用户名: 密码: 验证码:
周原地区全新世河流古洪水沉积与风成黄土的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全新世时期是人类文明发展迅速的时期,同时也是全球环境发生重大变化的时期。周原地区位于黄土高原的东南部,是我国古代文明的发源地之一,人类活动存留的古遗址分布非常广泛。该地区的也是黄河最大支流渭河流经的区域,洪水事件发生频繁。现有研究成果表明,该地区在全新世水旱灾频发,对中华文明进程产生了深远影响。深入研究该地区的古洪水沉积剖面和黄土-土壤地层剖面,能够揭示出周原地区全新世环境演变情况,准确地鉴别出古洪水平流沉积物和黄土堆积物,并以此确定全新世大洪水事件发生的次数、频率、时间及规模,有助于验证水利和防洪工程、交通工程设计洪水、提高工程设计的可靠性具有重要的现实意义,同时有助于揭示周原地区及黄河中游地区全新世环境演变的特点和规律。
     本研究基于详细的野外考察,分别在周原地区的扶风县和武功县选择了典型黄土堆积的匠杨村剖面和夹有古洪水沉积物的浒西庄剖面。对这两个典型剖面进行了粒度、磁化率等环境代用指标的室内实验分析和测定。通过野外沉积特征和室内实验分析,鉴定识别了渭河支流漆水河的古洪水平流沉积物,将其与风成黄土堆积物进行比较研究,为进一步揭示全新世时期周原地区环境演变和人类活动及二者的相互作用提供依据。获得的结论如下:
     1、在QSH-HXZ-E剖面上,夹在黄土剖面中的古洪水平流沉积物从颜色上看,与黄土堆积物很接近。但是在形态上有很大不同,古洪水平流沉积物具有薄的水平层理或波状层理,有时还可以见到有粘土质淤泥特有的龟裂构造。单层厚度在20cm以下,与风成黄土堆积有明显区别。若干次古洪水平流沉积层代表一个古洪水期。该剖面260cm以下含有四个古洪水期的沉积物。四期古洪水发生的年代在4100~4600a B.P之间。
     2、通过对磁化率的测定可以看出,古洪水平流沉积物的磁化率均值最大为145.80×10~(-8)m~3k~(-1),要大于黄土堆积物的磁化率值74.60×10~(-8)m~3kg~(-1)。从磁化率频率依赖率可以看出,古洪水平流沉积物的频率依赖率也要大于风成黄土堆积物,并且粘土质平流沉积物SWD_2、SWD_4的磁化率和频率依赖率均大于粉沙质平流沉积物SWD_1、SWD_3。
     3、粒度特征是鉴别古洪水平流沉积物的重要指标。由于古洪水平流沉积物与风成黄土堆积物的沉积方式不同,因此二者在粒度特征上有较大的差异。古洪水平流沉积物是在接近静水环境下沉积形成的。因此其粒度组成上细颗粒物质较多,即粘粒和细粉沙所占比例较大,而风成黄土在粒度组成上与古洪水平流沉积物有明显的区别,风成黄土和古土壤在粒度组成上粗颗粒物质较多,即粗粉沙和沙级颗粒所占比例较大。从粒度参数上可以看出,平流沉积物的平均粒径(Mz)要明显小于古土壤和马兰黄土,而偏态(SK)、峰态(Kg)也要小于古土壤和马兰黄土。平流沉积物明显偏细,分选较好。根据自然频率分布曲线可以看出,古洪水平流沉积物的曲线位于风成黄土和古土壤的左侧,粒径范围偏小。粒度C-M图中可以看出,古洪水平流沉积物有一部分落于静水悬浮沉积的区域内。这说明了古洪水平流沉积物的沉积方式近似于静水悬浮沉积,但还有一部分古洪水平流沉积物在沉积过程中受水流动力影响,属于推动沉积。可知该次洪水的含沙量很大。风成黄土沉积方式与古洪水平流沉积有明显不同,主要分布在PQ和QR两个范围内,粒度要比古洪水平流沉积物偏大。
The Holocene was the quickly development and prosperity period of the mankind's civilization, and also the great change period of the mankind's civilization, and also the great change period of the global environment. ZhouYuan area is locate in the southeast of the loess tabland, is one of the prehistoric culture centers in China, and there are a great of ancient ruins of human activities widely distributed in it. Existing research results reveal that floods and droughts were so frequent in this area in Holocene that brought significant impact on the process of Chinese civilization. Deep studies on the Holocene loess-paleosoil sequences and the slackwater flood deposits profiles around the ancient sites, identifying and obtaining the paleoflood information recorded in them, ensuring the amount, frequency, time and scale of the extreme Holocene paleofloods, has important practical significance in testing water and flood control projects、flood-designing of traffic engineering and improving the reliability of engineering. It is also very helpful in revealing the characters and rules of the environment change during Holocene in this drainage basin and in the middle reach of the Yellow River.
