用户名: 密码: 验证码:
轮古碳酸盐岩缝洞性油藏储层特征及流动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮古油田是我国发现的最大海相碳酸盐岩油田,其奥陶系碳酸盐岩油藏的主力油层是中-下奥陶统一间房组和鹰山组的缝洞性碳酸盐岩。主力油层埋藏深、储集空间变化大、分布连续性差、油水关系复杂。而目前国内外对缝洞型碳酸盐岩油藏流动规律认识不够,还没有形成相应的开发理论,技术针对性差、导致这类油藏整体开发水平较低。
     首先,利用矿场资料对轮古碳酸盐岩缝洞性油藏储层进行研究,结果表明:储层基岩孔渗极低,基本不具备作为有效储层的条件,储层裂缝和孔洞较为发育,裂缝是其主要的流通通道,溶洞是其主要的储集体。
     其次,依据缝洞性油藏储层单元特征、油井钻遇情况,进行了单井储渗单元的研究,并划分了轮古碳酸盐岩缝洞性油藏单井储渗单元。
     再次,采用物理模拟或数学建模手段对轮古碳酸盐岩缝洞性油藏流动规律研究,研究结果表明:孤立洞型单井储渗单元枯竭式开采时,井底压力及日产液量随时间均呈指数规律递减;洞缝洞型单井储渗单元枯竭式开采时,井底压力及日产液量随时间均呈多指数规律递减;洞边缝型单井储渗单元生产时,含水率变化呈“台阶式”变化,通常有几段裂缝,含水率变化就有几个台阶。并且初步形成一套利用生产数据和油水高压物性资料计算溶洞内油水体积的方法。
     最后,依据缝洞型油藏流动理论对轮古碳酸盐岩缝洞性油藏已开发的油井流动规律进行分析,结果表明:理论与现场吻合得很好,缝洞性油藏流动理论可作为碳酸盐岩缝洞性油藏单井储渗单元识别和开发指标计算的理论基础,指导碳酸盐岩缝洞性油藏开发。
Lungu oil field is the biggest marine carbonatite oil field; the main oil layer of Ordovician is cavity-fractured carbonatite in Yijianfang Formation and Yingshan Formation of middle and lower Ordovician. The main oil layer is characterized by deep burial, discrete spatial distribution, heterogeneity, complex relationship between oil and water. Currently, at home and abroad, the law of fluid flow in the cavity-fractured carbonate reservoir is not enough understanding, the development theory aimed this type of oil field has not form, the technology targeted poor, resulting in a lower level of overall development of these reservoirs.
     Firstly,the study on the reservoir characteristic though field data showed that the porosity and permeability in the bed rock is too low to be the effective reservoir, the fracture and cavity developed well, the main flow channel was fracture and the main storage space was cavity.
     Secondly, based on the characteristic of reservoir and the situation of the well drilled, the study and dipartition of unit of storage and seepage of single-well in Lungu cavity-fractured carbonatite reservoirs is carried.
     Thirdly, the law of flow was studyed though the physical modeling and mathmetics modeling based on the divided model of unit of storage and seepage of single-well. The study showed that the pressure and the production decrease exponentially with time in single cavity unit when bottomhole pressure is constant; the pressure and the production decrease multi-exponentially with time in multi cavity-fracture unit when bottomhole pressure is constant; the water content stepped changes with fractures in fracture aside cavity unit and the number of steps equal to that of the fractures. And formed a calculation method of the volume of water and oil in caves by production data and water-oil PVT calculation
     Finally, the analysis of developed wells in carbonatite reservoirs based on the theory of flow in cavity-fractured oil field showed that the theory is in good agreement with practice.The theory of flow in cavity-fractured reservoirs is the theoretical basis of identification and calculation of development indicator in unit of storage and seepage of single-well and direct the development of the cavity-fractured reservoirs.
引文
[1]ALSHARHAN A S, NAIRN A E M. Sedimentary Basins and Petroleum Geology of the Middle East [M]. Amsterdam:Elsevier Science.1997:1-942.
