用户名: 密码: 验证码:
切向气流作用下激光对纤维增强树脂基复合材料的辐照效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切向气流作用下,连续波激光对纤维增强树脂基复合材料的辐照效应研究目前还不够深入。本文对该问题开展实验、理论和数值模拟研究,将空气气流、氮气气流和无气流状态下的辐照效应进行比较,以分析空气气流的作用。主要开展了以下几个方面的工作:
     1.建立了连续波激光辐照下树脂基复合材料热响应的三维模型。针对激光光斑相对于样品厚度比较大的情形,提出了热分解气体一维流动假设,从而在不引入力学量的前提下,在三维热响应模型中考虑了热分解气体的流动。给出了有表面切向气流、有热分解气体流出边界以及边界上固体材料可能发生相变烧蚀或氧化烧蚀情况下的边界条件,在氧化烧蚀模型中基于稳态扩散图像,描述了热分解气体流出导致的边界层对O2的屏蔽作用。对模型中相关参数的计算方法进行了推导,并对玻璃纤维增强E-51环氧树脂复合材料进行了热分析,确定了该材料的热分解动力学参数和E-51固化体的热分解热。
     2.利用改进的光滑粒子流体动力学方法实现了三维热响应模型的求解。利用FORTRAN语言编制了程序,设计了两个算例,对程序功能进行了考证。为提高计算效率,缩短程序的运行时间,在MPI并行编程环境下成功地实现了串行编码的并行化。
     3.开展了表面有切向空气气流、氮气气流和无气流时,连续波激光对碳纤维增强树脂基复合材料样品和玻璃纤维增强树脂基复合材料样品辐照效应的实验研究。综合对损伤形貌、质量损失、烧蚀率、温度曲线、光电探测器电压信号和辐照后样品反射率的分析,对入射功率密度在100~600W/cm2范围内、气流速度在0.1~0.8Ma范围内、976nm激光辐照下两种样品的热响应形成如下结论:当样品发生剧烈热分解时,随热分解气体流出边界的固体颗粒对入射激光有屏蔽作用。切向气流一方面可以减弱这种屏蔽作用,有利于辐照区的烧蚀;另一方面对样品有冷却作用,不利于烧蚀。相比于氮气流,空气流有助于产物的燃烧,对下游附近区域产生明显的加热作用。三种气流状态下,两种样品的质量损失均随入射激光功率密度单调增加。在入射激光功率密度相等、吹空气流时,两种样品的质量损失均随气流速度的增大先增加后减小。三种气流状态下,碳纤维样品的烧蚀率随功率密度逐渐下降;玻璃纤维样品的烧蚀率则随功率密度逐渐上升趋于饱和。
     4.对三种气流状态下两种样品在连续波激光辐照下的热响应进行了数值模拟。根据样品热分析获得的几个特征温度,描述了表面反射率和吸收系数的变化,描述了无气流时热分解气体带出的固体颗粒对入射激光的屏蔽系数的变化;将喷出的热分解产物对下游附近区域的加热作用等效为对下游区域气流静温的提高。对碳纤维样品,将不同辐照条件下三个热电偶测点位置处温度历史的数值模拟结果同实验结果进行了比较,考察了质量损失随气流速度和激光功率密度的变化趋势,并同实验结果进行了比较。对玻璃纤维样品,计算了不同辐照条件下的平台持续时间和峰值时刻,考察了这两个时间随激光功率密度的变化,并同实验结果进行了比较。总体而言,上述各量的数值模拟结果与实验结果是符合的,表明本文建立的树脂基复合材料在激光辐照下的三维热响应模型是合理的,相关物性参数取值的合理性也得到了初步验证。
In the presence of a tangential gas flow, researches on continuous-wave laserirradiance effects on fiber reinforced resin composite are not in-depth enough. In thispaper, experimental, theoretical and simulated studies on this problem are performed.The influence of airflow on laser irradiance effects are analyzed by comparing the laserirradiance effects on fiber reinforced resin composite subjected to tangential airflow,tangential nitrogen gas flow and no gas flow. The contents of this dissertation are givenas follows:
     1. A three-dimensional thermal response model of resin composite materialssubjected to combined laser and tangential airflow loading is derived. The motion ofpyrolysis gas is assumed to be one-dimensional, for the case that the laser spot issignificantly larger than the thickness of the sample. According to the above assumption,the flow of pyrolysis gas can be considered at the three-dimensional model withoutintroducing any mechanical quantities. The effects of the tangential gas flow, theoutflow of pyrolysis gas and the ablation(including phase change ablation or oxidationablation)of the surface material are included in the surface boundary conditions. Theinfluence of the degassing on the diffusion of the oxygen to the target surface is studied,basing on the steady state diffusion model in the oxidation ablation model. Formulas forcomputing the parameters included in the thermal response model are derived. Thethermogravimetric analysis (TGA) of the glass fiber reinforced E-51resin composite isconducted. The thermal decomposition kinetics parameters of this material and thethermal decomposition heat of E-51resin are determined.
