用户名: 密码: 验证码:
尖峰岭热带山地雨林碳交换的动态特征和影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用尖峰岭国家野外观测站现有通量观测塔,将涡度协方差技术、CO2/H2O浓度廓线测定技术、林内小气候梯度观测技术与地表植被动态监测相结合,并配以土壤呼吸长期观测、主要代表种生理生态特性测定等相关辅助观测,基于多年长期的连续观测,综合研究尖峰岭热带山地雨林碳交换动态特征和影响因素,结果表明:
     1、尖峰岭热带山地雨林26年来,气温呈上升趋势。年平均最高、年最低气温变化趋势存在不对称性,即年最低气温明显上升,而年平均最高气温上升不明显,说明尖峰岭山地雨林气候变暖趋势主要是年最低气温显著升高造成的。林冠各层气温日变化呈倒U字形变化趋势;年降水量和蒸发量变化不明显,降水量相对较为丰富,但存在明显的旱、雨季区分,年降水量与年蒸发量的比值约为2.0;尖峰岭热带山地雨林盛行风方向为正南方向,林内风速时空变异较大,林内风速与高度呈正相关,森林下层基本处于静风状态(尤其是夜间),导致湍流交换较弱:总辐射、净辐射和光合有效辐射日变化都呈现早晚低,中午高的倒U字形变化规律。辐射的空间分布差异明显,冠层上部存在直射辐射,辐射强度大,而在下层环境中基本都是散射辐射,其值较低。热带山地雨林中光的这种垂直模式导致个体形成了相应的适应对策,可以充分保证生态系统各层次的高效光合碳同化,达到系统对光资源的合理和充分利用。
     2、基于1983年开始近25年固定样地清查数据计算的中国海南岛尖峰岭热带山地雨林的生物量结果表明:雨林生物量随林木径级的增加而增大,DBH>10 cm的个体占生物量总和的90%以上,尤其是数量不到1%的大径级个体(DBH≥45 cm),其生物量所占比例更是高达32%,充分反映了在热带森林中大径级个体对生物量和碳密度的贡献占据绝对的主导作用。生物量密度在397.05±57.92和502.35±96.32 Mg·ha-1范围间变动,平均为453.13±80.06 Mg·ha-1;林木碳密度在201.43±29.38和254.85±48.86 Mg C·ha-1范围间变动,平均为230.84±40.61 Mg C·ha-1。基于样地调查估算的山地雨林地上部分碳汇大小P9201样地平均为2.13±0.46 Mg C ha-1yr-1,P8302样地为0.49±0.17 Mg Cha-1yr-1.
     3、基于2006年到2009年近四年涡度协方差通量监测结果显示,尖峰岭热带山地雨林碳交换昼夜节奏明显,日碳交换通量变异较大,在-9.20~5.20g C m-2 day-1范围间变动(在涡度协方差技术中,通常用负值代表碳吸收,正值代表碳释放),碳交换通量季节及年间变异较大,雨季碳交换能力明显强于旱季;以涡度协方差测定的碳交换通量和CO2/H20廓线估测的林内C02存储通量估算的2006-2009年尖峰岭热带山地雨林生态系统净碳交换(NEE)分别为-1.89±0.43、-2.96±0.40、-2.42±0.42、-2.15±0.41 Mg C·ha-1·yr-1,平均为-2.36±0.42 Mg C·ha-1·yr-1,表明尖峰岭热带山地雨林为净的碳汇;总生态系统生产力(gross ecosystem productivity,GEP,由涡度协方差计算的日-·NEE和估算的生态系统呼吸Re之和计算得出)分别为19.19±2.23、19.19±2.46、21.38±2.27、19.04±2.23 MgC·ha-1·yr-1,平均为19.70±2.30 Mg C·ha-1·yr-1。
     4、涡度协方差方法和固定样地的资源清查方法作为研究森林碳源汇大小的两种主要方法,各有其优缺点。本论文涡度协方差测定结果显示,尖峰岭热带山地雨林多年平均碳汇大小与通量塔紧邻的样地调查估算的碳汇大小其值非常接近。这个结果说明,涡度协方差技术可以很好的用于评估尖峰岭热带山地雨林的碳汇大小,而且可以与固定样地的清查取得很好的比对结果,可以基于与生物量清查的对比研究来修正通量估计偏差。涡度协方差法可以很好的用来研究生态系统过程的机理和机制问题,又可以用来量化生态系统的CO2交换速率对环境因子变化的响应,同时还可以用来评价经营和干扰问题对生态系统的影响。样地清查又可以提供给我们生态系统碳交换的空间分布格局和动态的细致信息。因此,在尖峰岭地区,甚至是海南岛地区同时开展这两种方法的应用、比较研究将具有非常好的前景和产出。
     总之,在本论文涡度协方差技术的应用研究中估算的多年平均碳汇大小(2.36±0.42Mg C·ha-1·yr-1)与样地调查法估算的碳汇大小(2.13±0.46 Mg C ha-1yr-1)其值相近,为当前以涡度协方差技术和样地清查技术估算森林碳源汇大小的比较研究中提供了一个较好的研究案例;本论文研究表明,不管是涡度协方差监测还是样地资源清查,结果都显示尖峰岭未受扰动的热带山地雨林为净的碳汇,说明热带森林仍然存在巨大的碳汇潜力;同时,本论文研究表明,尖峰岭热带山地雨林碳交换与降雨(尤其是暴雨降雨次数)和干旱状况呈明显的二次曲线变化趋势,降雨和干旱月份次数是尖峰岭热带山地雨林碳交换能力的两个关键影响因子,但碳交换能力同时受台风等极端干扰事件的影响。
Tropical montane rain forest at Jianfengling is one of the most typical rain forests in China. We used two independent approaches, biometry and micrometeorology, as well as CO2/H2O profile to determine the net ecosystem exchage (NEE) and to explore the environmental controls of tropical montane rain forest at Jianfengling, Hainan Island. The results show as follows:
     1. Annual mean air temperature has been rising in recent 26 years, and annual mean minimum temperature had a significant increase but mean maximum temperature increased slightly. Diurnal courses of air temperature showed upside down U shape, and the minimum value occurred in 6:00-8:00, the maximum value appeared near 14:00. The precipitation at Jianfengling is rich, but varied distinctly from dry season to wet season. The prevailed wind came from southern, and the wind speed profile displayed a highly spatial-temporal variability and which had a positive relationship with height below canopy. Diurnal courses of solar radiation, net radiation and photosynthetic active radiation were the same as air temperature, and the daily peak appeared at 12:00, while at night the solar radiation and PAR were near zero. Annual changes showed single-peak trend, monthly peak appeared in April, and monthly valley value was in February.
