用户名: 密码: 验证码:
新型低功耗永磁偏置混合磁轴承的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮轴承是利用非接触的磁力作用,将转子悬浮起来,实现定子与转子之间的无摩擦运行。磁悬浮轴承具有无摩擦、噪音小、高转速、寿命长等优点,可应用于风力发电、真空超净环境、高速机床、机械加工、旋转电机、运输医疗等领域。
     为解决目前磁轴承结构中存在的重力干扰、功耗大、磁路耦合、控制复杂、成本高等问题,本文提出了新型低功耗永磁偏置混合磁轴承的结构。采用永磁“上吸下斥”作用力抵消转子的重力;采用电磁与永磁之间的排斥力调节转子的径向位移,可以按“同增同减法”或PID(Proportion Integration Differentiation)算法调节±X和±Y方向上线圈的控制电流;采用电磁永磁与吸力盘之间的吸引力调节转子的轴向位移,轴向偏置电流为零,能降低电流消耗。在所用材料研究的基础上,推导了与磁轴承结构相符的重力抵消力、径向调节力、轴向调节力表达式,得到了磁悬浮转子单自由度和五自由度数学模型、位移刚度系数、电流刚度系数和S域传递函数,仿真了磁轴承结构中的磁力线分布和五自由度磁悬浮转子运动情况。
     研究了磁轴承的双闭环控制系统,外环采用无传感器检测的“高频注入参数估计法”测量转子位移,节省电涡流位移传感器,降低成本,内环采用霍尔电流器件ACS712测量线圈电流,提高电流的响应速度。设计了10路电流和5路位移输入电路及10路PWM(Pulse Width Modulation)输出电路,求解了电路的输入输出关系,得到了控制电路的传递函数,得到了双闭环控制系统的传递函数,仿真了传统PID控制下的响应曲线。为适应建模不准确,非线性、不确定、不确知系统的控制需要,研究基于RBF(Radial Basis Function)预测模型的神经网络PID算法,通过神经网络的离线和在线训练,不断修改权值,提高了系统的鲁棒性和自适应性,仿真表明神经网络PID下的系统响应具有更小的超调量和更短的稳定时间。
     搭建了磁悬浮实验台,绘制了软件流程图,研发了CCS与VC++实验程序代码,得到了实验数据和曲线,实验表明:转子位移波动在±0.1mm,线圈电流波动在±0.4A,实现了对转子的无接触悬浮,且“同增同减”控制下的位移波动更,但电流消耗增大。下一步将继续优化控制策略,减少转子波动和磁轴承功耗,提高整体性能。
Magnetic bearing suspendes rotor with noncontact magnetic force, realizes the zerofriction running between rotor and stator. Magnetic bearing has the advantages of zerofriction, low noise, ultrahigh speed and long service life etc, can be applied to the domains of wind power generator, ultraclean vacuum environment, high speed machine, mechanical processing, rotating motors, transport and medicine etc.
     In order to solve the present problems of magnetic bearing structure, such as gravity disturbance, high power consumption, magnetic path coupling, complicated control, and high cost, etc., the paper puts forward a new structure of low-power hybride magnetic bearing with bias permanent magnet. It adopts the "up-suction and down-repulsion" permanent magnet force to counteract the gravity of rotor; it adopts the repulsion force between electromagnet and permanent magnet to adjust radial displacement of rotor, the coil current of±X and±Y directions can be changed by the method of simultaneous increase or decrease, or by the arithmetic of PID (Proportion Integration Differentiation); it also adopts the suction force among iron plate, electromagnet and permanent magnet to adjust axial displacement of rotor, the bias current is zero at axial direction, thus the current consumption can be lower. On the base of material research, the paper deduces the expression formula of gravity counteract force, radial adjusting force, axial adjusting force, which is consistent with the magnetic bearing structure, then gets the mathematical model, the displacement rigidity coefficient, the current rigidity coefficient, the transfer function of S domain under single degree-of-freedom (dof) and five dof, simulates the flow direction of magnetic force lines in magnetic bearing structure, and simulates the five dof movement of magnetic suspension rotor.