     2. The three-dimensional thermal response model is calculated numerically byuse of the modified smooth particle hydrodynamics (MSPH) method which is codedwith FORTRAN. The function of this program is validated by two cases. In order toimprove the computation efficiency and shorten the run time of the program, theparallelization of the serial number coding is achieved successfully with the MessagePassing Interface (MPI).
     3. The irradiation effects of continuous-wave laser on carbon fiber reinforcedresin composite and glass fiber reinforced resin composite are studied experimentally,with tangential airflow and tangential nitrogen gas flow and no gas flow on the targetsurface, respectively. Based on the analysis of the damage morphology, mass loss,ablation rate, temperature history, voltage of photoelectric detector and index ofreflection, the thermal response of two kinds of targets irradiated by laser with awavelength of976nm and a power density in the range of100~600W/cm2, and with agas flow whose velocity is in the range of0.1~0.8Ma can be concluded as follows:when the pyrolysis happens severely, the solid particles, which are flowing out of the interface with the pyrolysis gas, will shield the incident laser. The tangential gas flow,on one hand, can weaken the shield effect of the solid particles outflow the interface,which is helpful to the ablation in the irradiated area. On the other hand, the tangentialgas flow can cool the target, which is adverse to the ablation. Comparing with thenitrogen gas flow, air flow is of advantage to the combustion of the production, whichcan heat the downstream area obviously. Under three different gas flow statuses, themass lose of the two targets increases with the increasing incident power density. Withair flow and a constant incident power density, the mass lose of the two targets increasesfirst and then decreases with the increasing velocity of gas flow. Under three differentgas flow statuses, the ablation rate of carbon fiber target decreases with the increasingincident power density, but the ablation rate of glass fiber target increases up to asaturation value with the increasing incident power density.
     4. The thermal responses of two targets irradiated by continuous-wave laser in thepresence of three gas flow statuses are simulated numerically. According to thecharacteristic temperatures obtained by the thermogravimetric analysis of targets, thevariations of the reflectance and the absorbtance of targets are described. The variationsof the shielding coefficients of the solid particles carried by pyrolysis gas without gasflow are also described. The heating effect of the pyrolysis products on the downstreamarea is equivalent to the increasing of the static temperature. For carbon fiber targets, thenumerical results of the temperature history at three measuring points measured bythermal couples under different irradiation conditions are compared with experimentalresults. The variation trend of the mass loss with the velocity of gas and laser irradianceis investigated, and then compared with the experimental results. For glass fiber targets,the plateau durations and the peak times in different irradiation conditions are computed,and also compared with the corresponding experimental results. Generally speaking, thecoincidence of the numerical results with the experiments results validates thethree-dimensional thermal response model of resin composite materials irradiated bylaser and the values of the corresponding parameters of properties of matter are checkedto be chosenappropriately.