     2. Biometric inventories of 25 years from 1983 indicated that the forest was either a source or a modest sink of carbon. The biomass density varied between 397.05±57.92 and 502.35±96.32 Mg·ha-1, and averaged 453.13±80.06 Mg·ha-1; while carbon density varied between 201.43±29.38 and 254.85±48.86 Mg C·ha-1, and averaged 230.84±40.61 Mg C·ha-1. The biomass of trees with dbh> 10 cm comprised 96% of the total above-ground biomass (AGB) for all trees with dbh> 1.0 cm; and the biomass of trees with dbh> 45 cm contributed 32% of the total AGB, although the number of stems accounted for just 1% of the total stems. The carbon source or sink based on ground measurements indicated that plot P9201 was a net sink at a rate of 2.13±0.46 Mg C ha-1yr-1, while the plot P8302 with a rate of 0.49±0.17 Mg C ha-1yr-1.
     3. Based on four years of eddy covariance data for CO2 fluxes in tropical montane rain forest we found that the net ecosystem exchange of carbon dioxide (NEE) varied between-1.89 and-2.96 Mg C-ha-1·yr-1(a positive flux indicates carbon loss by the forest, a negative flux indicates carbon gain) from the year of 2006 to 2009, and averaged-2.36±0.42 Mg C-ha-1·yr-1, which showed a moderate sink of this forest. The diurnal pattern of flux showed a significant transition from daytime to nighttime, this similar trend is also found in the course of interannual and seasonal (wet and dry season) variability of flux. The forest was found productive with the gross ecosystem production (GEP) of 19.19±2.23、19.19±2.46、21.38±2.27、19.04±2.23 Mg C·ha-1·yr-1 from 2006 to 2009 respectively, and averaged GEP is 19.70±2.30 MgC·ha-1·yr-1.
     4. Inventory-based method has been used as major traditional means of addressing net ecosystem carbon exchange of an ecosystem over:multiple years. In recent years the eddy covariance technique has emerged as an alternative way to assess ecosystem carbon exchange. Although these two methods have its merits and limitations, the results in this study produced from eddy covariance technique did well match the estimates of net ecosystem productivity produced with the ground-based inventory. The study showed that we can remedy bias errors of eddy covariance by conducting comparative studies with biomass inventories to constrain flux estimates. The eddy covariance method is particularly adept as studying ecosystem physiology. Specifically, it can be used to quantify how CO2 exchange rates of whole ecosystems respond to environmental perturbations, and when paired systems are applied the method can be used to assess management questions such as the effects of disturbance and plant functional type. Inventory studies of biomass change produce estimates of annual net primary productivity in a variety of temporal and spatial scales. So, by conducting comparative studies in future research at Jianfengling tropical montane rainforest will have a good prospect and production.
     Overall, the maintance of flux tower and post-field data processing (including quanlity analysis, quanlity control, and data gap filling) are the key steps on deciding whether the technique of eddy covariance can evaluate accurately carbon exchange of ecosystems or not. But, our results estimated from four years of eddy covariance showed that a significant accumulation of carbon (2.36±0.42 Mg C·ha-1·yr-1) at Jianfengling tropical montane rain forest was found, this estimate was independently confirmed through biometric methods which also showed the forest to be gaining carbon at a rate of 2.13±0.46 Mg C ha-1yr-1.Our study provide a good case study in the situation that the results produced from eddy covariance technique did not well match the estimates of net ecosystem productivity produced with the ground-based inventory. Undisturbed tropical rain forests have been historically presumed to contribute little to changes in atmospheric carbon dioxide. But our results indicted that this forest was a carbon sink based on the eddy covariance technique and the ground-based inventory. These results indicated that undisturbed tropical rain forests still have the potential to accumulate carbon from atmosphere. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest. Besides that, we also found a strong relationship between disturbance (such as typhoon) and the dynamics of carbon exchange.