     The paper also researches the double closed-loop control system of hybrid magnetic bearing, which adopts the no sensor detecting method of "high frequency injection and parameters estimation" to measure the displacement of rotor at outer loop, also adopts the HALL current device ACS712 to measure the coil current at inner loop, thus abandons the displacement sensors of electricity eddy, cuts the cost lower, improves the response speed of coil current. Designes the control circuits of 10 current inputs,5 displacement inputs, as well as 10 PWM (Pulse Width Modulation) outputs, gets the circuit relationship between inputs and outputs, gets the transfer function of control circuit, gets the transfer function of double closed-loop control system, simulates the response curve of traditional PID control system. For the control demand of imprecise mathematical model, non-linear, uncertainty, unknown system, the paper studies on the neural network PID algorithm which is based on RBF (Radial Basis Function) prediction model, through off-line and on-line training of neural network, the weights values are revised continuously, so improves the robustness and adaptability of system, simulation shows that the response curve of neural network PID control system has less overshoot and shorter stable time.
     The paper builds a magnetic suspension experiment platform, draws the software flowchart, developes the procedure code of CCS and VC++, gets the experimental data and curves, the experiment shows that displacement fluctuations of magnetic suspension rotor is within±0.1 mm, coil current fluctuations is within±0.4A, the raotor has been suspended noncontactly, and the displacement fluctuations is smaller under the control method of simultaneous increase or decrease, the current consumption is higher. Optimizing the control strategy, reducing displacement fluctuation of rotor and current consumption of magnetic bearing, improving overall performance would be the next work.
引文
1.濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2007:275-342.
    2.王宝国.无轴承电机磁悬浮机理及其控制方法研究[D].辽宁沈阳:沈阳工业大学,2002.
    3.王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J].中国电机工程学报,2002,22(5):105-108.
    4.李鹏.磁悬浮风力发电机转子系统的研究[D].山东青岛:山东科技大学,2010.
    5.赵天锋.磁悬浮轴承转子系统控制方法及其稳定性研究[D].陕西西安:西安理工大学,2005.
    6.董宏涛.磁力轴承功率放大器的设计与仿真[D].湖北武汉:武汉理工大学,2006.
    7.张敬.混合式磁悬浮轴承及其控制系统的研究[D].辽宁沈阳:沈阳工业大学,2005.
    8.李冰.电磁轴承系统集成化技术的研究[D].江苏南京:南京航空航天大学,2003.
    9.宗鸣.永磁偏置混合式磁轴承及其控制方法的研究[D1.辽宁沈阳:沈阳工业大学,2006.
    10.戴大海.磁悬浮轴承数字控制器的研究与设计[D].江苏南京:南京航空航天大学,2006.
    11.陈龙.磁力轴承结构参数化设计[D].湖北武汉:武汉理工大学,2005.
    12.全定策.磁力轴承结构设计及其转子结构特性分析[D].湖北武汉:武汉理工大学,2004.
    13.昌红武.磁悬浮轴承控制系统研究[D].湖北武汉:武汉理工大学,2007.
    14.陈晓龙.基于DSP的电磁轴承控制系统及应用研究[D].陕西西安:西北工业大学,2004.
    15.邓坚强.电磁轴承有限元分析、结构设计及控制[D].浙江杭州:浙江大学,2004.
    16.钟毅.磁悬浮嵌入式控制系统基础理论和关键技术研究[D].湖北武汉:武汉理工大学,2007.
    17.仇志坚.永磁型无轴承电机的基础研究[D].江苏南京:南京航空航天大学,2009.
    18.刘宇航.主动磁悬浮轴承的控制系统研究[D].辽宁沈阳:沈阳工业大学,2007.
    19.叶建民.主动磁悬浮轴承集中控制器的研究[D].江苏南京:南京航空航天大学,2005.
    20.吴坚.主动磁悬浮轴承控制器的研究[D].江苏苏州:苏州大学,2004.
    21. Earnshaw S. On the nature of molecular forces which regulate the constitution of luminiferous ether [J]. Trans. Camb. Phil. Soc.,1842, (7):97-112.
    22.陈正钢.风扇磁浮轴承[P].中国专利:ZL03240406.9,2004-05-19.
    23.赵旭升,邓智泉,王晓琳等.永磁偏置磁轴承的研究现状及其发展[J].电工技术学报,2009,24(9):9-20.
    24. Se'bastien Auchet, Pierre Chevrier, Michel Lacour, et al. A new method of cutting force measurement based on command voltages of active electro-magnetic bearings [J]. International Journal of Machine Tools & Manufacture,2004, (44):1141-1149.
    25.房建成,马善振,孙津济.一种低功耗永磁偏置内转子径向磁轴承[P].中国专利:ZL200510011271.8,2005-08-03.
    26.房建成,徐衍亮,马善振等.一种低功耗永磁偏置轴向磁轴承[P].中国专利:ZL200510011272.2,2005-08-03.
