用户名: 密码: 验证码:
氧化物中自旋极化材料与器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在信息大爆炸的当今,信息技术正以摩尔定律快速向前发展:集成电路上可容纳的晶体管数目约每隔18个月便会增加一倍,而且性能提高一倍。然而随着器件尺寸的减小和集成化的提高,电子的量子效应使半导体器件越来越接近其物理极限。为了突破摩尔定律瓶颈,自旋电子学应运而起:同时调控电子的电荷和自旋两种属性,引入全新的信息存储和处理模式,使得自旋电子器件相对于传统半导体器件具有运算速度更快、器件尺寸更小、能耗更低、信息存储非易失等优异性能,这引发了科研界和工业界的广泛关注与研究,成为当前凝聚态物理、材料科学和信息科学等诸多领域共同关注的研究热点。自旋电子器件的设计和制备需要实现自旋极化电流的产生、注入、传输、检测和调控,在材料中产生自旋极化电流是实现自旋电子器件的首要条件,因而高自旋极化率材料是这一切的基础和关键,近年来物理、信息、材料领域大量的工作集中于自旋极化材料的探索,先后制备出了各种磁性半导体、半金属、拓扑绝缘体等新材料。自旋极化材料制备和自旋电子器件设计是自旋电子学的两个主要部分。本文基于国内外对自旋电子材料和器件的研究基础之上,设计和制备出新型的自旋极化材料与器件,并对材料和器件的结构和性能进行了检测和分析。
     磁性半导体是一种具有重要前景的自旋极化材料,能够克服电导不匹配的限制实现自旋注入,是新型自旋器件的支撑材料,具有丰富的物理内涵和应用前景,成为自旋电子学的研究热点。在各种磁性半导体种,宽禁带磁性半导体由于具有室温铁磁性吸引了研究者的广泛关注,基于ZnO、In2O3、TiO2等氧化物半导体的过渡金属掺杂体系中都观察到了室温铁磁性。但是绝大部分工作集中于其结构、磁性和磁性物理起源等方面,对于自旋极化这一最重要性质却少有研究报道。我们通过磁性隧道结、反常霍尔效应以及磁电阻等多个方面研究分析,证明了我们制备的氧化物磁性半导体具有自旋极化特性。为了提升信息存储和处理能力,人们在不断探索开发基于自旋极化材料的各种新型自旋电子器件。自旋场效应管、自旋发光二极管、MRAM、Racetrack存储器、多铁隧道结等新型器件纷纷涌现,这些新型器件采用全新的信息存储和处理模式,具有巨大的应用前景。我们设计构造了具有隧穿磁电阻和电致阻变的多态存储器件,可以实现高密度、低功耗、非易失的信息存储。我们制备的具有自旋相关偏压的磁性隧道结,可以实现巨大的磁阻,是一种灵敏的交流磁性传感器。
     具体工作介绍主要有以下四个方面:(1)我们制备了浓磁半导体Zn1-xCoxO,并进一步证明和测量了其自旋极化。我们使用高真空磁控溅射仪采用交替溅射方法,制备出高钴含量的磁性半导体Zn1-xCoxO,并进一步利用金属掩模构造了100um×100um的隧道结器件Co/ZnO/Zn1-xCoxO。在该隧道结中我们观察到了室温磁电阻,其随着温度的降低逐渐增强,在2K温度下我们观察到19.7%的隧穿磁电阻。通过Julliere理论模型,可以推得其自旋极化率大约为25%。结电阻随温度变化曲线显示非直接弹性跃迁的存在,这表明势垒中有缺陷态,由于缺陷态会减弱磁电阻,Zn1-xCoxO真实极化率应高于理论推算值。另外我们还观察到了Zn1-xCoxO室温下的反常霍尔效应,其曲线与磁性曲线完全重合。这些结果证明我们制备出了自旋极化的Zn1-xCoxO磁性半导体。
     (2)我们制备了纳米复材料(ln0.95Fe0.05)2O3,其在磁、电、光等方面表现出优异性能。我们采用脉冲激光沉积的方法,在YSZ(111)衬底上外延生长出自组装Fe304纳米柱的In2O3薄膜,通过控制生长温度和生长条件,Fe304纳米柱尺寸大约几十纳米,XRD扫描表明In203和Fe304都沿{111}晶向外延生长。由于柱状Fe304的存在,该纳米复合材料具有较强的磁各向异性,易轴方向为垂直膜面方向,其饱和磁化强度为8.3emu/cm3。室温下我们观察到与磁性曲线完全吻合的反常霍尔效应,这表明材料载流子的自旋极化。同时该纳米复合材料具有磁光效应和透明导电特性,是一种优异的多功能复合材料。
     (3)我们提出并成功通过复合势垒制备了集合隧穿磁电阻和电致阻变的隧道结。我们使用磁控溅射仪,利用金属掩模技术,设计和构造了同时具有隧穿磁阻效应和电致阻变效应的多态非挥发存储器件Co/CoO-ZnO/Co。我们通过在Co薄膜上溅射2nm ZnO生成复合势垒层CoO-ZnO。在ZnO的沉积过程中,由于氧原子的扩散,界面处的金属钴发生氧化;磁性和XPS测量结果显示CoO厚度大约为2nm。该复合势垒成功得将巨大电致阻变和磁阻有效的结合在一起。该器件具有良好的阻变开关特性,室温下高低阻态之间大小相差90倍,高阻态遵循隧穿导电机制,低阻态表现为金属导电特性。同时该器件在室温下具有8%的隧穿磁阻效应。基于试验结果和理论分析,我们通过氧空位在氧化锌与氧化钴间的往返运动解释器件阻变原理。
     (4)我们通过不对称性势垒设计了具有磁场相关整流效应的磁性隧道结。利用不对称性势垒CoO-ZnO制备的磁性隧道结,在交流信号下通过整流效应产生自旋相关的mV量级的直流电压,并从而产生巨大的磁电阻效应,而且磁电阻随着电流变化会产生变号现象。在1.5nA下样品的磁电阻为-95%,,在-1nA电流下磁电阻为21%。同时该自旋相关偏压随ZnO的厚度从3nm到7nm逐渐发生变化,并且发生变号现象。我们首次提出不对称势垒对交流信号的整流效应是磁性隧道结中自旋电动势的一种起源。
In the age of information explosion, information technology is rapidly moving forward with Moore's Law that the number of transistors on integrated circuits doubles approximately every18months.However, with the reduction of the device size and the increase of integration degree, the high-speed development will soon meet the insuperable obstacle because the energy consumption per unit area will rise rapidly and result in serious heat damage problems and quantum confinement effect. The challegenging situation prompts the advent of spintronics, which controls both charge and spin of electrons. Spintronics operates with different principle comparering with tradition microelectronic devices, making devices with faster speed, lower energy consumption and smaller size. It includes spin polarized current generation, spin injection, spin transport and so on. The foremost thing of spintronics is generate spin-polarized current. Therefore, spin-polarized materials are the the foundation of spintronics and lots of work focuses on exploring the spin-polarized material in recent years, such as magnetic semiconductors, halt metal, topological insulators and so on.The preparation of spin-polarized materials and design of spintronics devices are two main parts of spintronics. Based on the previous studies on spintronics, we have prepared some novely spin-polarized materials and devices and studied their properties.