引文
Achard, F., H. D. Eva, P. Mayaux, H.-J. Stibig, and A. Belward. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochemical Cycles,2004,18(2):1-11;
    Adams A B, Harrison R B, Sletten R S, et al. Nitrogen fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. Forest Ecology and Management,2005, 220:313-325.
    Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Boundary Layer Meteorology,1984,29:167-183.
    Anderson D E, Verma S B. Carbon dioxide, water vapor and sensible heat exchanges of a grain sorghum canopy. Boundary Layer Meteorology,1986,34:317-331.
    Andreae, M. O., Artaxo, P., Brandao, C., et al. Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia:The LBA-EUSTACH experiments, Journal of Geophysical Research-Atmospheres,2002,107,8066, doi:10.1029/2001JD000524.
    Araujo, A.C., Nobre, A.D., Kruijt, B., et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest:The Manaus LBA site. J. Geophys. Res.2002,107, 8090.
    Asner, G.P., Nepstad, D., Cardinot, G., David, R. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. In:Proceedings of the National Academy of Sciences of the United States of America,2004,101. pp.6039-6044.
    Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of European forests:the EUROFLUX methodology. Advances in Ecological Research,2000,30:113-175.
    Baker, T. R., Phillips, O.L., Malhi, Y., et al. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2004,359,353-365.
    Baldocchi D D, Falge E, Gu L, et al. FLUXNET:a new tool to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society,2001,82:2415-2434.
    Baldocchi D D, Hicks B B, Meyers T P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology,1988,69:1331-1340.
    Baldocchi D D, Vogel C. A comparative study of water vapor, energy and CO2 flux densities above and below a temperate broadleaf and boreal pine forest. Tree Physiology,1996,16:5-16.
    Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems past, present and future. Global Change Biology,2003,9:479-492.
    Baldocchi, D., Falge, E., Wilson, K. A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time Agricultural and Forest Meteorology,2001, 107,1-27.
    Baldocchi, D.D., Bowling, D.R. Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ.,2003,26,231-244.
    Baumgartner A. Meteorological approach to the exchange of CO2 between atmosphere and vegetation, particularly forests stands. Photosynthetica,1969,3:127-149.
    Bazzaz F A, Williams W E. Atmospheric CO2 concentrations within a mixed forest:implications for seedling growth. Ecology,1991,72:12-16.
    Boisvenue C, Running SW. Impacts of climate change on natural forest productivity:Evidence since the middle of the 20th century. Global Change Biology,2006,12:862-882.
    Bousquet P, Peylin P, Ciais P, et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science,2000,290:1342-1346.
    Brando P, Nepstad D, Davidson E., et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest:results of a throughfall reduction experiment. Phil. Trans. R. Soc. B,2008,363:1839-1848.
    Breymeyer A I, Hall D O, Melillo J M, et al. Global Change:Effects on Coniferous Forests and Grasslands (Scope No 56). John Wiley & Sons Ltd., New York.1997
    Brown S. Estimating biomass and biomass change of tropical forests:a primer UN FAO Forestry Paper 134, Rome,1997, pp 55.http://www.fao.org/docrep/W4095E/W4095E00.htm.
    Brown, S.A., Hall, C.A.S., Knabe, W., et al. Tropical forests:their past, present, and potential future role in the terrestrial carbon budget. Water, Air and Soil Pollution,1993,70,71-94.
    Cannell MGR, Sheppard LJ, Smith RI, et al. Autumn frost damage on young picea stichensis:2. Shoot frost hardening, and the probability of frost damage in Scotland. Forestry,1985,58:145-166.
    Carey E. V., Sala A., Keane R.& Callaway R. M. Are old forests underestimated as global carbon sinks? Global Change Biology,2001,7:339-344.
    Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., et al. Respiration from a tropical forest ecosystem:partitioning of sources and low carbon use efficiency. Ecol. Appl.2004,14, S72—S88.
    Chave, J., B. Riera and M. A. Dubois. Estimation of biomass in a neotropical forest in French Guiana:spatial and temporal variability. Journal of Tropical Ecology,2001,17:79-96.
    Chave, J., Condit, R., Aguilar, S., et al. Error propagation and scaling for tropical forest biomass estimates. Philos Trans Royal Soc B,2004,359:409-420.
    Chave, J., R. Condit, S. Lao, J. P., et al. Spatial and temporal variation of biomass in a tropical forest:results from a large census in Panama. Journal of Ecology,2003,91:240-252.
    Ciais P, Tans P P, Trolier M. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science,1995,269:1098~1102.
    Clark D. Detecting tropical forests' responses to global climatic and atmospheric change:Current challenges and a way forward, Biotropica,2007,39 (Ⅰ),4-19.
    Clark, D. B., Clark, D. A. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. Manag.,2000,137:185-198.
    Clark, D.A., Brown, S., Kicklighter, D., et al. Measuring net primary production in forests:concepts and field methods. Ecol Appl,2001,11:356-370
    Condit, R. Tropical forest census plots. Springer, Berlin Heidelberg New York.1998
    Cox, P. M., Betts, R. A., Jones, C. D., et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,2000,408:184-187.
    Coyne P I, Kelly J J. CO2 exchange over the Alaskan arctic tundra:meteorological assessment by an aerodynamic method. Journal of Applied Ecology,1975,12:587-611.
    Culf A D, Fisch G, Malhi Y, et al. The influence of atmospheric boundary layer on carbon dioxide concentrations over a tropical forest. Agricultural and Forest Meteorology,1997,85:217-227.