    27. Kim Hayong, Lee Chongwon. Design and control of active magnetic bearing system with Lorentz force-type axial actuator [J]. Mechatronics,2006, (16):13-20.
    28. Kuroki Jiro, Shinshi Tadahiko, Li Lichuan, et al. Miniaturization of a one-axis controlled magnetic bearing [J]. Precision Engineering,2005, (29):208-218.
    29.邓自刚,王家素,王素玉等.高温超导磁悬浮轴承研发现状[J].电工技术学报,2009,24(9):1-8.
    30.佟为明,许峰,李凤阁.麦克斯韦电磁力公式与某些电磁现象的解释[J].电子器件,2001,24(4):351-357.
    31.顿月琴,徐衍亮.一种新型转子磁体永磁偏置混合磁轴承[J].山东大学学报(工学版),2004,34(5):46-50.
    32. Seung-Kook Ro, Soohyun Kim, Yoonkeun Kwak, et al. A linear air bearing stage with active magnetic preloads for ultraprecise straight motion [J]. Precision Engineering,2010, (34):186-194.
    33.寇尊权.不均匀磁化对永磁推力轴承及其转子系统性能影响的研究[D].吉林长春:吉林大学,2006.
    34. Qingchang Tan, Wei Li, Bo Liu. Investigations on a permanent magnetic-hydrodynamic hybrid journal bearing [J]. Tribology International,2002, (35):443-448.
    35.梁灿彬,秦光戎,梁竹健.电磁学[M].北京:高等教育出版社,2005:179-182.
    36.魏金强.磁悬浮轴承控制系统研究[D].湖北武汉:武汉理工大学,2007.
    37.裴延涛,张超.基于双环PID控制的磁悬浮推力轴承试验研究[J].太原科技,2010,(3):92-93.
    38.白志峰.磁轴承用位移传感器的研究[D].山东青岛:山东科技大学,2005.
    39.邹海丹,朱熀秋.磁悬浮轴承转子位移检测技术[J].轴承,2009,(5):59-63.
    40.王军.无传感器磁悬浮轴承的研究[D].江苏南京:南京航空航天大学,2005.
    41.刘雪冬,刘泉,胡业发.磁悬浮轴承转子位移无传感器自动检测的研究[J].武汉理工大学学报,2003,25(1):62-64.
    42.童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2003:312-484.
    43. Fairchild Semiconductor Inc. Product data sheet of dual operational amplifier LM358 [EB/OL]. http://www.fairchildsemi.com,2010-06-04/2010-07-18.
    44. Analog Devices Inc. Product data sheet of 500MHz four-quadrant multiplier AD834 [EB/OL]. http://www.analog.com,2002-04-24/2010-07-19.
    45. Analog Devices Inc. Product data sheet of ultrahigh frequency operational amplifier AD5539 [EB/OL]. http://www.analog.com,2007-02-08/2010-07-19.
    46.陈德煌.模拟乘法器AD834的原理与应用[J].国外电子元器件,2000,(6):16-19.
    47.邹涛,全备,张翠等.高速四象限模拟乘法器AD834及其应用[J].电子产品世界,2001,(11):30-31.
    48. Analog Devices Inc. Product data sheet of low-noise precision operation amplifier OP27 [EB/OL]. http://www.analog.com,2003-02-04/2010-07-26.
    49. Honeywell Sensor Inc. Product data sheet of 1-and 2-axis magnetic sensors HMC1022 [EB/OL]. http://www.magneticsensors.com,2007-01-23/2010-07-22.
    50.于树海,程汉湘,罗其锋.霍尔电流传感器在并联型有源电力滤波器(SAPF)中的应用[J].电子元器件应用,2008,10(3):16-20.
    51.翟玉卫,陈世利,靳世久.基于磁阻传感器的杂散电流监测仪的研究[J].现代科学仪器,2009,(2):51-53.
    52. Allegro MicroSystems Inc. Product data sheet of Hall effected-based linear current sensor ACS712 [EB/OL]. http://www.allegromicro.com,2010-01-28/2010-07-23.
    53. Fairchild Semiconductor Inc. Product data sheet of high speed logic gate optocoupler 6N137 [EB/OL]. http://www.fairchildsemi.com,2008-08-23/2010-07-23.
    54. Philips Semiconductors Inc. Product specification supersedes data of quad 2-input and gate 74HC08 [EB/OL]. http://www.semiconductors.philips.com,2003-07-25/2010-07-23.