     Magnetic semiconductorsare most important spin-polarized materials due to its high spin injection efficiency into semiconductors and have attracted considerable attention because of their physicsand potential applications during the past several years. Among various kinds of magnetic semiconductors wide band-gap semiconductorsare most potential.Room temperature ferromagnetism has been widely observed intransition metal dopedoxide semiconductors such as ZnO, ln2O3, TiO2and so on.Howeverfew studies on spin-polarization have been reportedcomparing with lots ofwork focusing on structure, magnetic properties of magnetic semiconductors. In this thesis we prepared magnetic semiconductors anddemonstrated the spin-polarization by magnetic tunnel junction, anomalous Hall effects and magnetoresistance.
     In order to satisfy the ever-increasing demand for faster, smaller, and non-volatile electronicsin information storage and processing technology, various novel electronic devices such as spin field-effecttransistors, multiferroic memories, racetrack memories, and memristors have been proposed and investigated.All these novle devices utilize new information storage and processing principleand will have great application in the future. We have designed and preparated a magnetic tunnel junction combining memristance and magnetoresistance which have advances such as high density, low power consumption and non-volatile information storage. We also observed spin dependent voltage shifts in magnetic tunneljunction leading to a large magnetoresistance, which have potential application as a magnetic sensor.
     The main results are as follows:
     (1) We growed Zn0.32Co0.68O1-v (v means oxygen vacancies) condensed magnetic semiconductorby alternately depositing0.5nm Co layers and0.5nmZnO layers at 20℃. The bottom and top ferromagneticelectrodes were patterned by shadow masks into a cross configurationwith a junction area of0.1mm X0.1mm.In the tunnel junction, room temperature magnetoresistance was observed, which gradually increased to19.7%with decreasing temperature to2K. According to the model of Julliere, a spin-polarization of25%in Zn0.32Co0.68O1-v layer can be deduced fromthe maximum TMR ratio of19.1%at2K.The temperature dependence of junction resistance indicates the existence of directed inelastic hopping of electrons because of the defects in the barrier layer.Several factors such as tunneling via impurity statesand inelastic scattering by magnon excitations can weaken theTMR, and the spin polarization derived from the TMR ratio isunderestimated. By contrast, the spin polarization of the Zn0.32Coo.6801-v CMS was estimated to be36.1%by spin-dependent variable range hopping. The spin polarization of carriers in ferromagnetic semiconductors was also revealed by anomalous Hall effects.