     Based on detailed field investigation, we choose Jiangyang village and Huxizhuang village two sections as typical of loess accumulation and paleoflood sediment in Fufeng and Wugong of Zhouyuan area. First we have some experiments in the lab about two sections' environment identification such as size and Susceptibility, second analyses experiments results and combined sedimentary features in the wild, then we identify paleoflood sediment of Qishui River a tributary of Weihe River, and finally we still compare ancient flood sediment of Qishui River with loess accumulation formed by windy, which can further reveal the rule of environment evolution and human activity the Holocene period of the Holocene period of the Holocene period of Zhouyuan area, and provide some basis for the interaction between the two. This article's main conclusions are as follow:
     1、On the QSH-HXZ-E profile, we can see paleoflood slackwater deposits coloure is similar to the loess deposits. But the slackwater deposits conformation are different from the loess deposits. The slackwater deposits have thin level layer or sinuate layer. Sometimes also may see have the putty soil texture silt unique chap structure. Single-layer thickness below 20cm, becomes the loess deposits to have the obvious difference. Certain paleoflood slackwater deposit formation represents an paleoflood period. Below this section plane 260cm includes four paleoflood slackwater deposite. Four issue of paleofloods occur age between 4100~4600a B.P.
     2、Through to the magnetic susceptibility determination, we can see the paleoflood advection deposit magnetic susceptibility average value for 145.80×10~(-8)m~3kg~(-1), be bigger than the loess deposit most greatly the magnetic susceptibility value 74.60×10~(-8)m~3kg~(-1). From the magnetic susceptibility frequency dependence (Freq. Dep/%), we can see the paleoflood slackwater deposit also bigger than the loess deposit. And the value of clay slackwater deposit SWD_2、SWD_4 are bigger than the silty sand slackwater deposit SWD_1、SWD_3.
     3、The grain characteristic is the most important target to distinguish the paleoflood slackwater deposit. Because the deposition way of the paleoflood slackwater deposit and the loess deposit are different, therefore the two have the big difference in the grain characteristic. The paleoflood slackwater deposit is under the close still water environment the deposit formation. Therefore its size composition fine-grain material are many, namely the clay and the thin fine-grained sand account for the proportion to be big, but the loess deposit to have the obvious difference in the size composition with the paleoflood slackwater deposit, the loess deposit and the paleosoil the coarse particles material are many in the size composition, namely the thick fine-grained sand and the sand level pellet accounts for the proportion to be big. We can see from the granularity parameter, slackwater deposit average grain diameter (Mz) must be smaller than obviously the paleosoil and the Malan loess, and skewness (SK), kurtosis (Kg) also must be smaller than the paleosoil and the Malan loess. The slackwater deposit is obviously thin, the separation is good. May see according to the free frequency distribution curve, the paleoflood slackwater deposit curve is located the loess and paleosoil left, the particle size scope is small. In the granularity C-M chart may see, the paleoflood slackwater deposit is located the slackwater deposition and in the turbidite two regions, some part falls in the slackwateraerosol deposition region. This indicated the paleoflood slackwater deposit deposition way is approximate in the slackwater deposition, but also has a part of paleoflood slackwater deposit in the process of deposition the fluent power influence, belongs to the muddy stream impetus deposition. The loess deposition way and the paleoflood slackwater deposition has obviously different, the Malan loess is located in the turbidite region in the C-M chart. Mainly distributes in PQ and in the QR two scopes, the granularity must be bigger than the paleoflood slackwater deposit.
