用户名: 密码: 验证码:
高能量密度等离子体的结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能量密度物理是近年来物理学领域的一个研究热点。人们对高能量密度物理这一领域在理论上有了更深入的认识,具备了在实验室中产生某些处于高能量密度状态的实验对象的能力,对于其中发生的物理过程可以进行各种探测和诊断,并且利用在实验室中得到的数据和结论推测某些发生在遥远宇宙中的天体物理过程。对高能量密度物理的研究不仅在基础科学研究方面有重要意义,而且在应用方面也展现出巨大的潜力。从热力学和统计物理的角度看,高能量密度系统的一个重要特征是往往处于非平衡的状态。在这样的条件下,系统往往会产生出一定的结构或者模式。这种结构或者模式的产生及其演化是高能量密度系统中普遍存在的现象,对这一现象的理解对于我们认识高能量密度物理过程是重要的。
     因此,本文针对高能量密度条件下等离子体系统磁场结构的产生、界面电荷密度调制模式的选择以及这些结构产生的效应等问题开展了探索性的工作,希望能够加深对这些物理过程的理解,为未来的研究工作提供参考。具体的研究工作和主要结论如下:
     1、讨论了高能量密度条件下等离子体系统自发地产生磁场结构的可能性。利用准静态模型进行了量纲分析和量级上的估算;利用动力学模型讨论了高能量密度条件下等离子体系统对内部统计涨落的响应过程。通过定性的量纲分析和半定量的模型方程求解,我们得到了等离子体系统发生自发磁化过程的温度—密度相图。相图的得到说明至少在理论上这一过程的发生是可能的。利用得到的结果初步分析了目前宇宙中存在的常见的磁场结构,对宇宙大尺度磁场结构的产生给出了一定的解释,对宇宙早期暴胀过程与宇宙大尺度磁场结构的关系进行了初步的分析,给出了一种新的解释暴胀能量来源的模型。
     2、讨论了高能量密度条件下等离子体界面的模式选择问题。首先采用最小作用量原理和变分法,分析了一维电子体系在高能量密度条件下的状态及演化过程。认为电子密度调制状态是基本的运动模式,以调制的幅度和空间波长作为广义坐标,通过能量守恒和受力平衡得到系统的运动方程,得到了调制振幅和空间波长随时间演化的关系。然后利用等离子体的流体力学方程,采用模式选择的本征模方法,在二维情况下讨论了界面模式选择过程,得到了界面电荷密度调制模式的色散关系。
     3、讨论了高能量密度条件下等离子体系统结构或者模式对于某些特定物理过程所产生的效应问题。对于超短超强脉冲激光辐照金属丝产生高能电子束的过程,通过理论分析和经典轨迹蒙特卡罗数值模拟的方法讨论了磁场结构对于电子束发散度的影响。结果表明高能电子束自身磁场对于其聚焦效应有不可忽略的贡献。在同时考虑了电场和磁场作用的情况下得到的电子束发散度可以较好地解释实验结果。对于斜入射强X射线辐照金属靶的过程,从理论上讨论了在界面产生超光速运动的Compton电流这一界面模式的可能性,并且讨论了该电流产生的电磁脉冲辐射。理论分析的结果表明金属靶表面的Compton电流可以产生强电磁辐射,并且这种机制在强X射线辐照条件下可能是产生电磁辐射的主要机制。
Recently, high-energy-density physics (HEDP) has become an active area of research that receives considerable attentions. Progresses in theories have cast new lights on many HED phenomena. Developments in experimental techniques, such as ultra-intense lasers, pulsed power techniques and various advanced di-agnostics, enable us to create certain HED systems in laboratories, to detect processes occurred under HED conditions, and to estimate physical mechanisms responsible for some astrophysical phenomena far away in the universe. High-energy-density physics research has no only scientific significance, but also po-tentials of future applications. From the view of thermal and statistical physics, one important characteristic of HED systems is that they are usually under non-equilibrium conditions. Structures or modes often appear in systems under such conditions. Since the appearance of structures and modes is a common phe-nomenon in high-encrgy-density systems, investigation in this phenomenon is of considerable importance to get a deeper understanding of HED processes.