引文
[1]吴人洁.复合材料.天津:天津大学出版社,2000.
    [2]赵渠森.复合材料.北京:国防工业出版社,1979.
    [3]胡泽.无人机结构用复合材料及其制造技术综述[J].航空制造技术,2007,(6):66-70.
    [4]丁红杰.复合材料在无人机上的应用[J].电光系统,2004,1(107):62-64.
    [5]陈绍杰.无人机上复合材料的应用与研究[J].飞机设计,2003,(3):26-30.
    [6]王海,徐国华.无人驾驶直升机的研究现状和发展趋势[J].无人机技术,2003,134(2):45-49.
    [7]谭显裕.高能激光武器的发展和应用前景[J].航空兵器,2000,(3):25-29.
    [8] http://news.xinhuanet.com/tech/2010-07/21/c_12354741_2.htm
    [9]张元明,赵鹏飞.低速小型无人机中的复合材料结构及分析[J].玻璃钢/复合材料,2003,(6):36-40.
    [10]陈绍杰.复合材料与无人机[J].航空制造技术,2003,(12):31-33.
    [11]何颖,蔡闻峰,赵鹏飞.无人机复合材料构件整体辅助定位工装制作技术[J].玻璃钢/复合材料,2006,(7):44-45.
    [12] K.G. Kibler, H.G. Carer, J.R. Eisenmann. Response of graphite composites tolaser radiation[R]. ADA041283.
    [13] N. Zhang, C.L. Liu, C.W. Sun. The thermalcoupling effect of CW COIL Beamon composites[R]. AIAA95-1930.
    [14]王立君,漆海滨,刘泽金,等.玻璃钢的二氧化碳激光碳化实验研究-玻璃钢的激光碳化破坏研究之一[J].红外与激光工程,1996,25(2):48-52.
    [15]王立君,刘泽金,姜宗福,等.3.8m激光对玻璃钢的碳化破坏研究-玻璃钢的激光碳化破坏研究之二[J].红外与激光工程,1996,25(3):21-25.
    [16] R. Freeman, F. Rigby, N. Morley. Temperature-dependent reflectance of platedmetals and composite materials under laser irradiation[R]. AIAA98-2482.
    [17]刘淑英.YAG连续激光对玻璃钢材料的破坏效应研究[J].红外与激光工程,1999,28(6):52-57.
    [18]王贵兵,刘仓理.芳纶纤维复合材料对激光的吸收特性研究[J].强激光与粒子束,2003.
    [19]王贵兵,刘仓理.凯芙拉环氧复合材料烧蚀阈值实验研究[J].激光技术,2003.
    [20]郭亚林,梁国正,丘哲明,等.激光参数对碳纤维复合材料质量烧蚀率的影响[J].复合材料学报,2006,23(5):84~88.
    [21]万红,胡凯为,穆景阳,等.树脂基复合材料在连续激光作用下的损伤[J].强激光与粒子束,2008,20(1):6-10.
    [22]李雅娣,吴平,马喜梅,等.碳纤维/环氧树脂复合材料层压板连续激光烧蚀试验研究[J].纤维复合材料,2010,21(2):21-24.
    [23]孙承纬,陆启生,范正修,等.激光辐照效应[M].北京:国防工业出版社.2002.
    [24]易法军,梁军,孟松鹤,等.防热复合材料的烧蚀机理与模型研究[J].固体火箭技术,2000,23(3).
    [25]王安龄,桂业伟,耿湘人,贺立新.飞船返回舱气动热及烧蚀防热的不确定性初步研究[J].工程热物理学报,2005,26(5).
    [26] C.H. Bamford, J. Crank, D.H. Malan. The combustion of wood [J]. Part1,Cambridge Phil. Soc. Proc.,1946(42):166.
    [27] T.R. Munson, R.J. Spindler. Transient thermal behavior of decomposingmaterials-Part1: General theory and application to convective heating. AvcoCorporation RAD-TR-61-10,1961.