    Cummings, D. L., J. B. Kauffman, D. L. Perry and R. F. Hughes. Aboveground biomass and structure of rainforests in the Southwestern Brazilian Amazon. Forest Ecology and Management,2002,163: 293-307.
    da Rocha, H.R., Goulden, M.L., Miller, S.D., et al. Seasonality of water and heat fluxes over a tropical forest in eastern amazonia. Ecol. Appl.2004,14, S22-S32.
    DeFries, R. S., Houghton, R. A., Hansen, M. C., et al. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. PNAS,2002,99,14256-14261.
    Denman, K.L., G. Brasseur, A. Chidthaisong, et al. Couplings Between Changes in the Climate System and Biogeochemistry. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    Denmead O T. Comparative micrometeorology of a wheat field and a forest of Pinus radiata. Agricultural Meteorology,1969,6:357-371.
    Denny,M. W., L. J. Hunt, L. P. Miller, and C. D. Harley. On the prediction of extreme ecological events. Ecological Monographs,2009,79(3):397-421.
    Desjardins R L. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology,1974,18:76-83.
    Desjardins R L. Carbon dioxide budget of maize. Agricultural and Forest Meteorology,1985,36:29-41.
    DeWalt, S.J. and J. Chave. Structure and biomass of four lowland neotropical forests. Biotropica,2004,36: 7-19.
    Dixon R. K., Brwon R. A., Houghton R. A., et al. Carbon pools and flux of global forest ecosystems. Science, 1994,263:185-190.
    Drewitt, G.B., Black, T.A., Nesic, Z., et al. Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology,2002,110,299-317.
    Falge E, Baldocchi D, Tenhunen J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology,2002,113:53-74.
    Falge E., Baldocchi D., Olson R., et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology,2001,107:43-69.
    Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science,1998,282:442-446.
    Fan SM, Wofsy SC, Bakwin PS, et al. Atmosphere-biosphere exchange of CO2, O3 in the central Amazon forest. Journal of Geophysical Research,1990,95:16851-16864.
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322.
    FAO. Forest Resources Assessment 1990. Global Synthesis. FAO Forestry Paper,1995,124. FAO, Rome.
    FAO. Forest Resources Assessment 1990. Tropical Countries. FAO Forestry Paper,1993,112. FAO, Rome.
    FAO. Global Forest Resources Assessment 2000, Main Report. FAO Forestry Paper,2001,140. FAO, Rome.
    FAO/UNEP. Tropical Forest Resources Assessment Project.1981, FAO, Rome.
    Ferreira, L.V., Prance, G.T. Species richness and floristic composition four hectares in the Jau'National Park in upland forests in Central Amazonia. Biodiversity and Conservation,1998,7,1349-1364.
    Foken, T., Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric.& Forest Meteorol.,1996,78:83-105.
    Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis:Results from the (CMIP)-M-4 modelintercomparison. Journal of climate,2006,19:3337-3353.
    Garratt J R. Limitations of the eddy correlation technique for determination of turbulent fluxes near the surface. Boundary Layer Meteorology,1975,8:255-259.
    Goodale C L. Forest carbon sinks in the Northern Hemisphere. Ecological Applications,2002,12:891-899.
    Goulden ML, Munger JW, Fan SM, et al. Exchange of carbon dioxide by a deciduous forest:response to interannual climate variability. Science,1996,271:1576-1578.
    Goulden, M.L., Miller, S.D., da Rocha, H.R., et al. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl.2004,14, S42-S54.
    Goulden, M.L., Munger, J.W., Fan, S.-M., et al. Measurements of carbon sequestration by long-term eddy covariance:methods and a critical evaluation of accuracy. Global Change Biol.,1996,2,169-182.
    Grace J, Malhi Y, Lloyd J, et al. The use of eddy covariance to infer the net carbon dioxide uptake of a Brazilian rain forest. Global Change Biology,1996,2:209-217.
    Grace J., Malhi Y. Global change:carbon dioxide goes with the flow. Nature,2002,416:594-595.
    Grace, J., J. Lloyd, J. Mcintyre, et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia,1992 to 1993. Science,1995,270,778-780.
    Grace, J., Malhi, Y, Meir, P. Productivity of tropical rain forests., in Terrestrial global productivity, edited by M.H. Saugier B, pp.401-426, Academic, San Diego,2001.
    Greco S, Baldocchi D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology,1996,2:183-198.
    Guild, L. S., J. B. Kauffman, L. J. Ellingson, D., et al. Dynamics associated with total aboveground biomass, C, nutrient pools and biomass burning of primary forest and pasture in Rondonia during SCAR-B. Journal of Geophysical Research,1998,103 (D 24):32091-32100.
    Hagedorn F, Maurer S, Bucher J B, et al. Immobilization, stabilization and remobilization of nitrogen in forest soils at elevated CO2:a 15N and 13C tracer study. Global Change Biology,2005,11:1816-1827.
    Hall, C.A.S., Tian, H., Qi, Y, et al. Modelling spatial and temporal pattern of tropical land use change. Journal of Biogeography,1995,22,753-757.
    Harazono, Y, Kim, J., Miyata, A., et al. Measurement of energy budget components during the International Rice Experiment (IREX) in Japan, Hydrol. Process.,1998,12:2018-2092.