     Based on the reasons mentioned above, in this thesis we study the spon-taneous magnetization and surface charge density modulation mode selection processes in plasmas under high-energy-density conditions, as well as the effects of such structures and modes on relevant HED processes. We hope to provide new insights for certain HEDP problems and reference in relevant researches. The main topics and results contained in this thesis are as follows:
     1. The possibility of spontaneous magnetization in plasmas under high-energy-density conditions has been discussed. A quasi-static model is developed for qualitative calculations. By using a dynamic model, we investigated the responses of HED plasmas to interior statistical fluctuations. The temperature-density phase diagram for spontaneous magnetization of plasmas is obtained through these qualitative calculations and quantitative solutions of model equa-tions, indicating that the spontaneous magnetization process is possible, at least theoretically. Further more, we discussed the appearance of common cosmic magnetic fields and proposed a novel explanation for the origin of the large-scale magnetic field structures in the universe. We also discussed the relation between the inflation phase and the cosmic magnetic fields and gave a new energy source for the inflation.
     2. The mode selection of plasma surface under high-energy-density condi-tions has been investigated. We first discussed the evolution of one-dimensional electron systems under HED conditions by the least-action principle and variation method. Assuming that charge density modulations are basic modes and choos-ing the amplitude and spatial wavelength of these modes as general coordinates, we obtained the equations of energy conservation and force balance. Numerical solving these equations gives the temporal dependence of amplitude and spatial wavelength of the modes. We also discussed the mode selection of plasma surface in two-dimensional case, using fluid equations of plasma and eigen-mode method. The dispersion relations of surface charge density modulation modes have been obtained.
     3. The effects of structures or modes of high-energy-density plasmas on certain processes have been researched. In the case of generation of electron beams through ultra-intense laser-plasma interaction, we discussed the effect of magnetic field on the divergence of electron beams through theoretical analysis and classical trajectory Monte Carlo simulations. Results show that self magnetic field of electron beams has non-negligible influence on the their divergence. After including both electric and magnetic field in our consideration, our results are in good agreement with experiments. In the case of oblique incident intense x rays on metallic targets, we discussed the possibility of the generation of surface Compton current density, as well as electromagnetic pulse due to this current density. Theoretical analysis reveals that such surface Compton current density could generate strong electromagnetic pulses, and this mechanism might be of considerable importance in the generation of electromagnetic pulses.
引文
[1]陈载璋,胡中为,尹素英.天文学导论.科学出版社,1983.
    [2]Bruce A. Remington, R. Paul Drake, and Dmitri D. Ryutov. Experimental astrophysics with high power lasers and z pinches. Reviews of Modern Physics,78:755-807, Aug 2006.
    [3]Gerard A. Mourou, Toshiki Tajima, and Sergei V. Bulanov. Optics in the relativistic regime. Reviews of Modern Physics,78:309-371, Apr 2006.
    [4]D. Strickland and G. Mourou. Compression of amplified chirped optical pulses. Optics Communications,56(3):219-221,1985.
    [5]D. Strickland and G. Mourou. Compression of amplified chirped optical pulses. Optics Communications,55:447-449, October 1985.
    [6]T.R Boehly, R.L McCrory, C.P Verdon, W Seka, S. J Loucks, A Babushkin, R.E Bahr, R Boni. D.K Bradley, R.S Craxton, J.A Delettrez, W.R Don-aldson. R Epstein, D Harding, P.A Jaanimagi, S.D Jacobs, K Kearney, R.L Keck, J.H Kelly, T.J Kessler, R.L Kremens, J.P Knauer. D.J Lonobile. L.D Lund, F.J Marshall P.W McKenty, D.D Meyerhofer, S.F.B Morse, A Okishev. S Papernov, G Pien, T Safford, J.D Schnittman, R Short, M.J Shoup Ⅲ, M Skeldon, S Skupsky, A.W Schmid, V.A Smalyuk, D.J Smith, J.M Soures, M Wittman. and B Yaakobi. Inertial confinement fusion ex-periments with omega-a 30-kj,60-beam uv laser. Fusion Engineering and Design..44(1-4):35-42,1999.
    [7]E. M. Campbell, J. T. Hunt, E. S. Bliss, D. R. Speck, and R. P. Drake. Nova experimental facility (invited). Review of Scientific Instruments, 57(8):2101-2106,1986.
    [8]D. D. Ryutov, M. S. Derzon, and M. K. Matzen. The physics of fast z pinches. Reviews of Modern Physics,72:167-223, Jan 2000.