     (2) Epitaxial ln2O3films with embedded Fe3O4oriented nanocolumns were deposited by pulsed laserdeposition (PLD) on Y-stabilized ZrO2(111) substrates. By control the growth temperature and rate, magnetic ions aggregated in the form of Fe3O4nanocolumnsembedded in the epitaxial ln2O3With size of about several tens nanometers. The XRD patterns suggests a very strong preferred orientation along the (111) axis.Thenanocompositefilms show ferromagnetism atroom temperature with strong magnetic anisotropy, which can be attributed to the presence of Fe3O4nanocolumns. Magnetotransport measurements demonstrate a transition from negativemagnetoresistance to positive magnetoresistance as the measuring temperature increases. Quantitativecoincidence between the anomalous Hall resistivity as a function of the magnetic field and themagnetic hysteresis loop is observed at room temperature, indicating the spin polarization nature ofcarriers.The average transmittance in the visible range is higher than60%and a clear magneto-optic Kerr hysteresis loop is alsorecorded in these nanocomposites.All these results indicatethat these novel magnetic nanocomposite films may find wideapplications in future spintronic devices.
     (3) Using amagnetron sputtering machine and shadowmask, we designed and preparedCo/CoO-ZnO/Co MTJs which combine memristance and magnetoresistance. The CoO-ZnO nanon composite barrier layer was formed by deposited2nm ZnO on the Co layer. An antiferromagneticinsulating CoO thin layer was produced on the surfaceof the bottom Co layer during the deposition of ZnO, due to the oxidation of Co electrode. Magnetism and XPS results suggest that the thickness of CoO is about2nm.By CoO-ZnO nanon composite barrierlayers, we successfully simultaneously realize large memristance and tunnelingmagnetoresistance.TheThe bipolar resistance switching ratio is highup to90, and the TMR ratio of the high resistance state gets to8%at room temperature, which leads to threeresistance states. The HRS resistancedecreases with increasing temperature, which is a typical feature oftunneling transport through a continuous insulating barrier. On the contrary, the LRS resistance increases with increasingtemperature, showing metallic-like transport behavior. The bipolar resistance switching is explained by the metal-insulator transition of CoO1-v layer due to the migration of oxygen ions between CoO1-v and ZnO1-v.
     (4) We prepared magnetic tunneljunctions with asymmetry barrier CoO-ZnO using amagnetron sputtering machine and shadowmask. A spin dependent voltage shift of mVmagnitude was observed in the junction under AC voltage due to the current rectification effect. Due to the spin dependent voltage, a large magnetoresistanceof-95%was observed at1.2nA and themagnetoresistance reversed its sign with the current variation.A21%magnetoresistance was observed at-1nA. At the same time, the spin voltage varies and even reversed its sign with ZnO thickness. Based on the results we think that the the current rectification effect of AC voltage is the energy source of the spin motive fore in magnetic tunnel junctions.
引文
1. M. N. Baibich, J. M. Broto, A. Fert et al., Phys Rev Lett,61,2472,1998.
    2. G. Binash, P. Grunberg, F. Saurenbach et al, Phys. Rev. B 39,4828,1989.
    3. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett.74,3273, 1995.
    4. H. Ohno,A. Shen,F. Matsukura,A. Oiwa,A. Endo,S. Katsumoto andY. lye, Appl. Phys. Lett.69,363,1996.
    5. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. vonMolnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science294,1488,2001.
    6. K. Uchida, S. Takahashi, K. Harii, J. leda, W. Koshibae, K. Ando, S. Maekawa & E. SaitohNature 455,778,2008.
    7. Cui-Zu Chang et al., Science,340,6129,2013.
    8. Gerlach, W., Stern, O.,Zeitschrift fur Physik,9,349,1922.
    9. G.E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 13,953,1925.
    10. Tedrow P M, Meservey R and Fulde P, Phys. Rev. Lett.25,1270,1970.
    11. Julliere M, Phys. Lett. A 54,225,1975.
    12. Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A and Coey J M D, Science 28285, 1998.
    13. Anguelouch A. Phys. Rev. B,64,180408,2001.
    14. Evgeny Y Tsymbal, OlegN Mryasov and Patrick R LeClair, J. Phys.:Condens. Matter 15. R109-R142,2003.
    15. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790(R),2000.
    16. De Groot R A, Mueller F M, van Engen P G, et al. Phys. Rev. Lett.50,2024,1983.
    17.任尚坤,张凤鸣,都有为,物理学报,4,0381,2004.
    18. Soulen R J Jr. Bycrs J M, Osofsky M S, Science,282,85,1998.
    19. P.K.Baltzer, H.W.Lehmann, and M.Robbins, Phys. Rev. Lett.15,493,1965.
    20. Y.D.Park, A.T. Hanbicki, J.E.Mattson, and B.T.Joke, Appl.Phys.Letter.81,1471, 2002.
    21. T. Dietl, Diluted magnetic semiconductors, in Handbook of Semiconductors, edited by T. S. Moss and S. Mahajan (North-Holland, New York), Vol.3, p.1251, 1994.
