. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process. J. Alloys Compd,2009,483:437-441.
    [195]Shen R, Shafrir S N, Miao C L, et al. Synthesis and corrosion study of zirconia-coated carbonyl iron particles. J. Colloid Interface Sci,2010,342:49-56.
    [196]Kessman A J, Ramji K, Morris N J, et al. Zirconia sol-gel coatings on alumina-silica refractory material for improved corrosion resistance. Surf. Coal. Technol.,2009,204: 477-483.
    [197]Martinez C, Sancy M, Zagal J H, et al. A zirconia-polyester glycol coating on differently pretreated AISI 316L stainless steel:corrosion behavior in chloride solution. J Solid State Electrochem,2009,13:1327-1337.
    [198]Hayashi H, Yoshida O, Suzuki H, et al. ZnO-ZrO2 films with good UV-shielding properties prepared by a single step sol-gel method. J. Ceram. Soc. Jpn.,2009,117:978-982.
    [199]Dalmaschio C J, Mastelaro V R, Nascente P, et al. Oxide surface modification:synthesis and characterization of zirconia-coated alumina.J. Colloid Interface Sci.,2010,343: 256-262.
    [200]Chang C F, Chang C Y, Hsu T L, et al. Preparation and adsorptive application of novel superparamagnetic zirconia material. Colloids and Surfaces A:Physicochem. Eng. Aspects., 2008,327:64-70.
    [201]Nagarajan S, Rajendran N. Sol-gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications. J. Sol-Gel Sci. Technol,2009,52:188-196.
    [202]Sugimoto T, Waki S, ltoh H, et al. Prearation of monodisperse platelet-type hematite partieles from a highly eondensed β-FeOOH suspension. Colloids Surfaces A:Physicochem Eng Aspects,1996,109:155-165.
    [204]Sugimoto T. Preparation of monodispersed colloidal particles. Adv. Coll. Int. Sci.,1987,28: 65-70.
    [205]Yaacob Ⅰ, Nunes A C,BoseA, et al. Synthesis and characterization of magnetic nanoparticles in spontaneously generated vesieles.J. Coll. Int. Sci.,1994,168:289-301.
    [206]Luisi P L, Straub B. Biological and technological relevance of reversed micelles and other amphilic structers in apolar media. NewYork:Plenum,1983,75:73-80.
    [207]Wu Y W, Hu B, Jiang Z C, et al. Sol-gel zirconia coating capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd and Pb in biological samples. Rapid Commun. Mass Spectrom.,2006,20: 3527-3534.
    [208]Ganjali M R, Babaei L H, Badiei A, et al. A novelmethod for fast enrichment and monitoring of hexavalent and trivalent chromiumat the ppt level with modified silicamcm-41 and its determination by inductively coupled plasma optical emission spectrometry. Ouim. Nova,2006,29 (3):440-443.
    [209]Sibel Y, Resat A. Chromium speciation analysis by separation of Cr(Ⅲ) from Cr(Ⅵ) on a XAD sorbent derivatized with shellac:a natural polymer. Int.J. Environ. Anal. Chem.,2006. 86:915-929.
    [210]Kapakoglou N I, Giokas D L, Tsogas G Z, et al. Coacervation of surface-functionalized polymerized vesicles derived from ammonium bromide surfactants. Application to the selective speciation of chromium in environmental samples. Anal. Chem.,2008,80: 9787-9796.
    [211]Wang J S, Chiu K H. Simultaneous extraction of Cr(Ⅲ) and Cr(Ⅵ) with a dithiocarbamate reagent followed by HPLC separation for chromium speciation. Anal. Sci.,2004,20: 841-846.
    [212]Orescanin V, Mikelic L, Lulic S, et al. Determination of Cr(Ⅲ) and Cr(Ⅵ) in industrial and environmental liquid samples by EDXRF method. Anal. Chim. Acta,2004,527(2): 125-129.
    [213]刘颖,吴伟慎,潘洪志,等.萃取分离-石墨炉原子吸收法测定铬(Ⅲ)与铬(Ⅵ).化学与黏合,2007.29(1):72-74.
    [214]Kumar A R. Riyazuddin P. Chromium speciation in groundwater of a tannery polluted area of Chennai City. India. Environ Monit Assess,2010.160:579-591.
    [215]Jiang X M. Wen S P. Xiang G Q, et al. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(Ⅲ) and antimony(Ⅴ) in food packaging materials. J. Hazard. Mater.,2010,175:146-150.
    [216]Sibel Y, Resat A. Chromium (Ⅲ, Ⅵ) speciation analysis with preconcentration on amaleic acid-functionalized XAD sorbent. Anal. Chim. Acta,2004,505:25-35.
    [217]Banerjee D, Mondal B C, Das A K, et al. Application of a chelating resin containing imidazole-4,5-dicarboxylic acid in chromium speciation.J. Indian Chem. Soc.,2003,80 (8): 769-772.
    [218]Mondal B C, Das A K. Use of 6-mercapto purinylazo resin in chromium speciation. Bull. Chem. Soc. Jpn.,2003,76:111-114.
    [219]Memon J U R, Memon S Q, Bhanger M I, et al. Use of modified sorbent for the separation and preconcentration of chromium species from industrial waste water. Journal of hazardous materials,2009,163(2-3):511-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700