    [9]M. Keith Matzen, M. A. Sweeney, R. G. Adams, J. R. Asay, J. E. Bailey, G. R. Bennett. D. E. Bliss. D. D. Bloomquist, T. A. Brunner, R. B. Campbell, G. A. Chandler, C. A. Coverdale, M. E. Cuneo, J.-P. Davis, C. Deeney, M. P. Desjarlais, G. L. Donovan, C. J. Garasi, T. A. Haill, C. A. Hall, D. L. Hanson, M. J. Hurst, B. Jones, M. D. Knudson, R. J. Leeper, R. W. Lemke, M. G. Mazarakis, D. H. McDaniel, T. A. Mehlhorn, T. J. Nash, C. L. Olson. J. L. Porter, P. K. Rambo, S. E. Rosenthal, G. A. Rochau, L. E. Ruggles, C. L. Ruiz, T. W. L. Sanford, J. F. Seamen, D. B. Sinars, S. A. Slutz, I. C. Smith, K. W. Struve, W. A. Stygar, R. A. Vesey, E. A. Weinbrecht. D. F. Wenger. and E. P. Yu. Pulsed-power-driven high energy density physics and inertial confinement fusion research. Physics of Plasmas,12(5):055503. 2005.
    [10]T. W. L. Sanford, R. E. Olson, R. C. Mock, G. A. Chandler, R. J. Leeper, T. J. Nash, L. E. Ruggles, W. W. Simpson, K. W. Struve, D. L. Peterson, R. L. Bowers, and W. Matuska. Dynamics of a z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 ev. Physics of Plasmas,7(11):4669-4682,2000.
    [11]John M. Dawson. On the production of plasma by giant pulse lasers. Physic-s of Fluids,7(7):981-987,1964.
    [12]J. W. Connor and J. B. Taylor. Scaling laws for plasma confinement. Nu-clear Fusion,17(5):1047-1055,1977.
    [13]B. A. Remington, J. Kane, R. P. Drake, S. G. Glendinning, K. Estabrook, R. London, J. Castor. R. J. Wallace, D. Arnett, E. Liang, R. McCray, A. Rubenchik, and B. Fryxell. Supernova hydrodynamics experiments on the nova laser. Physics of Plasmas,4(5):1994-2003,1997.
    [14]J. Kane, D. Arnett, B. A. Remington, S. G. Glendinning. G. Bazan, R. P. Drake, B. A. Fryxell, R. Teyssier, and K. Moore. Scaling supernova hydrodynamics to the laboratory. Physics of Plasmas,6(5):2065-2071, 1999.
    [15]H. F. Robey, J. O. Kane, B. A. Remington, R. P. Drake, O. A. Hurricane, H. Louis, R. J. Wallace, J. Knauer, P. Keiter, D. Arnett, and D. D. Ryutov. An experimental testbed for the study of hydrodynamic issues in supernovae. Physics of Plasmas,8(5):2446-2453,2001.
    [16]H. F. Robey. T. S. Perry, R. I. Klein, J. O. Kane, J. A. Greenough, and T. R. Boehly. Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity. Physical Review Letters,89:085001, Aug 2002.
    [17]H. F. Robey, Ye Zhou, A. C. Buckingham, P. Keiter, B. A. Remington, and R. P. Drake. The time scale for the transition to turbulence in a high reynolds number, accelerated flow. Physics of Plasmas,10(3).-614-622,2003.
    [18]E. N. Parker. Cosmical Magnetic Fields:Their Origin and Their Activity. Oxford University Press,1979.
    [19]Lawrence M. Widrow. Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics.,74:775-823, Jul 2002.
    [20]A. G. Lyne and F. Graham-Smith. Pulsar Astronomy. Cambridge Univer-sity Press,2006.