    22. J. K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys.64,R29,1988.
    23. M. Nawrocki, R. Planel, G. Fishman, and R. Galazka. Phys. Rev. Lett,46,735,1981.
    24. A. Mycielski, J. Appl. Phys.63,3279,1988.
    25. A. Twardowski, M. von Ortenberg, and M. Demianiuk, JCryst. Growth.72,401 1985.
    26. Ohno H, Munekata H, Penney T et al. Phys. Rev. Lett.68,2664,1992.
    27. Ohno H, Shen A, Matsukura F F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Appl. Phys. Lett.69,363,1996.
    28. Lin Chen, Xiang Yang, Fuhua Yang, Jianhua Zhao, Jennifer Misuraca, Peng Xiong, andStephan von Moln_arStephan von MolnarNano Letters,11,2584,2011.
    29. Dietl T, Ohno H, Matsukura F, Cibert J, and Ferrand D. Science287,1019,2000.
    30. Jae Hyun Kim,Hyojin Kim,Dojin Kim,Young Eon Ihm andWoong Kil ChooJ. Appl.Phys.92,6066,2002.
    31. Jung H. Park,Min G. Kim,Hyun M. Jang,Sangwoo Ryu andYoung M. Kim, APPI. Phys.Lett.84,1338,2004.
    32. G. L. Liu,Q. Cao,J. X. Deng,P. F. Xing,Y. F. Tian,Y. X. Chen,S. S. Yan andL. M. Mei, APPI.Phys.Lett.90,052504,2007.
    33. John Philip,Nikoleta Theodoropoulou,Geetha Berera,Jagadeesh S. Moodera andBiswarup Satpati, APPl.Phys. Lett.85,777,2004.
    34. J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos and J. S. Moodera, NatureMat.5,298,2006.
    35. Jun He,Shifa Xu,Young K. Yoo,Qizhen Xue,Hyung-Chul Lee,Shifan Cheng,X.-D. Xiang,Gerald F. Dionne andlchiro Takeuchi,APPI.Phys.Lett.86,052503,2005.
    36. Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, Hideomi Koinuma,Science,291,854,2001.
    37. R.Janisch and N. A. Spaldin, Phys Rev B.73,035201,2006.
    38. M. Jamet, D. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. BayleGeillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana and S. Tatarenko, Nat. Mater.5,653,2006.
    39. S. Kuroda, N. Nishizawa, M. Mitome, Y. Bando, K. Osuch andT. Dietl, Nat. Mater.6, 440,2007.
    40. A. Bonanni, A. Navarro-Quezada, T. Li, M. Wegscheider, Z. Matej, V. Holy, R. T. Lechner, G. Bauer, M. Rovezzi, F. D. D'Acapito, M. Kiecana, M. Sawicki and T. Dietl, Phys. Rev. Lett.101,135502,2008.
    41. F. Filippone, G. Mattioli, P. Alippi and A. A. Bonapasta, Phys. Rev. Lett.107, 196401,2011.
    42. T. Dietl, Nat. Mater.9,965,2010.
    43.韩秀峰,物理,37,392,2007.
    44. Parkin S S P, More N, Roche K P. Phys. Rev. Lett.64,2304,1990.
    45. Shinjo T, Yamamoto H. J. Phys. Soc. Jpn.59,3061,1990.
    46. Mott, N.F.Proc. Roy. Soc. A153,699,1936.
    47. Claude Chappert, Albert Fert, Frederic Nguyen Van Dau,Nature Materials6,813, 2007.
    48. M. Julliere, Phys. Lett. A 54,225-226,1975.
    49. Moodera J S, Kinder L R, Wong T M, et al. Phys. Rev. Lett.74,3273,1995.
    50. Miyazaki T, Tezuka N. J. Magn. Magn. Mater.139,L231,1995.
    51. Yuasa S, Nagahama T, Fukushima A, et al. Nat. Mater.,3,868,2004.
    52. Parkin S S P, Kaiser C, Panchula A, et al. Nat. Mater.3,862,2004.
    53. Lee Y M, Hayakawa J, Ikeda S, et al. Applied Physics Letters,90,212507,2007.
    54. ButlerWH, Zhang X G, Schulthess T C, et al. Phys. Rev. B,63,054416,2001.
    55. L.Berger, Phys.Rev.B 54,9353,1996.
    56. J.A.Katine, F.J.Ablert, R.A.Buhrman, E.B.Myers and D.C.Ralph, Phys.Rev.Lett.84,3149,2000.
    57. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Phys. Rev. Lett.61, 637,1988.
    58. P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M. de Jonge, Appl. Phys. Lett.80,625,2002.
    59. J. S. Moodera, R. Meservey, and X. Hao, Phys. Rev. Lett.70,853,1993.
    60. T. S. Santos and J. S. Moodera, Phys. Rev. B,69:241203(R),2004.
    61. Martin Gajek, Manuel Bibes, Stephane Fusil, Karim Bouzehouane, Josep Fontcuberta, Agnes Barthelemy & Albert Fert, Nature Materials6,296,2007.