引文
[1]长江流域规划办公室.长江水利史略.北京:水利电力出版社,1979
    [2]延军平,黄春长,陈瑛.跨世纪全球环境问题及行为对策[M].北京:科学出版社,1999:84-90
    [3]张骅.渭河洪涝灾害的根源和防治对策[J].陕西水土保持,2005,153(1):22-23
    [4]Huang,C.C.,Pang J.L.,Su,H.X.et al..Climatic and anthropogenic impacts on soil formation in the semiarid loess tableland in the middle reaches of the Yellow River,China[J].Journal of Arid Environments,doi:10.1016/j.jaridenv.2007.03.010.
    [5]Huang,C.C.,Pang J.L.,Chen,S.E.,etal.Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J].Palaeogeography Palaeoclimatoplogy Palaeoecology,2006,239:28-44.
    [6]Huang,C.C.,Jia,Y.F.,Pang,J.L.,Zha,X.C.,et al.Holocene Colluviation and its Implications for Tracing Human-induced Soil Erosion and Redeposition on the Piedmont Loess Lands of the Qinling Mountains,Northern China[J].Geoderma,2006,136,838-851.
    [7]Huang,C.C.,Pang,J.L.,Zhou,Q.Y.Chen,S.E..Holocene Pedogenic Change and the Emergence and Decline of Rain-fed Cereal Agriculture on the Chinese Loess Plateau[J].Quaternary Science Reviews,2004,23(23-24):2529-2539.
    [8]黄春长,庞奖励,陈宝群.渭河流域先周—西周时代环境和水土资源退化及其社会影响[J].第四纪研究,2003,23(4):404-414.
    [9]孙建中,赵景波.黄土高原第四纪[M].北京:科学出版社,1991.
    [10]赵景波.西北黄土区第四纪土壤与环境[M].西安:陕西科技出版社,1994:70-90.
    [11]赵景波.淀积理论与黄土高原环境演变[M].北京:科学出版社,2002.
    [12]Yang Dayuan,Yu Ge,Xie Yuebo etal.Sedimentary records of the large Holocene floods from the middle reaches of the Yellow River,China[J].Geomorphology,2000,33(1-2):73-88.
    [13]吴祥定等.历史时期黄河流域环境变迁与水沙变化[M].北京:气象出版社,1994.
    [14]朱诚等.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J].地理学报,1997,52:268-278.
    [15]夏正楷,杨晓燕.我国北方4ka B.P.前后异常洪水事件初步研究[J].第四纪研 究,2003,23(6):667-674.
    [16]夏正楷,王赞红,赵青春.我国中原地区3500a BP前后的异常洪水事件及其气候背景[J].中国科学(D),2003,33(9):881-888.
    [17]殷春敏等.全新世华北平原古洪水[J].北京师范大学学报,2001,37(2):280-284.
    [18]詹道江,谢悦波.古洪水研究[M].北京:中国水利水电出版社,2001:1-89.
    [19]谢悦波,姜洪涛.古洪水研究—挖掘河流大洪水的编年史[J].南京大学学报(自然科学版),2001,37(3):390-394.
    [20]Paul A Mayewskia,Eelco E Rohlingb,J Curt Stagerc,et al.Holocene climate variability[J].Quatemary Research,2004,62:243-255
    [21]刘东生,丁仲礼.中国黄土研究新进展(二)古气候与全球变化[J].第四纪研究,1990,(1):1-9.
    [22]夏正楷.第四纪环境学[M].北京:北京大学出版社,1997:169-171.
    [23]袁宝印,巴特尔,崔久旭.黄土区沟谷发育与气候变化的关系(以洛川黄土原区为例)[J].地理学报,1987,42(4):328-337.
    [24]丁仲礼,刘东生,刘秀铭等.250万年来的37个旋回[J].科学通报,1989,34(19):494-496.
    [25]赵景波,岳应利,杜娟.黄土的形成与气候旋回划分[J].中国沙漠,2002,22(1):11-15.