    [28] G.A. Pering, P.V. Farrell, G.S. Springer. Degradation of tensile and properties ofcomposites exposed to fire or high temperature[J]. Journal of CompositeMaterials,1980.
    [29] C.A. Griffes, R.A. Masumura, C.I. Chang. Thermal response of graphite epoxycomposite subjected to rapid heating[J]. Journal of Composite Materials,1981,15:427-439.
    [30] D.Pelletier J.Borggaard, and J.F.Hetu. A continuous sensitivity equation methodfor conduction and phase change Problems[R]. AIAA2000-0881,38th AIAAAerosp ace Sciences Meeting and Exhibit. January10~13,2000, Reno, NV.
    [31] J.B. Henderson, J.A. Wiebelt, M.R. Tant. A model for the thermal response ofpolymer composite materials with experimental verification [J], Journal ofcomposite materials,1985,19:579-585.
    [32] L. Bernard. Laser pyrolysis and ablation of composite materials. SPIE,1989,1064:45-53.
    [33] L. Torre, J.M. Kenny, A.M. Maffezzoli. Degradation behaviour of a compositematerial for thermal protection systems Part1: Experimental characterization [J].Journal of Materials Science,1998,33:3137-3143.
    [34] L. Torre, J.M. Kenny, A.M. Maffezzoli. Degradation behaviour of a compositematerial for thermal protection systems Part2: Process simulation [J]. Journal ofMaterials Science,199833:3145-3149.
    [35] V.V. Semak, T.F. Miller. Modeling of laser charring and material removal infiberglass materials [J]. Journal of Directed Energy,2006,2:5~21.
    [36]王以忠.激光对碳纤维增强树脂基复合材料的辐照效应[D].国防科技大学硕士研究生论文.2007.
    [37] Y.K. Chen, F.S. Milos. Two-dimensional implicit thermal response and ablationprogram for charring materials on hypersonic space vechicles [J]. AIAA2000-0206.
    [38]陈博,万红,穆景阳,白书欣.重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J].强激光与粒子束,2008,20(4):547-551.
    [39] J.B. Nelson. Determination of kinetic parameters of six ablation polymers bythermogravimetric analysis. NASA TN-3919,1967:13~19.
    [40] J.K. Chen, C.T. Sun, C.I. Chang. Failure analysis of a graphite/epoxy laminatesubjected to combined thermal and mechanical loading[J]. Journal of CompositeMaterials,1985(19):408-423.
    [41]郑亚,陈军,鞠玉涛,等.固体火箭发动机传热学[M].北京:北京航空航天大学出版社,2006.
    [42]王伟平,刘常龄,王春彦,等.切向气流对激光加热材料的影响[J].强激光与粒子束,1996,8(3):373-377.
    [43]徐文熙,徐文灿.粘性流体力学[M].北京:北京理工大学出版社,1989.
    [44]强希文.激光辐照高速飞行物体壳体温度的理论计算[J].激光杂志,2001,22(2):22-25.
    [45] L. Roberts. Mass transfer cooling near the stagnation point[R].1959, NASA TRR-8.
    [46] D.M. Curry. An analysis of a charring ablation thermal protection system[R].1965, NASA TN D-3150.
    [47] H. Schlichting. Boundary-Layer Theory, McGraw-Hill,6thEd.,1968: P647.
    [48] W.R. Gerald. Analytic modeling and experimental validation of intumescentbehavior of charring heatshield materials [R].2004, AMR-PS-04-05.
    [49] F.S. Milos, Y.K. Chen, T.H. Squire. Updated ablation and thermal responseprogram for spacecraft heatshield analysis[C].17thThermal and Fluids AnalysisWorkshop, University of Maryland,2006.
    [50]徐先锋,肖鹏,陈浩,等.碳纤维的氧化特性及抗氧化改性处理方法研究[C].北京:北京国际材料周暨中国材料研讨会,2006.