    62. S. Valencia, A. Crassous, L. Bocher, et al. Nature Materials10,753,2011.
    63. Waser,R.; Aono,M.N, Nat. Mater.6,833,2007.
    64. Patryk Krzysteczko,Giinter Reiss andAndy Thomas, Appl. Phys. Lett. 95,112508,2009.
    65. Krzysteczko,P.; Mnchenberger,J.; Schfers,M.; Reiss, G.; Thomas, Adv. Mater.,24, 762,2012.
    66. Halley,D.; Majjad,H.; Bowen,M.; Najjari,N.; Henry,Y.; Ulhaq-Bouillet,C.; Weber,W.; Bertoni,G.; Verbeeck,J.; Tendeloo,G. V.Appl. Phys. Lett.92,212115, 2008.
    67. Yoshida,C.; Kurasawa,M.; Lee,Y. M.; Aoki,M.; Sugiyama,Y.Appl. Phys. Lett.,92, 113508,2008.
    68. Teixeira J. M.; Ventura,J.; Fermento,R.; Araujo,J. P.; Sousa,J. B.; Wisniowski,P.; Freitas,P. P., J. Phys. D:Appl. Phys.2,105407,2009.
    69. Hueso,L. E.; Bergenti,I.; Riminucci,A.; Zhan,Y. Q.; Dediu,V., Adv.Mater.19, 2639,2007.
    70. Prezioso,M.; Riminucci,A.; BergentiJ.; P.; Brune,D.; Dediu,V. A.,Adv.Mater.,23, 1371,2011.
    71. S. E. Barnes, and S. Maekawa, PRL 98,246601,2007.
    72. Kyoung-Whan Kim, Jung-Hwan Moon, Kyung-Jin Lee, and Hyun-Woo Lee, Physical Review Letters 108,217202,2012.
    73. Shengyuan A. Yang, Geoffrey S.D. Beach, Carl Knutson, Di Xiao, Qian Niu, Maxim Tsoi, and James L. Erskine, PRL 102,067201,2009.
    74. Guo-Xing Miao, Gang Xiao and Arunava Guptl, EPL,87,47006,2009.
    75. Pham Nam Hai, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes & Sadamichi Maekawa,458,489,2009.
    76. D. C. RalphNature474,E6,2011.
    1.唐伟忠,薄膜材料制备原理、技术及应用,冶金工业出版社,1998。
    2.李飞飞,张谢群,杜关祥,王天兴,曾中明,魏红祥,韩秀峰,物理学报,8,3833,2005。
    3. Bragg,Proc. R. Soc. Lond. A89 (610):248-277,1913.
    4. C.D.Wagner, W.M.Riggs, L.E.Davis, J.F.Moulder, and G.E.Mullenberg, published by Perkin-Elmer Corp,1979。
    5.周世昌.磁性测量.第三版.北京:电子工业出版社,1994。
    1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. vonMolnar, M. L Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science294,1488,2001.
    2. M. Jamet, D. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Geillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nature Mater.5,653,2006.
    3. F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Phys. Rev. Lett.107,196401, 2011.
    4. T. Dietl, T. Andrearczyk, A. Lipi_nska, M. Kiecana, M. Tay, and Y. Wu,Phys. Rev. B 76,155312,2007.
    5. L. J. Zhang, J. Q. Wang, J. Li, J. Zhou, W. P. Cai, J. Cheng, W. Xu, G. Z. Yin, X. Wu, Z. Jiang, S. Zhang, and Z. Y. Wu, Chem. Commun.48,91,2012.
    6. S. S. Yan, C. Ren, X. Wang, Y. Xin, Z. X. Zhou, L. M. Mei, M. J. Ren, Y. X. Chen, Y. H. Liu, and H. Garmestani, Appl. Phys. Lett.84,2376,2004.
    7. A. Bonanni and T. Dietl, Chem. Soc. Rev.39,528,2010.
    8. J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett.96,197208,2006.
    9. H. S. Hsu, C. P. Lin, H. Chou, and J. C. A. Huang, Appl. Phys. Lett.93,142507,2008.
    10. K. A. Yates, A. J. Behan, J. R. Neal, D. S. Score, H. J. Blythe, G. A. Gehring,S. M. Heald, W. R. Branford, and L F. Cohen, Phys. Rev. B 80,245207,2009.
    11. G. Herranz, R. Ranchal, M. Bibes, H. Jaffre's, E. Jacquet, J.-L. Maurice, K.Bouzehouane, F. Wyczisk, E. Tafra, M. Basletic, A. Hamzic, C. Colliex, J.-P.Contour, A. Barth_el_emy, and A. Fert, Phys. Rev. Lett.96,027207,2006.
    12. Q. Xu, L. Hartmann, S. Zhou, A. Mcklich, M. Helm, G. Biehne, H. Hochmuth,M. Lorenz, M. Grundmann, and H. Schmidt, Phys. Rev. Lett.101,076601,2008.