    Houghton R A, Woodwell G. The flax pond ecosystem study:exchange of CO2 between a salt marsh and the atmosphere. Ecology,1980,61:1434-1445.
    Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus,2003,55B,378-390.
    Houghton, R. H. Aboveground forest biomass and global carbon balance. Global Chang Biology,2005,11: 945-958.
    Houghton, R.A. Tropical deforestation and atmospheric carbon dioxide. Climatic Change,1991,19,99-118.
    Houghton, R.A., Lawrence, K.L., Hackler, J.L., Brown, S. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates. Glob Change Biol,2001,7:731-746.
    Hughes, R. F., J. B. Kauiffman and D. L. Cummings. Dynamics of aboveground and soil carbon and nitrogen stocks and cycling of available nitrogen along a land-use gradient in Rondonia, Brazil. Ecosystems, 2002,5:244-259.
    Inoue I. An aerodynamic measurement of photosynthesis over a paddy field. In:Proceedings of the 7th Japan National Congress of Applied Mechanics,1958, pp.211-214.
    IPCC (Intergovernmental Panel on Climate Change).2007. Climate Change 2007:The Physical Science Basis, Summary for Policymakers (http://www.ipcc.ch).
    Janssens I A, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropgenic CO2 emission. Science,2003,300:1538-1542.
    Jarvis P G, James G B, Landsberg J J. Coniferous foest. In:Vegetation and the Atmosphere,1976,2: 171-240. Academic Press, London.
    Kaimal J C, Wyngaard J C. The kansaa and minnesota experiments. Boundary Layer Meteorology,1990,50: 31-47.
    Kauffman, J. B., D. L. Cummings, D. E. Ward, et al. Fire in the Brazilian Amazon:1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia,1995,104:397-408.
    Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation in inferred from atmospheric CO2 measurements. Nature,1996,382:146-149.
    Keeling, C D. and Whorf, T T. Atmospheric CO2 records from sites in the SIO air sampling network. Trends on line:A compendium of data on global change, carbon dioxide information analysis center. Carbon dioxide information analysis center, Oak ridge national laboratory, TN, US Department of Energy.2005
    Keeling, C. D.& Whorf, T. P. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends:a compendium of data on global change, Annual Report. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, TN, US Department of Energy.2000.
    Kimmins J P, Comeau PG, Kurz W. Modeling the interactions between moisture and nutrients in the control of forest growth. For. Ecol. Manage,1990,30:361-379.
    Kira T, Shidei T. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Japanese Journal of Ecology,1967,17:70-87.
    Kirby, K. R., Potvin, C. Variation in carbon storage among tree species:Implications for the management of a small-scale carbon sink project. Forest Ecology and Management,2007,246:208-221.
    Kleidon, A.& Heimann, M. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Global Change Biology,1998,4,275-286.
    Kosugi, Y., Takanashi, S., Ohkubo, S., et al. CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia. Agricultural and Forest Meteorology,2008,148:439-452.
    Kramer K, Friend A, Leinonen I. Modeling comparison to evaluate the importance of phenology and spring damage for the effects of climate change on growth of mixed temperate zone deciduous forests. Climate Res,1996,7:31-41.
    Kruijt, B., Elbers, J.A., von Randow, C., et al. The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol. Appl.2004,14, S101-S113.
    Kumagai, T., Saitoh, T.M., Sato, Y., et al. Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agric. For. Meteorol.,2005,128,81-92.
    Lavigne, M.B., Ryan, M.G., Anderson, D.E., et al. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. J. Geophys. Res.1997,102,28977-28985.
    Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapour exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002,113:97-120.
    Law, B.E., Ryan, M.G., Anthoni, P.M. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol.1999,5,169-182.
    Lee X. On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology,1998,91:39-49.
    Lee X., Finnigan J., Paw U. Coordinate systems and flux bias error. In:Lee X., Massman W., Law B. eds. Handbook of micrometeorology:a guide for surface flux measurement and analysis. Dordrecht:Kluwer Academic Publishers,2004,33-66.
    Lemon E R. Photosynthesis under field conditions. Ⅱ. An aerodynamic method for determining the turbulent carbon dioxide exchange between the atmosphere and a corn field. Agronomy Journal, 1960, 52:697-703.
    Lemon, E., L. H. Allen J R, et al. Carbon dioxide exchange of a tropical rain forest. PartⅡ. BioScience,1970, 20(19):1054-1059.
    Leuning R. Measurements of trace gas fluxes in the atmosphere using eddy covariance:wpl corrections revisited. In:Lee X., Massman W., Law B. eds. Handbook of micrometeorology:a guide for surface flux measurement and analysis. Dordrecht:Kluwer Academic Publishers,2004,119-132.
    Lewis S L. Tropical forests and the changing earth system. Phil. Trans. R. Soc. B,2006,361:195-210.
    Lewis, S. L., Phillips, O. L., Baker, T. R., et al. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society of London B,2004,359:421-436.
    Lewis, S.L., Lopez-Gonzalez, G., Sonke, B., et al. Increasing carbon storage in intact African tropical forest. Nature,2009,457:1003-1007.
    Liu H P, Randerson J T, Lindfors J, and Chapin F S. Changes in the surface energy budget after fire in borealecosystems of interior Alaska:An annual perspective. Journal of Geophysical Research,2005, 110,D13101,doi:10.1029/2004JD005158.