    [26]黄春长,庞奖励,黄萍等.关中盆地西部黄土台原全新世气候事件研究[J].干旱区地理,2002,25(1):10-15.
    [27]黄萍,庞奖励,黄春长.渭北黄土台原全新世地层高分辨率研究[J].地层学杂志,2001,25(2):107-110.
    [28]谢悦波,王文辉,王平.古洪水平流沉积粒度特征[J].水文,2000,20(4):18-20.
    [29]谢悦波,杨玉荣,王辉.三峡河段古洪水平流沉积指标体系[J].人民长江,1999,30(8):4-7.
    [30]Baker V R.A bright future fox old flows;Origins,status and future of paleoflood hydrology.In:Thorndycraft V R,Benito G,Barriendos M et al.(eds).Palaeofloods,Historical Data and Climatic Variability:Applications in Flood Risk Assessment (Proceedings of the PHEFRA International Workshop held in Barcelona,16-19th October,2002)[M].Madrid:CSIC,2003,13-18.
    [31]Knox,J C.Large increases in flood magnitude in response to modest change in climate,Nature,1993,361:430-432.
    [32]曹银真.古水文学及其研究方法[J].地理研究,1988,7(2):94-102.
    [33]W.G.Spaulding著,许清海译.北美西南部荒漠地区的未次洪积气候期[J].国外地理文摘,1987,2:30-31.
    [34]Ely L L,Enzel Y,Baker V R et al.A 5 000-year record of extreme floods and climate change in the southwestern United States[J].Science,1993,262(5132):410-412
    [35]Kerr R A.Black Sea deluge may have helped spread forming[J].Science,1998,279(5354):1132
    [36]Sandweiss D H,Nlaasch K A,Anderson D G.Transitions in the Mid-Holocene[J].Science,1999,283(5401):499.
    [37]Kerr R A.A victim of the Black Sea flood found[J].Science,2000,289(5487):2021-2022.
    [38]丁梦林.古地震与远古时代大洪水传说的起因[J].第三届全国第四纪学术会议论文集[A].北京:科学出版社,1982,206-210.
    [39]马宗申.关于我国古代洪水和大禹治水的探讨[J].农业考古,1982,2:3-11.
    [40]沈树荣.上古时代有关地下水和水旱灾害的传说[J].水文地质工程地质,1979,2:58-60.
    [41]徐润滋.红水河阶地与极限洪水[J].地理研究,1986,5(1):42-49.
    [42]吴忱,魏福利.华北地区晚全新世初期环境变化分析[J].地理与地理信息科学,2003,19(2):97-101.
    [43]吴忱,朱宣清,何乃华等.华北平原古河道研究[M].北京:中国科学技术出版社,1991:169-184.
    [44]袁宝印,邓成龙,吕金波等.北京平原晚第四纪堆积期与史前大洪水[J].第四纪研究,2002,22(5):474-481.
    [45]张强,姜彤,施雅风等.6000a B.P.以来长江下游地区古洪水与气候变化关系初步研究[J].冰川冻土,2003,25(4):368-373.
    [46]张强,姜彤,施雅风等.长江三角洲地区1万年以来洪水与气候变化的关系[J].海洋地质与第四纪地质,2003,23(3):11-15.
    [47]夏正楷,杨晓燕.我国北方4ka B.P.前后异常洪水事件初步研究[J].第四纪研究,2003,23(6):667-674.
    [48]查小春,黄春长,庞奖励.关中西部漆水河全新世特大洪水与环境演变[J].地理学报,2007,62(3):291-300.
    [49]詹道江,谢悦波.洪水计算的新进展——古洪水研究[J].水文,1997(1):1-5.
    [50]Baker,V.R.Magnitude and frequency of palaeofloods.In:Beven,K.,Carling,P.(eds.),Floods;hydrology,Sedimentological and Geomorphological Implications [M].Wiley,Chichester,1989:171-183.
    [51]Baker,V.R.,Kochel,R.C.Flood sedimentation in bedrock fluvial systems.In:Baker,V.R.,Kochel,R.C.,Patton,P.C.(Eds.),Flood Geomorphology[M].Wiley,USA,1988:123-137.