    13. H. Schmidt, Adv. Sci. Technol.67,192,2010.
    14. C. Song, X. J. Liu, F. Zeng, and F. Pan, Appl. Phys. Lett.91,042106,2007.
    15. G. Chen, F. Zeng, and F. Pan, Appl. Phys. Lett.95,232508,2009.
    16. S. S. Yan, J. P. Liu, L. M. Mei, Y. F. Tian, H. Q. Song, Y. X. Chen and G.L. Liu, J. Phys.: Condens. Matter 18,10469,2006.
    17. J. S. Moodera,L. R. Kinder,J. Nowak,P. LeClair andR. Meservey, Appl. Phys. Lett.69, 708,1996.
    18. L. Le Brizoual, P. Alnot, M. Hehn, F. Montaigne, M. Alnot, A. Schuhl,and E. Snoeck, Appl. Phys. Lett.86,112505,2005.
    19. H. Q. Song, L. M. Mei, S. S. Yan, X. L. Ma, J. P. Liu, Y. Wang, and Z. Zhang, J. Appl. Phys.99,123903,2006.
    20. Y. Xu, D. Ephron, and M. R. Beasley, Phys. Rev. B 52,2843,1995.
    21. W. G. Wang, C. Ni, T. Moriyama, J. Wan, E. Nowak, and J. Q. Xiao,Appl. Phys. Lett. 88,202501,2006.
    22. Y. Lu, M. Tran, H. Jaffres, P. Seneor, C. Deranlot, F. Petroff, J.-M.George, B. Lepine, S. Ababou, and G. Jezequel, Phys. Rev. Lett.102,176801,2009.
    23. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev.Lett.74, 3273,1995.
    24. J. Zhang and R. M. White, J. Appl. Phys.83,6512,1998.
    25. M. Jullie're, Phys. Lett.A 54,225,1975.
    26. J. S. Moodera and G. Mathon, J. Magn. Magn.Mater.200,248,1999.
    27. N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young, and Z. Fisk, Nature Mater. 3,255,2004.
    1. H. Ohno, Science,281,951,1998.
    2. M. Jamet, D. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. BayleGeillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana and S. Tatarenko, Nat. Mater.,5,653,2006.
    3. S. Kuroda, N. Nishizawa, M. Mitome, Y. Bando, K. Osuch andT. Dietl, Nat. Mater. 6,440,2007.
    4. A. Bonanni, A. Navarro-Quezada, T. Li, M. Wegscheider, Z. Matej, V. Holy, R. T. Lechner, G. Bauer, M. Rovezzi, F. D. D'Acapito, M. Kiecana, M. Sawicki and T. Dietl, Phys. Rev. Lett.,101,135502,2008.
    5. F. Filippone, G. Mattioli, P. Alippi and A. A. Bonapasta, Phys. Rev. Lett.107, 196401,2011.
    6. T. C. Kaspar, A. Ney, A. N. Mangham, S. M. Heald, Y. Joly, V. Ney, F. Wilhelm, A. Rogalev, F. Yakou andS. A. Chambersl, Phys. Rev. B:Condens. Matter Mater. Phys.86,035322,2012.
    7. A. Bonanni and T. Dietl, Chem. Soc. Rev.39,528,2010.
    8. T. Dietl, Nat. Mater.9,965,2010.
    9. D. Weller and T. McDanie, Advanced MagneticNanostructures,vol.11, p.295, 2006.
    10. A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio and S. Begin-Colin, Nanoscale,3,225,2011.
    11. T. Ohno, T. Kawahara, H. Tanaka, T. Kawai, M. Oku, K. Okada and S. Kohiki, Jpn. J. Appl. Phys., Part 2,45, L957,2006.
    12. A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio and S. Begin-Colin, Nanoscale,3,225-232,2011.
    13. S. Kohiki, Y. Murakawa, K. Hori, H. Shimooka, T. Tajiri, H. Deguchi, M. Oku, M. Arai, M. Mitome and Y. Bando, Jpn. J. Appl. Phys., Part 2,44, L979,2005.
    14. K. Okada, S. Kohiki, M. Mitome, H. Tanaka, M. Arai, M. Mito and H. Deguchi, ACS Appl. Mater. Interfaces,l,1893,2009.
    15. J. He, S. Xu, Y. K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G. F. Dionne and I. Takeuchi, Appl. Phys. Lett.86,052503,2005.
    16. G. Peleckis, X. L. Wang and S. X. Dou, Appl. Phys. Lett.88,132507,2006.
    17. D. W. Chu, Y. P. Zeng, D. L. Jiang and Z. M. Ren, Appl. Phys. Lett.91,262503,2007.
    18. P. F. Xing, Y. X. Chen, S. S. Yan, G. L. Liu, L. M. Mei, K. Wang, X. D. Han and Z. Zhang, Appl. Phys. Lett.92,022513,2008.
    19. X. H. Xu, F. X. Jiang, J. Zhang, X. C. Fan, H. S. Wu andG. A. Gehring, Appl. Phys. Lett.94,212510,2009.
    20. G. Z. Xing, J. B. Yi, D. D. Wang, L. Liao, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, J. Ding and T. Wu, Phys. Rev. B:Condens. Matter Mater. Phys.79,174406,2009.