    Liu, H. P., G. Peters, and T. Foken, New equations for omnidirectional sonic temperature variance and buoyancy heat flux with a sonic anemometer, Boundary Layer Meteorol.,2001,100:459-468.
    Lloyd, J., Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol.1994,8,315-323.
    Mahrt L. Flux sampling errors for aircraft and towers. Journal of Atmospheric and Oceanic Technology, 1998,15:416-429.
    Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends in Ecology and Evolution,2000, 15,332-337.
    Malhi Y, Meir P. and Brown S. Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London A.2002,360:1567-1591.
    Malhi Y, Nobre A D, Grace J, et al. Carbon dioxide transfer over a central Amazonian rain forest. Journal of Geophysical Research,1998,103:31,593-31,612.
    Malhi Y., Wood D., Baker T. R., et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology,2006,12:1107-1138
    Malhi, Y., Baldocchi, D.D., Jarvis, P.G. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ.1999,22,715-740.
    Malhi, Y., Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evolut.,2000,15, 332-337.
    Malhi, Y, Nobre, A.D., Grace, J., et al. Carbon dioxide transfer over a Central Amazonian rain forest. J. Geophys. Res.,1998,103:31593-31612
    Malhi, Y, Pegoraro, E., Nobre, A.D., et al. Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res.2002,107,8061
    Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges. Agricultural and Forest Meteorology,2002,113:121-144.
    Melillo, J. M., A. D. McGuire, D. W. Kicklighter, et al. Global climate change and terrestrial net primary production. Nature,1993,363:234-240
    Melillo, J.M., Houghton, R.A., Kicklighter, D.W. et al. Tropical deforestation and the global carbon budget. Annual Review of Energy in the Environment,1996b,21,293-310.
    Melillo, J.M., Prentice, I.C., Farquhar, G.D., et al. Terrestrial biotic responses to environmental change and feedbacks to climate. Climate change 1995:the science of climate change (ed. by J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg & K. Maskell). Cambridge University Press, New York.1996a, pp.444-481
    Miller SD, Goulden ML, Menton MC, et al. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecological Applications,2004,14(4):S114-S126.
    Miranda, A.C., Miranda, H.S.& Lloyd, J. Fluxes of carbon, water and energy over Brazilian cerrado:an analysis using eddy covariance and stable isotopes. Plant, Cell and Environment,1997,20,315-328.
    Monteith J L, Szeicz G. The CO2 flux over a field of sugar beets. Quarterly Journal of the Royal Meteorological Society,1960,86:205-214.
    Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of Northern forests. PNAS, 2001,98:14784-14789.
    Nebel, G., Kvist, L. P., Vanclay, J. K., et al. Structure and floristic composition of flood plain forests in the Peruvian Amazon. I Overstorey. Forest Ecology and Management,2001,150,27-57.
    Neill, C., Melillo, J.M., Steudler, P.A., et al. Soil carbon and nitrogen stocks following forest clearing for pasture in the Southwestern Brazilian Amazon. Ecological Applications,1997,7,1216-1225.
    Nelson, B.W, Mesquita, R., Pereira, J.L.G., et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage,1999,117:149-167.
    Nepstad D C, Moutinho P, Dias-Filho M B. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research, 2002,107, NO. D20,8085, doi:10.1029/2001JD000360.
    Nepstad, D.C., de Carvalho, C.R., Davidson, E.A., et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature,1994,372,666-669.
    Ni J. Carbon storage in grasslands of China. Journal of Arid Environments,2002,50:205-218.
    Ni J. Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change. Climatic Change.2001,49:339-358.
    Oberbauer S F, Loescher H, Clark D B. Effects of climate factors on daytime carbon exchange from an old-growth forest in Costa Rica, Selbyana,2000,21:66-73.
    Ohtaki E. Application of an infrared carbon dioxide and humidity instrument to studies of tubbulent transport. Boundary Layer Meteorology,1984,29:85-107.
    Pacala S W, Hurtt G C, Baker D. Consistent land-and atmosphere-based U.S. carbon sink estimates. Science, 2001,292:2316-2320.
    Paw U K, Baldocchi D D, Meyers T P, et al. Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Boundary Layer Meteorology,2000,97:487-511.
    Phillips O. L., Malhi Y., Higuchi N., et al. Changes in the carbon balance of tropical forests:evidence from long-term plots. Science,1998,282:439-442.
    Phillips, D. L., Brown, S. L., Schroeder, P. E., et al. Toward error analysis of large-scale forest carbon budgets. Global Ecology & Biogeography,2000,9:305-313.
    Phillips, O. L., Aragao, L.E., Lewis, S. L., et al. Drought sensitivity of the Amazon rainforest. Science,2009, 323:1344-1347.
    Phillips, O. L., Lewis, S. L., Baker, T.R., et al. The changing Amazon forest. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2008,363:1819-1827.
    Phillips, O.L., Hall, P., Gentry, A.H., et al. Dynamics and species richness of tropical rainforests, Proc. Natl. Acad. Sci.1994,91 (7):2805-2809.
    Phillips, O.L., Malhi, Y., Vinceti, B., et al. Changes in the biomass of tropical forests:evaluating potential biases. Ecol Appl,2002,12:576-587.
    Piao S L, Fang J Y, Zhu B, et al. Forest biomass carbon stocks in China over the past 2 decades:Estimation based on integrated inventory and satellite data. Journal of Geophysical Research,2005,110, G01006.