    [52]Benito,G.,Sanchez-Moya,Y.,Sopena,A.Sedimentology of high-stage flood deposits of the Tagus river,Central Spain[J].Sedimentary Geology,2003,157:107-132.
    [53]Baker,V.R.,Pickup,G.Flood geomorphology of the Katherine Gorge,Northern Territory,Australia.Geological Society of America[J].Bulletin,1987,98:635-646.
    [54]Patton,P.C.,Baker,V.R.,Kochel,R.C.Slack-water deposits:a geomorphic technique for the interpretation of fluvial paleohydrology.In:Rhodes,D.D.,Williams,G.P.(Eds.),Adjustments of the Fluvial System[M].Kendall Hunt Publ.Co.,Dubuque,Iowa,1979:225-252.
    [55]杨达源,谢悦波.古洪水平流沉积[J].沉积学报,1997,15(3):29-32.
    [56]杨达源,谢悦波.黄河小浪底段古洪水沉积与古洪水水位的初步研究[J].河海大学学报(自然科学版),1997,25(3):86-89.
    [57]谢悦波,杨达源.古洪水平流沉积基本特征[J].河南大学学报,1998,26(6):5-10.
    [58]谢悦波,费宇红,沈起鹏.古洪水平流沉积与水位[J].地球学报,2001,22(4):320-323.
    [59]谢悦波,刘金涛,沈起鹏.黄河小浪底河段古洪水沉积[J].河海大学学报,2001,29(4):27-30.
    [60]Kutija,V..Hydraulic modelling of floods.In:Thomdycraft,V.R.,Benito,G.,Barriendos,M.,Llasat,M.C.(Eds.),Palaeofloods,Historical Floods and Climatic Variability:Applications in Flood Risk Assessment[M].CSIC,Madrid,2003:163-170.
    [61]Kochel R C,Baker V R.Paleoflood Hydrology[J].Science,1982,215:353-361.
    [62]Baker,V.R.,Pickup,G.,Polach,H.A.Radiocarbon dating of flood events,Katherine Gorge,Northern Territory,Australia[J].Geology,1985,13:344-347.
    [63]葛兆帅,杨达源,谢悦波.沁河流域全新世特大洪水及其重现期初步研究[J]. 自然灾害学报,2004,13(5):144-148.
    [64]任明达,王乃梁.现代沉积环境概论[M].北京;科学出版社,1981,8-25.
    [65]华东石油学院岩矿教研室.沉积岩石学(上册)[M].北京:石油工业出版社,1982,79-96.
    [66]华东石油学院勘探系、基础地质、石油地质教研室.沉积岩[M].北京:石油化学工业出版社,1977,66-93.
    [67]成都地质学院.沉积岩石学[M].北京:地质出版社,1980,307-320.
    [68]刘东生等著.黄土与环境[M].北京:科学出版社,1985.
    [69]徐馨,何才华,沈志达,等.第四纪环境研究方法[M].贵阳:贵阳科技出版社,1992:74-75.
    [70]王挺梅,鲍芸英.黄河中游黄土之粒度分析[M].第四纪地质问题.北京:科学出版社:1964.
    [71]李克让,陈育峰.中国全球气候变化影响研究方法的进展[J].地理研究,1999,18(2):14-23.
    [72]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社,1978.
    [73]AN Zhi-sheng,Kukla G,Porter S C,et al.Late Quatemary dust flow on the Chinese loess plateau[J].Catana,1991,18:125-132.
    [74]DING Zhong-li,YU Zhi-wei,Rutter N W,et al.Towards an orbital time scale for Chinese loess deposits[J].Quaternary Science Reviews,1994,13:39-70.
    [75]XIAO Ju-le,ZHENG Hong-bo,ZHAO Hua.Variation of win-ter monsoon intensity on the Loess Plateau,Central China during the last 130000 years:evidence from the grain size distri-bution[J].Quaternary Research,1992,31:13-19.
    [76]Giancarlo G Bianchi,Nicholas Mc Cave I.Holocene periodicityin North Atlantic climate and deep-ocean flow south of Iceland[J].Nature,1999,397:515-517.