    55.吕常智,范迪.电磁轴承中PWM开关功率放大器的实现[J].轴承,2006,(6):1-5.
    56.李国栋,张庆春,梁迎春.电磁轴承的PWM功率放大器的研究[J].机电一体化,2005,(2):33-36.
    57. NXP Semiconductors Inc. Product data sheet of 16-bit bus transceiver 74LVC16245 [EB/OL]. http://www.nxp.com,2008-11-06/2010-07-16.
    58. International Rectifier Inc. Product data sheet of half-bridge driver IR2104 [EB/OL]. http://www.irf.com,2001-05-23/2010-07-16.
    59. Vishay Siliconix Inc. Product data sheet of power MOSFET IRF540 [EB/OL]. http://www.vishay.com,2008-06-16/2010-07-16.
    60.徐敬文,李守智,李强.电磁浮轴承控制系统中功率驱动电路的研究[J].电气传动自动化,2000,22(1):19-22.
    61. Texas Instruments Inc. Product data manual of 10-bit FET bus switch with level shifting 74CBTD3384 [EB/OL]. http://www.ti.com,2009-06-27/2010-08-01.
    62. Texas Instruments Inc. Product data manual of dual-output low-dropout voltage regulators TPS70151 [EB/OL]. http://www.datasheetcatalog.com,2004-09-16/2010-07-26.
    63.陆志洋,陈宏巍,邰佑诚.利用DSP的McBSP实现与PC机串行通信[J].微处理机,2006,(5):6-8.
    64. Maxim integrated production Inc. Product data manual of 5V powered multichannel RS232 driver/receiver [EB/OL]. http://www.maxim-ic.com,2000-04-21/2010-08-01.
    65. Mark Qian. DSP start kit with TMS320F2812 [DB/CD]. Beijing:Seed Electronic Technology Ltd,2007-07-31/2010-07-24.
    66. Cypress semiconductor corp. Product data manual of 64K×16 static RAM CY7C1021 [EB/OL]. http://www.datasheetcatalog.com,2002-11-01/2010-08-01.
    67.叶建明.主动电磁悬浮轴承集中控制器的研究与设计[D].江苏南京:南京航空航天大学,2004.
    68.谢黎.磁悬浮轴承控制器的研究与设计[D].江苏南京:南京航空航天大学,2002.
    69. Thomas R. Grochmal, Alan F. Lynch. Experimental comparison of nonlinear tracking controllers for active magnetic bearings [J]. Control Engineering Practice,2007, (15): 95-107.
    70.胡业发,周祖德,江征风.磁力轴承的基础理论与研究[M].北京:机械工业出版社,2006:50-64.
    71.漆安慎,杜婵英.力学[M].北京:高等教育出版社,2004:201-209.
    72.曾学明.磁轴承电控系统研究[D].江苏南京:南京航空航天大学,2002.
    73.张爱林.基于LF2407ADSP的主动磁轴承数字控制系统的研究[D].江苏南京:南京航空航天大学,2004.
    74.缪敏娜.基于DSP的磁悬浮轴承控制系统的研究[D].上海:东华大学,2008.
    75.虞烈.可控磁悬浮转子系统[M].北京:科学出版社,2003:64-106.
    76.张元林.工程数学-积分变换[M].北京:高等教育出版社,2005:67-92.
    77.吴华春,胡业发,周祖德.磁悬浮主轴DSP控制系统的研究[J].武汉理工大学学报,2010,32(6):39-42.
    78.谢克明,王柏林.自动控制原理[M].北京:电子工业出版社,2004:28-35.
    79. Katsuhiko Ogata(著),卢伯英,王柏林(译).现代控制工程[M].北京:电子工业出版社,2003:8-45,50-77.
    80. Bei Lu, Heeju Choi, Gregory D. Buckner, et al. Linear parameter-varying techniques for control of a magnetic bearing system [J]. Control Engineering Practice,2008, (16): 1161-1172.
    81. Jin-Tsong Jeng. Nonlinear adaptive inverse control for the magnetic bearing system [J]. Journal of Magnetism and Magnetic Materials,2000, (209):186-188.
    82.徐丽娜.神经网络控制[M].北京:电子工业出版社,2003:26-43,124-155.
    83. Selami Beyhan, Musa Alci. Stable modeling based control methods using a new RBF network [J]. ISA Transactions,2010, (4):1-9.
    84.陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002:2-7,149-196.
    85.舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006:34-38.
    86.夏长亮,王娟,史婷娜等.基于自适应径向基函数神经网络的无刷直流电机直接电流控制[J].中国电机工程学报,2003,23(6):123-127.