    Piao, S., Fang, J., Ciais, P., et al. The carbon balance of terrestrial ecosystems in China. Nature,2009,458: 1009-1014.
    Pitman, N. C. A., Terborgh, J. W., Silman, M. R., et al. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology,2001,82,2101-2117.
    Prentice, I. C. The carbon cycle and atmospheric carbon dioxide. In Climate change 2001:the scientific basis (ed. IPCC), pp.183-237. Cambridge University Press,2001.
    Prioul JL and Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:A critical analysis of the methods used. Annals of Botany,1977,41: 789-800.
    Raich J W, Nadelhoffer K J. Belowground car-bon allocation in forest ecosystems:global trends. Ecology, 1989,70:1346-1354.
    Raich, J.W., Rastetter, E.B., Melillo, J.M., et al. Potential net primary productivity in South America: application of a global model. Ecological Applications,1991,1,399-429.
    Raupach M R. Anomalies in flux-gradient relationships over forests. Boundary Layer Meteorology,1979, 16:467-486.
    Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of criterion. Philosophical Transactions of Royal Society of London,1895, A174:935-982.
    Rice, A. H., Pyle, E. H., Saleska, S. R., et al. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications,2004,14(4):s55-s71.
    Ripley E A, Redman R E. Grasslands. In:Vegetation and the Atmosphere,1976,2:349-398. Academic Press, London.
    Ruimy A, Javis P G, Baldocchi D, et al. CO2 fluxes over plant canopies and solar radiation:A review. Advanced in Ecological Research,1995,26:1-69.
    Russo JM, Liebhold AM, Kelley J G. Mesoscale weather data as input to a gypsy moth (Lepidoptera: Lymantriidae) phenology model. J. Econ. ENT,1993,86:838-844.
    Saldarriaga, J. G., D. C. West, M. L. Tharp and C. Uhl. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology,1988,76:938-958.
    Saleska, S.R., Miller, S.D., Matross, D.M., et al. Carbon in Amazonian forests:unexpected seasonal fluxes and disturbance-induced losses. Science,2003,302,1554-1557.
    Schimel D S, House J I, Hibbard K A, et al.2001. Recent patterns and mechanism of carbon exchange by terrestrial ecosystems. Nature,2001,414:169-172.
    Schimel D, Melillo J, et al. Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science,2000,287:2004-2006.
    Schmid, H.P. Footprint modeling for vegetation atmosphere exchange studies:a review and perspective. Agricultural and Forest Meteorology,2002,113:159-183.
    Schmid, H.P., Oke, T.R. A model to estimate the source area contributing to turbulent exchange in the surfacelayer over patchy terrain. Quart. J. Roy. Meteorol. Soc,1990,116,965-988.
    Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.:Footprint prediction of scalar fluxes from analytical solution of the diffusion equation, Bound.-Lay. Meteorol.,1990,50:355-373.
    Scrase F J. Some characteristics of eddy motion in the atmosphere, geophysical memoirs,#52, pp.56. Meteorological Office, London,1930.
    Sheil, D. A critique of permanent plot methods and analysis with examples from Budongo forest, Uganda. For. Ecol. Manag,1995,77:11-34.
    Simpson I J, Thurtell G W, Neumann H H, et al. The validity of similarity theory in the roughness sublayer above forests. Boundary Layer Meteorology,1998,87:69-99.
    Singh B, Sing G. Influence of soil water regime on nutrient mobility and uptake by Dalbergia sissoo seedlings. Tropical Ecology,2004,45:337-340
    Swinbank W C. Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology,1951,8:135-145.
    Takanashi, S., Kosugi, Y., Tani, M., et al. Characteristics of the gas exchange of a tropical rain forest in Peninsular Malaysia. Phyton,2005,45,61-66.
    Tani, M., Abdul Rahim, N., Ohtani, Y, et al. Characteristics of energy exchange and surface conductance of a tropical rain forest in Peninsular Malaysia. In:Okuda, T., Manokaran, N., Matsumoto, Y, Niiyama, K., Thomas, S.C., Ashton, P.S. (Eds.), Pasoh:Ecology of a Lowland Rain Forest in Southeast Asia. Springer, Tokyo,2003, pp.73-88.
    Tian H, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in undisturbed Amazonian ecosystems. Nature,1998,396:664-667.
    Tian, H., Melillo, J. M., Kicklighte, D. W., et al. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology & Biogeography,2000,9:315-335.
    Trumbore, S. E., E. A. Davidson, P. B. de Camargo, D. C. Nepsted, and L. A. Martinelli. Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochemical Cycles,1995, 9(4):515-528.
    Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861~864.
    Valentini RP, de Angelis G, Matteucci R, et al. Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology,1996,2:199-208.
    Verburg P S J. Soil solution and soil N response to climate change in two boreal forest ecosystems. Biology and Fertility of Soils,2005,41:257-261.
    Verma SB, Baldocchi DD, Anderson DE, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary Layer Meteorology,1986,36:71-91.
    Verma SB, Kim J, Clement RJ. Carbon dioxide, water vapor and sensible heat fluxes over a tall grass prairie. Boundary Layer Meteorology,1989,46:53-67.
    Vesala T, Rannik U, Leclerc M. Flux and concentration footprints. Agricultural and Forest Meteorology, 2004,127:111-116.