    [77]Celina Campell.Late Holocene lake sedimentology and climate change in southern Alberta,Canada[J].Quaternary Research,1997,(49):96-101.
    [78]陈敬安,万国江,唐德贵,等.洱海近代气候变化的沉积物粒度与同位素记录[J].自然科学进展,2000,10(3):253-259.
    [79]Porter S C,An Zhisheng.Correlation between climate events in the North Atlantic and China during the last glaciation[J].Nature,1995,375:305-308.
    [80]Kukla G,An Zhisheng.Loess stratigraphy in central China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1989,72:203-225
    [81]丁仲礼,孙继敏,朱日祥.黄土高原粘土成因及上新世北方干旱化问题[J].第四纪研究,1997,(2):147-157.
    [82]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
    [83]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D),1998,28(3):278-283.
    [84]孙有斌,鹿化煜等.黄土-古土壤石英颗粒的粒度分布[J].科学通报,2000,45(19):2094-2097.
    [85]张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2001,21(1):29-39.
    [86]An Z S,Porter S C.Millennial-scale climatic oscillations during the last interglaciation in central China.[J].Geology,1997,25(7):603-606
    [87]An Zhisheng Kukla G J,Porter S C et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000years[J].Quaternary Research,1991,36:29-36.
    [88]An Zhisheng,Liu Tunsheng,Lu Yanchou,et al.The long-term palelomonsoon variation recorded by the loess-palesol sequence in central China[J].Quaternary International,1990(7/8):91-95.
    [89]杜恒俭,陈华德,曹伯勋主编.地貌学及第四纪地质学[M].北京:地质出版社,1981:89-102.
    [90]张宝政,陈琦主编.地质学原理[M].北京:地质出版社,1983:118-119.
    [91]Burke,K.,Francis,P.and Wells,G Importance of the geological record in understanding global change[J].Palaeogeogr.Palaeo-climatol.Palaeoecol,(Glob.Plan.Chang.Sect.),1990,89:193-204.
    [92]Michael,D.Blum and TORBJo RNE,To RNQVIST.Fluvial response to climate and sea-level change:a review and look forward[J].Sedimentology,2000,47:2-48.
    [93]G M.Friedman and J.E.Sanders.Principles of Sedimentology[M].John Wiley &Sons,New York,Chichester,Prisbane,Toron-to,1978,29-211.
    [94]谢又予等.沉积地貌分析[M].北京:海洋出版社,2000:3.
    [95]张祖陆.鲁北平原黄河古河道初步研究[J].地理学报,1990,45(4):457-466.
    [96]李元芳.西汉古黄河三角洲初探[J].地理学报,1994,49(6):543-549.
    [97]王红亚,石元春,于澎涛,等.河北平原南部曲周地区 早、中全新世冲积物的分析及古环境状况的推测[J].第四纪研究,2002,22(4):381-393.
    [98]陈志清.黄河龙门—三门峡段河漫滩组成物质的粒度特征[J].地理学报,1997,52(4):308-315.
    [99]Folk R L,Ward W C.Brozos river bar:A study in the significance of grain-size parameters[J].Journal of Sedimentary Petrology,1957,(27):3-26.
    [100]Heller F,Liu T S.Magnetism of Chinese Loess deposits[J].Journal of Geophysical Research,1984,77:125-141.
    [101]Jomg W E,Fassbinder et al.Occurrence of ultra fine-grained magnetic in soil [J].Nature,1990,343:161-163.
    [102]孙东怀,安芷生,吴锡浩等.最近150ka黄土高原夏季风气候格局的演化[J].中国科学(D辑),1996,26(5):417-422.
    [103]吕厚远,韩家懋等.中国现代土壤磁化率分析及其古气候意义[J].中国科学(B),1994,24(1):1290-1297.
    [104]武功地方志编纂委员会编.武功志[M].西安:陕西人民出版社,2001
    [105]G.M.Friedman and J.E.Sanders.Principles of Sedimentology[M].John Wiley & Sons,New York,Chichester,Prisbane,Toron-to,1978
    [106]袁胜元,赵新军,李长安.古洪水事件的判别标志[J].地质科技情报,2006,25(4):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700