    87.夏长亮,文德,范娟等.基于RBF神经网络的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(3):26-29.
    88. Nam Mai-Duy, Thanh Tran-Cong. Approximation of function and its derivatives using radial basis function networks [J]. Applied Mathematical Modelling,2003, (27):197-220.
    89. De-Shuang Huang, Wen-Bo Zhao. Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms [J]. Applied Mathematics and Computation,2005, (162):461-473.
    90.夏长亮,修杰.基于RBF神经网络非线性预测模型的开关磁阻电机自适应PID控制[J].中国电机工程学报,2007,27(3):57-61.
    91.夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(15):161-165.
    92. Hoang Xuan Huan, Dang Thi Thu Hien, Huu Tue Huynh. A novel efficient two-phase algorithm for training interpolation radial basis function networks [J]. Signal Processing, 2007, (87):2708-2717.
    93. Zheng-ou Wang, Tao Zhu. An efficient learning algorithm for improving generalization performance of radial basis function neural networks [J]. Neural Networks,2000, (13): 545-553.
    94.孙明礼,胡仁喜,崔海容等. ANSYS 10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007:17-63.
    95.博弈创作室.ANSYS 9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006:67-353.
    96.孙亮,杨鹏等.自动控制原理[M].北京:北京工业大学出版社,2002:92-102,204-227.
    97.张永相.机电控制理论及应用[M].四川:重庆大学出版社,2002:137-198.
    98.高金源.计算机控制系统-理论、设计与实现[M].北京:北京航空航天大学出版社,2000:112-119,165-184.
    99. Rafal Piotr Jastrzebski, Riku Pollanen. Compensation of nonlinearities in active magnetic bearings with variable force bias for zero-and reduced-bias operation [J]. Mechatronics, 2009, (19):629-638.
    100.周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:10-42,140-255.
    101.杨高波,亓波.精通MATLAB7.0混合编程[M].北京:电子工业出版社,2006:12-36,68-122.
    102.Texas Instruments Inc. Product data manual of TMS320F28x DSP system control and interrupts reference guide [EB/OL]. http://dsp.ti.com,2004-09-03/2010-09-10.
    103.Texas Instruments Inc. Product data manual of TMS320F28x DSP analog-to-digital converter (ADC) reference guide [EB/OL]. http://dsp.ti.com,2004-08-09/2010-09-12.
    104.Texas Instruments Inc. Product data manual of TMS320x281x DSP event manager (EV) reference guide [EB/OL]. http://dsp.ti.com,2004-09-17/2010-09-14.
    105.Texas Instruments Inc. Product data manual of TMS320x281x serial communication interface (SCI) reference guide [EB/OL]. http://dsp.ti.com,2004-11-12/2010-09-16.
    106.Texas Instruments Inc. Product data manual of digital signal processors TMS320F2812 [EB/OL]. http://www.ti.com,2005-03-30/2010-07-24.
    107.刘和平,邓力,江渝等.数字信号处理器原理、结构及用用基础-TMS320F28X[M].北京:机械工业出版社,2009:18-68,176-299.
    108.苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005:92-117,282-389.
    109.苏奎峰,吕强,常天庆等TMS320X281X DSP原理及C程序开发[M].北京:北京航空航天大学出版社,2010:73-192,286-362.
    110.谭浩强.C程序设计(第三版)[M].北京:清华大学出版社,2007:37-329.
    111.马忠梅,籍顺心,张凯等.单片机的C语言应用程序设计[M].北京:北京航空航天大学出版社,2003:50-158.
    112.戴展波.SEED-DSK2812程序代码例子[DB/CD].北京:北京合众达电子技术有限责任公司,2003-05-31/2010-09-20.
    113.王建平,李团结,王宇红.Visual C++6.0编程[M].北京:科学出版社,2000:61-79,218-237,253-279.
    114.龚建伟,熊光明.Visual C++/Turbo C串口通信编程实践[M].北京:电子工业出版社,2004:46-87,237-246.
    115.精信技术研发部.JX20XL系列电涡流位移传感器说明书[M].广东:广州精信仪表电器有限公司,2009:1-49.
    116.擎宏技术研发部.CDP系列可程式直流电源供应器操作手册[M].台湾:擎宏电子企业有限公司,2010:(1-1)-(8-3).
    117. Tektronix technical development department. User manual of DPO2000 and MSO2000 series oscilloscopes [M]. USA:Tektronix, Inc.,2010:1-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700