    21. H. Kim, M. Osofsky, R. C. Y. Auyeung and A. Piqu'e, Appl. Phys. Lett.100,142403, 2012.
    22. A. Bourlange, D. J. Payne, R. G. Egdell, J. S. Foord, R. M. J. Jacobs, A. Schertel, P. J. Dobson andJ. L. Hutchison, Chem. Mater.20,4551,2008.
    23. M. Venkatesan, C. B. Fitzgerald, J. G. Lunney andJ. M. D. Coey, Phys. Rev. Lett.93, 177206,2004.
    24. J. Wang, J. Shi, D. Tian, H. Deng, Y. Li, P. Song and C. Chen, Appl. Phys. Lett.90, 213106,2007.
    25. W. Wang, M. Yu, M. Batzill, J. He, U. Diebold and J. Tang, Phys. Rev. B:Condens. Matter Mater. Phys.73,134412,2006.
    26. S. A. Solin, T. Thio, D. R. Hines and J. J. Heremans, Science,289,1530,2000.
    27. N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young, and Z. Fisk, Nature Mater. 3,255,2004.
    28. M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz andW. Plesiewicz, Phys. Rev. Lett.56,508,1986.
    29. N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young andZ. Fisk, Nat. Mater.3, 255,2004.
    30. S. X. Zhang, W. Yu, S. B. Ogale, S. R. Shinde, D. C. Kundaliya,W. K. Tse, S. Y. Young, J. S. Higgins, L. G. Salamanca-Riba, M. Herrera, L. F. Fu, N. D. Browning, R. L. Greene andT. Venkatesan, Phys. Rev. B:Condens. Matter Mater. Phys.76,085323, 2007.
    31. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene and T. Venkatesan, Phys. Rev. Lett.92,166601,2004.
    32. M. Preisinger, M. Krispin, T. Rudolf, S. Horn andD. R. Strongin, Phys. Rev. B: Condens. Matter Mater. Phys.71,165409,2005.
    33. M. H. Kryder, J. Appl. Phys.57,3913,1985.
    34. Y. P. Zhang, S. S. Yan, Y. H. Liu, M. J. Ren, Y. Fang, Y. X. Chen, G. L. Liu, L. M. Mei, J. P. Liu, J. H. Qiu, S. Y. Wang and L. Y. Chen, Appl. Phys. Lett.89,042501,2006.
    1.Wolf,S.A.;Awschalom,D.D.;Buhrman,R.A.;Daughton,J.M.;Molnar,S.von; Roukes,M.L.;Chthelkanova,A.Y.;Treger,D.M.,Science,294,1488,2001.
    2.Parkin,S.S.P.;Hayashi,M.;Thomas,L.,Science,320,190,2008.
    3.Thomas,J.F.,Nat.Mater.6,256,2007.
    4.Son,J.Y.;Lee,J.H.;Song,S.; Shin,Y.H.;Jang,H.M.,ACS Nano7,5522,2013.
    5.Kim,D.J.;Lu,H.;Ryu,S.; Bark,C.-W.;Eom,C.-B.;Tsymbal,E.Y.; G ruverman, A.,Nano Lett.12,5697,2012.
    6.Strukov,D.B.;Snider,G.S.;Stewart,D.R.;Williams,R.S.,Nature453,80,2008.
    7.Waser,R.;Aono,M.,Nat.Mater.6,833,2007.
    8.Krzysteczko,P.;Mnchenberger,J.;Schfers,M.;Reiss,G.; Thomas,A.,Adv.Mater.24, 762,2012.
    9.Halley,D.;Majjad,H.;Bowen,M.;Najjari,N.;Henry,Y.; Ulhaq-Bouillet,C.;Weber,W.; Bertoni,G.;Verbeeck,J.;Tendeloo,G.V., Appl.Phys.Lett.92,212115,2008.
    10.Sokolov,A.; Sabirianov,R.; Sabirianov,I.;Doudin,B.,J.Phys:Condens.Matter,21, 485303.2009.
    11.Teixeira,J.M.;Ventura,J.;Fermento,R.;Araujo,J.P.;Sousa,J.B.;Wisniowski,P.; Freitas,P.P.,J.Phys.D:Appl.Phys.42,105407,2009.
    12.Ventura,J.;Pereira,A.M.; Araujo,J.P.;Sousa,J.B,;Zhang,Z.;Liu,Y.; Freitas,P.P.,J. Phys.D:Appl.Phys.40,5819,2007.
    13.Yoshida,C.; Kurasawa,M.;Lee,Y.M.;Aoki,M.;Sugiyama,Y.Appl.Phys.Lett.92, 113508,2008.
    14.Hueso,L.E.; Bergenti,I.;Riminucci,A.; Zhan,Y.Q.;Dediu,V.,Adv.Mater.19,2639, 2007.
    15.Prezioso,M.;Riminucci,A.; Bergenti,l.; P.;Brune,D.;Dediu,V.A.,Adv.Mater.23, 1371,2011.