    [21]A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort. L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. D. B-landford, E. D. Bloom, E. Bonamente, A. W. Borgland, A. Bouvier, T. J. Brandt, J. Bregeon, A. Brez, M. Brigida, P. Bruel, R. Buehler, S. Buson, G. A. Caliandro, R. A. Cameron, A. Cannon, P. A. Caraveo, J. M. Casandjian. O. Celik, E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, L. Costamante, S. Cutini, F. D:Ammando, C. D. Dermer, A. de Angelis. A. de Luca, F. de Palma, S. W. Digel, E. do Couto e Silva, P. S. Drell, A. Drlica-Wagner, R. Dubois, D. Dumora, C. Favuzzi, S. J. Fegan, E. C. Ferrara, W. B. Focke, P. Fortin, M. Frailis, Y. Fukazawa. S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. God-frey, I. A. Grenier, M.-H. Grondin, J. E. Grove, S. Guiriec, D. Hadasch, Y. Hanabata, A. K. Harding, K. Hayashi, M. Hayashida, E. Hays, D. Horan, R. Itoh, G. Johannesson, A. S. Johnson, T. J. Johnson, D. Khangulyan, T. Kamae, H. Katagiri, J. Kataoka. M. Kerr, J. Knodlseder, M. Kuss, J. Lande, L. Latronico, S.-H. Lee, M. Lemoine-Goumard, F. Longo, F. Lopar-co, P. Lubrano, G. M. Madejski, A. Makeev, M. Marelli, M. N. Mazziotta, J. E. McEnery. P. F. Michelson, W. Mitthumsiri, T. Mizuno, A. A. Moi-seev, C. Monte, M. E. Monzani, A. Morselli, I. V. Moskalenko, S. Murgia, T. Nakamori, M. Naumann-Godo, P. L. Nolan, J. P. Norris. E. Nuss, T. Ohsugi, A. Okumura, N. Omodei. J. F. Ormes, M. Ozaki, D. Paneque, D. Parent, V. Pelassa, M. Pepe, M. Pesce-Rollins, M. Pierbattista. F. Piron, T. A. Porter, S. Raino, R. Rando, P. S. Ray, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, S. Ritz. R. W. Romani, H. F.-W. Sadrozinski, D. Sanchez, P. M. S. Parkinson, J. D. Scargle, T. L. Schalk, C. Sgro, E. J. Siskind, P. D. Smith, G. Spandre, P. Spinelli, M. S. Strickman, D. J. Suson, H. Takahashi. T. Takahashi, T. Tanaka, J. B. Thayer, D. J. Thompson, L. Tibaldo, D. F. Torres, G. Tosti, A. Tramacere, E. Troja, Y. Uchiyama, J. Vandenbroucke, V. Vasileiou, G. Vianello. V. Vitale, P. Wang, K. S. Wood, Z. Yang, and M. Ziegler. Gamma-ray flares from the crab nebula. Science, 331:739, February 2011.
    [22]M. Tavani, A. Bulgarelli, V. Vittorini, A. Pellizzoni, E. Striani, P. Caraveo, M. C. Weisskopf, A. Tennant, G. Pucella, A. Trois, E. Costa, Y. Evange-lista, C. Pittori, F. Verrecchia, E. Del Monte, R. Campana, M. Pilia, A. De Luca, I. Donnarumma, D. Horns, C. Ferrigno, C.O. Heinke, M. Trifoglio, F. Gianotti, S. Vercellone, A. Argan, G. Barbiellini, P. W. Cattaneo, A. W. Chen, T. Contessi. F. D'Ammando. G. DeParis. G. Di Cocco. G. Di Persio, M. Feroci, A. Ferrari, M. Galli, A. Giuliani, M. Giusti, C. Labanti, I. Lapshov, F. Lazzarotto, P. Lipari, F. Longo, F. Fuschino, M. Marisaldi, S. Mereghetti, E. Morelli, E. Moretti, A. Morselli, L. Pacciani, F. Perot-ti, G. Piano, P. Picozza, M. Prest, M. Rapisarda, A. Rappoldi. A. Rubini, S. Sabatini, P. Soffitta. E. Vallazza, A. Zambra, D. Zanello, F. Lucarelli, P. Santolamazza, P. Giommi, L. Salotti. and G. F. Bignami. Discovery of pow-erful gamma-ray flares from the crab nebula. Science,331:736, February 2011.
    [23]H. R. Wilson and S. C. Cowley. Theory for explosive ideal magnetobydro-dynamic instabilities in plasmas. Physical Review Letters,92:175006, Apr 2004.
    [24]E. Esarey, C. B. Schroeder, and W. P. Leemans. Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics,81:1229-1285, Aug 2009.
    [25]Pallavi Jha, Rohit K. Mishra, Ajay K. Upadhyay, and Gaurav Raj. Spot-size evolution of laser beam propagating in plasma embedded in axial mag-netic field. Physics of Plasmas,14(11):114504,2007.
    [26]汪志诚.热力学统计物理.高等教育出版社,2003.
    [27]贺贤土.惯性约束聚变研究进展和展望.核科学与工程,20(3):248-251,2000.
    [28]毛剑珊,罗家融,赵君煜.Ht-7超导托卡马克电流调制抑制破裂不稳定性的实验研究.科学技术与工程,3(5):441-444,2003.
    [29]柏劲松,李平,陈森华,廖海东,杨礼兵:姜洋.内爆加载下果冻内外界面不稳定性数值计算.高压物理学报,18(4):295-301,2004.