    [2]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-28。
    [3]李炼民,杜志敏,贾英。缝洞型碳酸盐岩潜山油藏研究现状及技术展望[J]。油气地质与采收率,2004,11(1):12-15
    [4]周兴熙.再论网络状油气藏与轮南潜山勘探对策[J].石油勘探与开发,2002,29(4):4-7
    [5]周兴熙.初论碳酸盐岩网络状油气藏——以塔里木盆地轮南奥陶系潜山油气藏为例[J].石油勘探与开发,2000,27(3):5-8
    [6]鲁新便.岩溶缝洞型碳酸盐岩储集层的非均质性[J].新疆石油地质,2003,24(4):360-362
    [7]陈志海,戴勇,郎兆新.缝洞性碳酸盐岩油藏储渗模式及其开采特征[J].石油勘探与开发,2005,32(3):101-105
    [8]Barenhlatt, G.I., Zheltov, J.P. and Kochina, I.N. Basic Concepts Theory of Homogeneous Liquids in Fissured Rocks [J]. Appl. Math. Mech. (1960), USSR,1286-1303
    [9]Warren, J.E. and Root, P.J. The Behavior of Naturally Fracture Reservoirs [A].SPE426 (1963)
    [10]Abdassah, D.and Ershaghi, I. Triple-Porosity Systems for Representing Naturally Fractured Reservoirs [A].SPE13409 (1986)
    [11]Camacho,R. Pressure Transient and Decline curve Behaviors in Naturally Fractured vuggy Carbonate Reservoirs [A].SPE77689 (2002)
    [12]Liu, J.C.GS.Bodvarsson, and Y.S.Wu. Analysis of pressure behavior in fractured lithophysal reservoirs, Journal of Contaminant Hydrology,62-62,189-211,2003
    [13]S. H. Lee, C. L. Jensen and M. F. Lough. An Efficient Finite Difference Model for Flow in a Reservoir with Multiple Length-Scale Fracures. Paper SPE 56752, presented at the SPE Annual Technical Conference and Exhibition held in Houston, U.S.A.,3-6 October 1999
    [14]F. M. Verga, G Giglio and Di Torino etc. Calibration of Fractured Reservoirs with Dynamic Data. Paper SPE 66395, presented at the SPE Reservoir Simulation Symposium held in Houston, Texas,11-14 February 2001
    [15]王洪涛,王恩志,金宜英.裂隙岩体渗流耦合数值分析方法及其工程应用[J].南京水利 科学研究院水利水运科学研究,1998,(4):320-324A
    [16]王洪涛,王恩志.三维随机裂隙网络非稳定渗流模型[J].南京水利科学研究院水利水运科学研究,1997,(2):139-140
    [17]吴玉树,葛家理.三重介质裂-隙油藏中的渗流问题[J].力学学报,1983,15(1):81-85
    [18]Kazemi, H.Numerical simulation of water imbibition in fracture cores, Soc. Pet. Eng. J. 323-330,1979
    [19]Pruess, K. and Narasimhan, T.N. A practical method for modeling fluid and heat flow in fractured porous media, Soc. Pet. Eng. J.25,14-26,1985
    [20]Wu.Y.S. And Pruess, K. A multiple-porosity method for simulation of naturally fractured petroleum reservoirs, SPE Reservoir Engineering,3,327-336,1988
    [21]Wu.Y.S. On the effective continuum method for modeling multiphase flow, multi component transport and heat transfer in fractured rock, Book chapter of "Dynamics of Fluids in Fractured Rocks, Concepts and Recent Advances", Edited by B. Faybishenko, P. A. Witherspoon and S.M. Benson, AGU Geophysical Monograph 122, American Geophysical Union, Washington, DC,299-312,2004a
    [22]孔详言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.428429
    [23]Laptev, V. Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technical University of Kaiserslautern, Germany.2003.
    [24]林加恩,李亮,杨慧珠.管流与渗流耦合流动理论研究初探[J].西安石油大学学报(自然科学版,2007,22(2):11-15
    [25]刘学利,彭小龙,杜志敏等.油水两相流Darcy-Stokes模型[J].西南石油大学学报,2007,29(6):89-92
    [26]Yu-Shu Wu, H.H. Liu and GS. Bodvarsson. A triple-continuum approach for modeling flow and transport processes in fractured rock [J]. Journal of Contaminant Hydrology,73, 145-179,2004
    [27]姚军,戴卫华,王子胜.变井筒储存的三重介质油藏试井解释方法研究[J].石油大学学报:自然科学版,2004,28(1):46-51
    [28]王子胜,姚军,戴卫华.缝洞型油藏试井解释方法在塔河油田的应用[J].西安石油大学学报:自然科学版,2007,22(1):72-74
    [29]Gurpinar O and Kalbus J. Numerical Modeling of a Triple Porosity Reservoirs[C].SPE 57277,1999
    [30]塔里木碳酸盐岩研究中心.轮古西坡油藏工程报告[R].库尔勒,2009
    [31]江同文.塔里木油田碳酸盐岩油气藏开发技术研讨会[R].库尔勒,2008
    [32]李炼民,杜志敏,贾英.缝洞性碳酸盐岩潜山油藏研究现状及技术展望[J].油气地质与采收率,2004,11(1):12-16
    [33]吕爱民.碳酸盐岩缝洞型油藏工程方法研究[D].东营:中国石油大学(华东),2007.
    [34]杨坚.碳酸盐岩缝洞型油藏高效开发研究[R].北京,2007
    [35]王殿生.缝洞型介质流动机理实验与数值模拟研究[D].东营:中国石油大学(华东),2007
    [36]张兆顺,催桂香.流体力学(第2版)[M].北京:清华大学出版社,2006
    [37]谈庆明.量纲分析[M].合肥:中国科技大学出版社,2006
    [38]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2006
    [39]廖新维,沈平平.现代试井分析[M].北京:石油工业出版社,2007
    [40]姜汉桥,姚军,姜瑞忠.油藏工程原理与方法[M].北京:石油工业出版社,2005
    [41]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982
    [42]张琪.采油工程原理与设计[M].东营:中国石油大学出版社,2006
    [43]余德浩,汤中华.微分方程数值解法[M].北京:科学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700