    16.Moodera,J.S.;Kinder, L.R.; Wong,T.M.;Meservey,R.,Phys.Rev.Lett.74,3273, 1995.
    17.Parkin,S.S.P.; Kaiser,C.;Panchula,A.; Rice,P.M.;Hughes,B.;Samant,M.; Yang, S.-H.Nat.Mater.3,862,2004.
    18.Son,J.Y.; Shin,Y.H.; Kim,H.;Jang,H.M.ACS Nano4,2655,2010.
    19.Lee,M.-J.;Han,S.;Jeon,S.H.;Park,B.H.;Kang,B.S.;Ahn,S.-E.; Kim,K.H.; Lee,C. B.;Kim,C.J.;Yoo,I.一K.et al.,Nano Lett.9,1476,2009.
    20.Yang,R.;Terabe,K.;Liu,G.Q.; Tsuruoka,T.;Hasegawa,T.;Gimzewski,J.K.; Aono, M.,ACS Nano6,9515,2012.
    21.Inoue,l.H.; Yasuda,S.;Akinaga,H.; Takagi,H.Phys.Rev.B 77,035105,2008.
    22.Shima,H.;Takano,F.;Tamai,Y.; Inoue,l.H.;Takagi,H.;Akinaga,H.,Appl_Phys.Lett. 91,012901,2007.
    23.Nagashima,K.;Yanagida,T.;Oka,K.;Kanal,M.; Klamchuen,A.;Kim,J.-S.; Park,B. H.;Kawai,T.Nano Lett.11,2114,2011.
    24.J.S.Moodera,L.R.Kinder,J.Nowak,P.LeClair andR.Meservey,Appl.Phys.Lett.69, 708.1996.
    25. Brizoual,L. Le; Alnot, P.; Hehn,M.; Montaigne,F.; Alnot,M.; SchuhI,A.; Snoeck,E.,Appl.Phys.Lett.86,112505,2005.
    26.Meiklejohn,W.H; Bean,C.P.,Phys.Rev.102,1413,1956.
    27.Wang F Y.Nanophotonics,2,20304,2008.
    28.Sakamoto,T.; Lister,K.;Banno,N.; Hasegawa,T.;Terabe,K.;Aono,M.,Appl.Phys. Lett.91,092110,2007.
    29.Liu,Q.; Long,S.; Lv,H.B,;Wang,W.;Niu,J.B.;Huo,Z.L.; Chen,J.N.;Liu,M., ACS Nano 4,6162,2010.
    30.Nian,Y.B.;Strozier,J.:Wu,N.J.;Chen,X.; Ignatiev,A.Phys.Rev.Lett.98,146403, 2007.
    31.Hwang,I.R.;Lee,M.-J.;Buh,G.一H.;Bae,J.;Choi,J.S.; Kim,J.S.; Hong,S.H.;Kim,Y.S.; Byun,I.S.;Lee,S.W.Appl.Phys.Lett.97,052106,2010.
    32.A.Asamitsu,Y.Tomioka,H.Kuwahara and Y.Tokura,Nature,388,50,1997.
    33.Akerman,J.J.;Escudero,R.;Leighton,C.;Kim,S.;Rabson,D.A.; Rabson,R.W.; Slaughter,J.M.; Schuller,I.K.,J.Magn.Magn.Mater.204,86,2002.
    1. S.E. Barnes, JMMM,310,2035,2007.
    2. S. E. Barnes, and S. Maekawa, PRL 98,246601,2007.
    3. Pham Nam Hai, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes & Sadamichi Maekawa,458,489,2009.
    4. D. C. RalphNature474,E6,2011.
    5. Guo-Xing Miao, Gang Xiao and Arunava Guptl, EPL,87,47006,2009
    6. Shengyuan A. Yang, Geoffrey S.D. Beach, Carl Knutson, Di Xiao, Qian Niu, Maxim Tsoi, and James L. Erskine, PRL 102,067201,2009.
    7. K. Tanabe, D. Chiba, J. Ohe, S. Kasai, H. Kohno, S. E. Barnes, S. Maekawa, K. Kobayashi, and T. Ono, Nature Communications 3,845,2012.
    8. Kyoung-Whan Kim, Jung-Hwan Moon, Kyung-Jin Lee, and Hyun-Woo LeePhysical Review Letters 108,217202,2012.
    9. J. Varalda, A. J. A. de Oliveira, D. H. Mosca, J.-M. George, M. Eddrief, M. Marangolo, and V. H. Etgens, PRB 72,081302r,2005.
    10. E.Y. Tsymbal, A. Sokolov, I. F. Sabirianov, and B. Doudin, PRL, 90,186602,2003.
    11. McCann E. and Fal'ko V. I., Phys. Rev. B,66 (2002),134424.
    12. Rondinelli J. M., Stengel M. and Spaldin N. A., Nat. Nanotechnol.,3,46,2008.
    13. Niranjan M. K., Velev J.P., Duan C.-G., Jaswal S. S. and Tsymbal E. Y.,Phys. Rev. B,78,104405,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700