    [30]E. N. Loomis; S. R. Greenfield, R. P. Johnson, J. A. Cobble, S. N. Luo, D. S. Montgomery, and M. M. Marinak. Investigations into the seeding of instabilities due to x-ray preheat in beryllium-based inertial confinement fusion targets. Physics of Plasmas,17(5):056308,2010.
    [31]L. Ferrario and D. Wickramasinghe. Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis. Monthly Notices of the Royal Astronomical Society,367:1323-1328. April 2006.
    [32]J. Braithwaite and H. C. Spruit. A fossil origin for the magnetic field in a stars and white dwarfs. Nature,431:819-821, October 2004.
    [33]C. A. Tout, D. T. Wickramasinghe, and L. Ferrario. Magnetic fields in white dwarfs and stellar evolution. Monthly Notices of the Royal Astronomical Society,355:L13-L16. December 2004.
    [34]A. E. Broderick and R. Narayan. Magnetic helicity and the relaxation of fossil fields. Monthly Notices of the Royal Astronomical Society,383:943-956, January 2008.
    [35]Veronique Petit:Gregg A. Wade, Laurent Drissen, and Thierry Montmerle. Exploring the origin of neutron star magnetic field:magnetic properties of the progenitor ob stars. AIP Conference Proceedings,983(1).399-403,2008.
    [36]H. C. Spruit. Origin of neutron star magnetic fields. AIP Conference Proceedings,983(1):391-398,2008.
    [37]R.-Y. Hu and Y.-Q. Lou. Magnetized massive stars as magnetar progeni-tors. Monthly Notices of the Royal Astronomical Society,396:878-886, June 2009.
    [38]R. D. Blandford, J. H. Applegate, and L. Hernquist. Thermal origin of neutron star magnetic fields. Monthly Notices of the Royal Astronomical Society,204:1025-1048, September 1983.
    [39]R. R. Silbar and S. Reddy. Neutron stars for undergraduates. American Journal of Physics,72:892-905, July 2004.
    [40]C. Thompson and R. C. Duncan. Neutron star dynamos and the origins of pulsar magnetism. The Astrophysical Journal,408:194-217, May 1993.
    [41]E. N. Parker. Hydromagnetic dynamo models. The Astrophysical Journal, 122:293, September 1955.
    [42]J. Jiang and J.-X. Wang. Progress in solar dynamo theories. Progress in Astronomy.23:121-134. June 2005.
    [43]J. Han. Pulsar studies and magnetic fields in galaxies. Progress in Astron-omy,19:201-204 June 2001.
    [44]A. Bonanno, V. Urpin. and G. Belvedere. Protoneutron star dynamos:pul-sars, magnetars, and radio-silent x-ray emitting neutron stars. Astronomy and Astrophysics,451:1049-1052, June 2006.
    [45]V. Urpin and J. Gil. Convection in protoneutron stars and the structure of surface magnetic fields in pulsars. Astronomy and Astrophysics,415:305-311, February 2004.
    [46]A. Bonanno, L. Rezzolla, and V. Urpin. Mean-field dynamo action in pro-toneutron stars. Astronomy and Astrophysics,410:L33-L36, October 2003.
    [47]A. Bonanno. V. Urpin, and G. Belvedere. Protoneutron star dynamos and pulsar magnetism. Astronomy and Astrophysics,440:199-205, September 2005.
    [48]R. X. Xu and F. H. Busse. The birth of strange stars and their dynamo-originated magnetic fields. Astronomy and Astrophysics,371:963-972. June 2001.
    [49]L. Ferrario and D. Wickramasinghe. Origin and evolution of magnetars. Monthly Notices of the Royal Astronomical Society,389:L66-L70, Septem-ber 2008.
    [50]M. Rheinhardt and U. Geppert. The proto-neutron-star dynamo, viability and impediments. Astronomy and Astrophysics,435:201-206, May 2005.
    [51]L. Naso, L. Rezzolla, A. Bonanno, and L. Paterno. Magnetic field amplifi-cation in proto-neutron stars, the role of the neutron-finger instability for dynamo excitation. Astronomy and Astrophysics,479:167-176, February 2008.
    [52]E. Flowers and M. A. Ruderman. Evolution of pulsar magnetic fields. The Astrophysical Journal,215:302-310, July 1977.
    [53]Ludwig Biermann and Arnulf Schluter. Cosmic radiation and cosmic mag-netic fields. ii. origin of cosmic magnetic fields. Physical Review,82:863-868, Jun 1951.
    [54]R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu. The protogalactic origin for cosmic magnetic fields. The Astrophysical Journal, 480:481, May 1997.