    [51]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社.1990:227-258.
    [52]魏玺.3DC/SiC复合材料氧化机理分析及氧化动力学模型[D].西北工业大学硕士论文,2004.
    [53] M.P. Bacos, J.L. Cochon, J.M. Dorvaux, et al. C/C composite oxidation model II.Oxidation experimental investigations [J]. Carbon,2000,38:93-103.
    [54]傅献彩,沈文霞,姚天扬.物理化学(下册).高等教育出版社,1990,第四版.
    [55]孙康.宏观反应动力学及其解析方法[M].冶金工业出版社,1998.
    [56] Y. Agari, T. Uno. Estimation on thermal conductivities of filled polymer[J].Journal of Applied Polymer Science,1986,32(5):705-708.
    [57] O.H. Plast. Thermal conductivity of composite materials[J]. Rubber Process,1981(1):9-12.
    [58]闫刚,巍伯荣,样海涛,等.聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006,3:49-52.
    [59] Y. Agari, A. Ueda, S. Nagai. Thermal conductivity of polymer composite[J].Journal of Applied Polymer Science,1993,4(9):1625-1634.
    [60] I.H. Tavman, H. Akinci. Transverse thermal conductivity of fiber reinforcedpolymer composites[J]. Heat Mass Transfer,2000,27(2):253-261.
    [61] H.W. Erik. Development and modeling of thermal conductive polymer/carboncomposites[D]. Chemical Engineering Department of Michigan TechnologicalUniversity,1999.
    [62] J.M. Goyheneche, A. Cosculluela. A multi-scale model for the effective thermalconductivity tensor of a stratifed composite material [J]. International Journal ofThermophysics,2005,26(1):191-202.
    [63] J.N. Zalameda. Measured through-the-thickness thermal diffusivity of carbonfiber reinforced composite materials [J]. Journal of Composite Technology&Research,1999,12(2):98-102.
    [64] Y. Agari, A. Ueda, S. Nagai. Thermal conductivity of composites in several typesof dispersion systems[J]. Journal of Applied Polymer Science,1994,42(6):1665-1669.
    [65] Y. Bai, T. Vallee, T. Keller. Modeling of thermo-physical properties for FRPcomposites under elevated and high temperature [J]. Composites Science andTechnology,2007,67:3098-3109.
    [66]曾竟成,罗青,唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,1998.
    [67]胡荣祖,高胜利,赵风起,等.热分析动力学[M].北京:科学出版社,2008.
    [68]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社.2005.
    [69] T. Belytschko, Y. Krongauz, D. Organ, et al. Meshless methods: an overview andrecent developments [J]. Computer Methods in Applied Mechanics andEngineering,1996,139:3-47.
    [70] S. Li, W.K. Liu. Meshfree and particle methods and their applications[J]. AppliedMechanics Review,2002,55:1-34.
    [71]刘天祥,刘更,朱均,等.无网格法的研究进展[J].机械工程学报.2002,38(5):7-12.
    [72]韩旭,杨刚,强洪夫[译].光滑粒子流体动力学——一种无网格粒子法[M].长沙:湖南大学出版社,2005.
    [73]美国第五届定向能年会会议文集(内部资料),2002.11.
    [74]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    [75]徐志宏,汤文辉,罗永.光滑粒子模拟方法在超高速碰撞现象中的应用[J].爆炸与冲击,2006,26(1):53-58.
    [76] P.M. Campbell. Some new algorithms for boundary values problems in smoothedparticle hydrodynamics. DNA Report,1989: DNA-88-286.
    [77] L.D. Libersky, A.G. Petscheck. Smoothed particle hydrodynamics with strengthof materials. Proceedings of the Next Free Lagrange Conference, Springer-Verlag,NY,1991,395:248-257.
    [78] P.W. Randles, L.D. Libersky. Smoothed particle hydrodynamics some recentimprovements and applications [J]. Computer Methods in Applied Mechanics andEngineering,1996,138:375-408.