    Vickers, D., Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmosph.& Oceanic Techn.,1997,14:512-526.
    Vitousek, P. M., Mooney, H. A. et al. Human domination of Earth's ecosystems. Science,1997,277: 494-499.
    Wang X K, Feng Z W, Ouyang Z. The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. Forest Ecology and Management,2001,148:117-123.
    Waring, R. H., and W. Schlesinger. Forest ecosystems:concepts and management. Academic Press, Orlando, Florida, USA.1985.
    Webb, E. K., Pearman, G.I., and Leuning, R.'Correction of Flux Measurements for Density Effects due to Heat and Water Vapour Transfer', Quart. J. Roy. Meteorol. Soc.1980,106,85-100.
    Welp L.R., Randerson J.T., Liu H.P. Seasonal exchange of CO2 and δ18O-CO2 varies with postfiresuccession in boreal forest ecosystems. Journal Of Geophysical Research,2006, VOL. 111, G03007, doi:10.1029/2005JG000126.
    Welp L.R., Randerson J.T., Liu H.P. The sensitivity of carbon fluxes to spring warming and summerdrought depends on plant functional type in boreal forest ecosystems. Agricultural and Forest Meteorology, 2007,147:172-185.
    Wesely M L, Cook D R, Hart R L. Fluxes of gases and particles above a deciduous forest in wintertime. Boundary Layer Meteorology,1983,27:237-255.
    Williams, M., Malhi, Y. et al. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest:a modelling analysis. Plant, Cell and Environment,1998,21:953-968.
    Wofsy SC, Goulden ML, Munger JW, et al. Net exchange of CO2 in a mid-latitude forest. Science,1993, 260:1314-1317.
    Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles,2003,17:Art. No.1048
    Yamamoto S, Murayama S, Saigusa N, et al. Seasonal and interannual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus,1999,51B:402-413.
    Yasuda, Y., Ohtani, Y, Watanabe, T., et al. Measurement of CO2 flux above a tropical rain forest at Pasoh in Peninsular Malaysia. Agricultural and Forest Meteorology,2003,114,235-244.
    Zhang LM, Yu GR, Sun XM, et al. Seasonal variations of ecosystem apparent quantum yield (alpha) and maximum photosynthesis rate (P-max) of different forest ecosystems in China. Agricultural and Forest Meteorology,2006,137:176-187.
    Zhao M, Zhou G. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management,2005,207:295-313.
    Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils. Science,2006,314: 1417.
    Zhou G, Wang Y, Jiang Y, et al. Estimating biomass and net primary production from forest inventory data:a case study of China's Larix forest. Forest Ecology and Management,2002,169:149-157.
    曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学(D辑):1-16.
    曾庆波,李意德,陈步峰,等.热带森林生态系统研究与管理,北京:中国林业出版社,1997,202.
    常杰,潘晓东,葛滢,等.青冈常绿阔叶林内的小气候特征.生态学报,1999,19(1):68-75.
    陈步峰,李意德,林明献,等.热带山地雨林CO2浓度环境的时空梯度特征.生态学报,2001,12:2089~2095.
    陈德祥.全球气候变化背景下几种主要热带植物光合特性研究.中国林业科学研究院硕士学位论文,2002,46-48.
    董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1997,143-183.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508.
    贺庆棠.中国森林气象学.中国林业出版社,2000.
    蒋有绪,卢俊培.中国海南岛尖峰岭热带林生态系统.科学出版社:1991,6-10
    李白萍,潘刚,潘贵元.西藏色季拉山林区近10年小气候变化特征分析.安徽农业科学,2007,35(27):8632-8634
    李海涛,陈灵芝.暖温带山地森林的小气候研究.植物生态学报,1999,23(2):139-147.
    李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,33(1):72—80
    李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社.2002,1-20.
    李意德,周光益,林明献.台风对热带森林群落机械损伤的研究。生态学杂志,1998,17(Sup.):6-11。
    罗天祥.中国主要森林类型生物生产力格局及其数学模型.中国科学院博士学位论文.1996.
    王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳库蓄积量估算误差分析.应用生态学报,2003,14(5):797-802
    王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):631—639
    王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356.
    王绍武.近百年我国及全球气温变化趋势.气象.1990,16(2):11-16
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社:1999,42-59.
    闫俊华,周国逸,韦琴.鼎湖山季风常绿阔叶林小气候特征分析.武汉植物学研究,2000,18(5):397-404.
    于贵瑞,孙晓敏.2006.陆地生态系统通量观测到原理与方法.北京:高等教育出版社.189-275.
    于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征.北京:科学出版社,2008.
    张弥,关德新,等.长白山阔叶红松林近22年的气候动态.生态学杂志,2005,24(9):1007-1012
    张一平,刘玉洪,马友鑫,等.热带森林不同生长时期的小气候特征.南京林业大学学报(自然科学版),2002,26(1):83-87
    周璋,李意德,林明献,等.1980-2005年海南岛尖峰岭热带山地雨林区气候突变与异常的初步研究。气象与环境学报,2009c,25(3):66-72。
    周璋,李意德,林明献,等.海南岛尖峰岭热带山地雨林区26年的气候变化特征——光、水和风因子。生态学报,2009b,29(3):1112-1120。
    周璋,李意德,林明献,等.海南岛尖峰岭热带山地雨林区26年的热量因子变化特征。生态学杂志,2009a,28(6):1006-1012。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700