    [55]H. Saleem and Z. Yoshida. Beltrami-like fields created by baroclinic effect in two-fluid plasmas. Physics of Plasmas, 11(10):4865-4867,2004.
    [56]Hong bo Cai, Shao ping Zhu. X. T. He, Si zhong Wu, Mo Chen, Cangtao Zhou, Wei Yu, and Hideo Nagatomo. Magnetic collimation of fast elec-trons in specially engineered targets irradiated by ultraintense laser pulses. Physics of Plasmas.18(2):023106,2011.
    [57]Bruce A. Bassett, Giuseppe Pollifrone, Shinji Tsujikawa, and Fermin Viniegra. Preheating-cosmic magnetic dynamo? Physical Review D, 63:103515, Apr 2001.
    [58]Chiara Caprini and Ruth Durrer. Gravitational wave production:A strong constraint on primordial magnetic fields. Physical Review D,65:023517, Dec 2001.
    [59]Gunter Sigl. Cosmological magnetic fields from primordial helical seeds. Physical Review D,66:123002, Dec 2002.
    [60]Mathieu Langer, Jean-Loup Puget, and Nabila Aghanim. Cosmological magnetogenesis driven by radiation pressure. Physical Review D,67:043505, Feb 2003.
    [61]G. Lambiase and A. R. Prasanna. Gauge invariant wave equations in curved space-times and primordial magnetic fields. Physical Review D,70:063502, Sep 2004.
    [62]S. Matarrese, S. Mollerach, A. Notari, and A. Riotto. Large-scale magnetic fields from density perturbations. Physical Review D,71:043502, Feb 2005.
    [63]Amjad Ashoorioon and Robert B. Mann. Generation of cosmological seed magnetic fields from inflation with cutoff. Physical Review D,71:103509, May 2005.
    [64]O. Bertolami and R. Monteiro. Varying electromagnetic coupling and pri-mordial magnetic fields. Physical Review D,71:123525. Jun 2005.
    [65]Anne-Christine Davis and Konstantinos Dimopoulos. Cosmic superstrings and primordial magnetogenesis. Physical Review D,72:043517. Aug 2005.
    [66]Aiichi Iwazaki. Color ferromagnetism of quark matter:A possible origin of a strong magnetic field in magnetars. Physical Review D,72:114003, Dec 2005.
    [67]Craig J. Hogan. Magnetohydrodynamic effects of a first-order cosmological phase transition. Physical Review Letters,51:1488-1491, Oct 1983.
    [68]Michael S. Turner and Lawrence M. Widrow. Inflation-produced, large-scale magnetic fields. Physical Review D,37:2743-2754, May 1988.
    [69]M. Gasperini. New mechanism for the generation of primordial seeds for the cosmic magnetic fields. Physical Review D,63:047301, Jan 2001.
    [70]Rhiannon Gwyn. Stephon H. Alexander, Robert H. Brandenberger. and Keshav Dasgupta. Magnetic fields from heterotic cosmic strings. Physical Review D,79:083502, Apr 2009.
    [71]R. M. Kulsrud and E. G. Zweibel. On the origin of cosmic magnetic fields. Reports on Progress in Physics,71(4):046901,2008.
    [72]J. L. Han. Magnetic fields of our milky way galaxy. Chinese Journal of Nature.,29(2):96-101,2007.
    [73]C. Heiles. The local direction and curvature of the galactic magnetic field derived from starlight polarization. The Astrophysical Journal,462:316, May 1996.
    [74]R. J. Rand and A. G. Lyne. New rotation measures of distant pulsars in the inner galaxy and magnetic field reversals. Monthly Notices of the Royal Astronomical Society.268:497. May 1994.
    [75]J. P. Knauer, O. V. Gotchev, P. Y. Chang. D. D. Meyerhofer,O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Seguin. Compressing magnetic fields with high-energy lasers. Physics of Plasmas.17(5):056318.2010.
    [76]J. S. Hall. Observations of the polarized light from stars. Science.109:166-167, February 1949.
    [77]W. A. Hiltner. Polarization of light from distant stars by interstellar medi-um. Science,109:165, February 1949.
    [78]G. E. Hale. On the probable existence of a magnetic field in sun-spots. The Astrophysical Journal,28:315. November 1908.
    [79]M. J. Reid and E. M. Silverstein. OH masers and the galactic magnetic field. The Astrophysical Journal,361:483-486, October 1990.
    [80]M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Reviews of Modern Physics.65:851,1993.
    [81]J. B. Fenn. Electrospray wings for molecular elecphants. Nobel Lecture, 2002.