    [79] J.K. Chen, J.E. Beraun, T.C. Carney. A corrective smoothed particle method forboundary value problems in heat conduction [J]. International Journal forNumerical Methods in Engineering,1999(46):231-252.
    [80] G.M. Zhang, R.C. Batra, Modified smoothed particle hydrodynamics method andits application to transient problems [J]. Computational Mechanics,2004(34):137-146.
    [81]王建明,周学军[译].无网格法理论及程序设计[M].济南:山东大学出版社,2007:63-68.
    [82] J.J. Monaghan. Particle methods for hydrodynamics [J]. Computer PhysicsReport,1985,(3):71-124.
    [83] J.J. Monaghan. An introduction to SPH [J]. Computer Physics Communications,1988,48:89-96.
    [84] J.J. Monaghan. Smoothed particle hydrodynamics [J]. Annual Review ofAstronomical and Astrophysics,1992,30:543-574.
    [85] L. Hernquist, N. Katz. TreeSPH-A unification of SPH with the hierarchical treemethod [J]. The Astrophysical Journal Supplement Series,1989,70:419-446.
    [86] R. P. Nelson, C. B. Papaloizou John. Variable smoothing lengths and energyconservation in smoothed particle hydrodynamics [J]. Monthly Notices of theRoyal Astronomical Society,1994,270:1-20.
    [87] W. Benz. Smoothed particle hydrodynamics: a review, NATO Workshop, Les;Arcs, France.
    [88]李楠.激光辐照下金属热力效应的SPH数值研究[D].国防科技大学硕士论文,2005.
    [89] C. Lia, G. Carraro. Parallel tree-SPH: a tool for galaxy formation [J].Astrophysics and Space Science,2001(276):1049-1056.
    [90] R.J. Thacker, H.M.P. Couchman. A parallel adaptive P3M code with hierarchicalparticle reordering [J]. Computer Physics Communications,2006(174):540-554.
    [91] A. Ferrari, M. Dumbser, E.F. Toro, et al. A new3D parallel SPH scheme for freesurface flows [J]. Computers&Fluids,2009(38):1203-1217.
    [92]陈国良.并行计算-结构算法编程[M].北京:高等教育出版社.2003.
    [93]张武生.薛巍.李建江,等.MPI并行程序设计实例教程[M].北京:清华大学出版社.2009.
    [94]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社.1999.
    [95]李国莱.合成树脂及玻璃钢[M].北京:化学工业出版社.1995.
    [96]丁宏博,张剑秋,蔡培.双酚A缩水甘油醚/乙二胺环氧树脂的热分解行为[J].高分子材料科学与工程,2011,27(2):83-85.
    [97]沈蓉影.碳纤维复合材料导热系数研究[J].材料工程,1993,3:4-5.
    [98]郭亚林,梁国正,丘哲明,等.碳纤维/有机硅改性环氧树脂复合材料性能研究[J].材料工程,2004(9):42-44.
    [99]张建可.树脂基碳纤维复合材料的热物理性能之——导热系数[J].中国空间科学技术,1987(3):55-60.
    [100]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006:111.
    [101] Y. Bai, T. Vallee, T. Keller. Modeling of thermal responses for FRP compositesunder elevated and high temperatures [J]. Composites Science and Technology,2008(68):47-56.
    [102]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2007:92.
    [103]姜作义,张和善.纤维-树脂复合材料技术与应用[M].北京:中国标准出版社,1990:49-50.
    [104]闻荻江.复合材料原理[M].武汉:武汉工业大学出版社,1998:141-143.
    [105]卫锦先.碳纤维导热性的测试研究[J].宇航学报,1988,1:49-55.
    [106]黄发荣,周燕.先进树脂基复合材料[M].北京:化学工业出版社,2007,199-205.
    [107] B. Mutnuri. Thermal conductivity characterization of composite materials[D].Master Thesis of West Virginia University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700