    [82]E. I. Zababakhin. Cumulation of energy and its limits. Soviet Physics Uspekhi,8:295,1965.
    [83]罗飞.弱加载下两相流界面模式选择问题研究.PhD thesis,中国工程物理研究院,2011.
    [84]J. F. Hansen, T. R. Dittrich, J. B. Elliott, S. G. Glendinning, and D. L. Cotrell. A high-energy-density, high-mach number single jet experiment. Physics of Plasmas,18(8):082702; 2011.
    [85]陈自宇.脉冲强激光与金属靶相互作用中的电磁脉冲研究.PhD thesis,中国工程物理研究院,2012.
    [86]G. E. Kemp, A. Link, Y. Ping:D. W. Schumacher, R. R. Freeman, and P. K. Patel. Coupling of laser energy into hot-electrons in high-contrast relativistic laser-plasma interactions. Physics of Plasmas,20(3):033104, 2013.
    [87]H. B. Zhuo; Z. Jin, M. Y. Yu, Z. M. Sheng, H. Xu, Y. Y. Ma, Y. Yin, F. Q. Shao, W. M. Zhou, and R. Kodama. Strong mid-infrared radiation from self-guided fast electron bunch propagating along a grated target surface in laser-solid interaction. Physics of Plasmas,19(4)-.043108,2012.
    [88]Alexander Andreev. Naveen Kumar, Konstantin Platonov, and Alexander Pukhov. Efficient generation of fast ions from surface modulated nanos-tructure targets irradiated by high intensity short-pulse lasers. Physics of Plasmas,18(10):103103,2011.
    [89]Jr. Robert L. Singleton. Charged particle stopping power effects on ignition: Some results from an exact calculation. Physics of Plasmas,15(5):056302, 2008.
    [90]Konstantin V. Starikov and Claude Deutsch. Partial degeneracy effects in the stopping of relativistic electrons in supercompressed thermonuclear fuels. Physics of Plasmas,14(2):022704,2007.
    [91]D. G. Hicks, C. K. Li, F. H. Seguin, A. K. Ram; J. A. Frenje, R. D. Petrasso, J. M. Soures, V. Yu. Glebov, D. D. Meyerhofer, S. Roberts, C. Sorce, C. Stockl, T. C. Sangster, and T. W. Phillips. Charged-particle acceleration and energy loss in laser-produced plasmas. Physics of Plasmas,7(12):5106-5117,2000.
    [92]Gerald Faussurier, Christophe Blancard. Philippe Cosse, and Patrick Re-naudin. Equation of state, transport coefficients, and stopping power of dense plasmas from the average-atom model self-consistent approach for astrophysical and laboratory plasmas. Physics of Plasmas,17(5):052707. 2010.
    [93]Carlo Cereceda, Michel de Peretti, and Claude Deutsch. Stopping power for arbitrary angle between test particle velocity and magnetic field. Physics of Plasmas,12(2):022102,2005.
    [94]Carlo Cereceda, Claude Deutsch, Michel De Peretti. Michel Sabatier, and Hrachya B. Nersisyan. Dielectric response function and stopping power of dense magnetized plasma. Physics of Plasmas.7(7):2884-2893,2000.
    [95]P. Wang, T. M. Mehlhorn, and J. J. MacFarlane. A unified self-consistent model for calculating ion stopping power in icf plasma. Physics of Plasmas, 5(8):2977-2987,1998.
    [96]F. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, second edition,1984.
    [97]J. D. Jackson. Classical Electrodynamics. John Wiley,2005.
    [98]http://www.nist.gov/pml/data/star/index.cfm.
    [99]D. R. Nicholson. Introduction to Plasma Theory. John Wiley & Sons.1983.
    [100]W. L. Kruer. The Physics of Laser Plasma Interactions. Addison-Wesley. 1988.
    [101]F. Alladio, F. Crisanti, A. Mancuso, P. Micozzi, O. Tudisco, K. H. Burrell, M. S. Chu, L. L. Lao, T. H. Osborne, R. Giannella, P. Lomas, D. O'Brien, V. Riccardo, and B. Schunke. Correlation among geodesic curvature of the magnetic field lines, plasma rotation and improved confinement regimes in present tokamak experiments. Physics of Plasmas,6(6):2472-2485,1999.
    [102]Allen H. Boozer. Physics of magnetically confined plasmas. Reviews of Modern Physics,76:1071-1141, Jan 2005.
    [103]A. M. Garofalo, W. M. Solomon, M. Lanctot. K. H. Burrell, J. C. DeBoo, J. S. deGrassie, G. L. Jackson, J.-K. Park, H. Reimerdes. M. J. Schaffer, and E. J. Strait. Plasma rotation driven by static nonresonant magnetic fields. Physics of Plasmas,16(5):056119.2009.
    [104]Kenneth G. Wilson. The renormalization group:Critical phenomena and the kondo problem. Reviews of Modern Physics,47:773-840, Oct 1975.
    [105]Gordon F. Newell and Elliott W. Montroll. On the theory of the ising model of ferromagnetism. Reviews of Modern Physics.25:159-159. Jan 1953.
    [106]Gordon F. Newell and Elliott W. Montroll. On the theory of the ising model of ferromagnetism. Reviews of Modern Physics,25:353-389, Apr 1953.
    [107]S. G. Brush. History of the lenz-ising model. Reviews of Modern Physics, 39:883-893, Oct 1967.
    [108]Shigeki Tokita, Kazuto Otani, Toshihiko Nishoji, Shunsuke Inoue, Masaki Hashida, and Shuji Sakabe. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Physical Review Let-ters,106:255001, Jun 2011.
    [109]Z. M. Sheng, J. Meyer ter Vehn, and A. Pukhov. Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse. Physics of Plasmas,5(10):3764-3773,1998.
    [110]M. C. Kaluza, H.-P. Schlenvoigt, S. P. D. Mangles, A. G. R. Thomas, A. E. Dangor. H. Schwoerer, W. B. Mori, Z. Najmudin, and K. M. Krushelnick. Measurement of magnetic-field structures in a laser-wakefield accelerator. Physical Review Letters,105:115002, Sep 2010.
    [111]H. B. Nersisyan and G. Zwicknagel. Energy transfer in binary collisions of two gyrating charged particles in a magnetic field. Physics of Plasmas, 17(8):082314,2010.
    [112]K. Quinn, P. A. Wilson, C. A. Cecchetti, B. Ramakrishna, L. Romag-nani, G. Sarri, L. Lancia, J. Fuchs, A. Pipahl, T. Toncian. O. Willi, R. J. Clarke, D. Neely, M. Notley, P. Gallegos, D. C. Carroll, M. N. Quinn, X. H. Yuan. P. McKenna, T. V. Liseykina, A. Macchi, and M. Borghesi. Laser-driven ultrafast field propagation on solid surfaces. Physical Review Letters,102:194801, May 2009.
    [113]D. F. Higgins. K. S. H. Lee, and L. Marin. System-generated emp. IEEE Transactions on Antennas and Propagation,26:14-22, January 1978.
    [114]N. J. Carron and C. L. Longmire. Electromagnetic pulse produced by obliquely incident x rays. IEEE Transactions on Nuclear Science,23:1897-1902, December 1976.
    [115]Y. N. Lazarev and P. V. Petrov. Generation of an intense, directed, ultra-short electromagnetic pulse. Soviet Journal of Experimental and Theoretical Physics Letters,60:634, November 1994.
    [116]Yu N. Lazarev, P.V. Petrov, and Yu G. Syrtsova. Microwave generation by a superluminal source at ultimate current densities. Plasma Physics Reports,29:491-502, June 2003.
    [117]Y. N. Lazarev. P. V. Petrov, and Y. G. Syrtsova. Photoemission pulsed source of wide-band directional electromagnetic radiation. Journal of Tech-nical Physics,49:1477-1485. November 2004.
    [118]A. V. Bessarab, S. G. Garanin, S. P. Martynenko, N. A. Prudkoy, A. V. Soldatov, V. A. Terekhin, and Y. A. Trutnev. An ultrawideband elec-tromagnetic pulse transmitter initiated by a picosecond laser. Physics Doklady,51:651-654, December 2006.
    [119]M. I. Bakunov, A. V. Maslov, and S. B. Bodrov. Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot. Physical Review B,72:195336, Nov 2005.
    [120]周辉,程引会,李宝忠,吴伟.系统电磁脉冲边界层准稳态特性研究.强激光与粒子束,13(1):72-75,2001.
    [121]周辉,郭红霞,李宝忠,程引会,常东梅.金属壳体和电缆的系统电磁脉冲响应.强激光与粒子束,16(5):645-648,2004.
    [122]丁富荣,班勇,夏宗璜.辐射物理.北京大学出版社,2004.
    [123]D. E. Cullen, M. H. Chen:and J. H. Hubbell. Tables and graphs of photon-interaction cross sections from 10 ev to 100 gev. Technical report, LLNL. 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700