用户名: 密码: 验证码:
轻质材料层合板的非线性动力学理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天飞行器的发展,飞行器独特的力学环境和性能要求对结构设计提出了新的课题,为适应这些要求,诸多轻质材料应运而生。轻质材料的研制已成为高超声速飞行器设计与制造的关键技术之一。高新技术的快速发展使人们已不再满足于材料单纯的轻质化,而是寻找兼有轻质化和其他某种或几种优良性能的先进材料以适应不同的需求。点阵材料被视为最具发展前景的轻质材料,其应用可以减轻飞行器的重量,保证结构的强度和刚度,同时还能够提供储油、散热和电子屏蔽等多种功能。
     在飞行过程中,飞行器的薄壁构件会出现大振幅的非线性振动,这种振动会导致飞行器结构的严重损坏,从而导致灾难性的事故发生。当结构产生大幅振动时,仍然使用线性理论进行研究会对结果带来较大的误差,甚至得到完全错误的结果,所以使用非线性动力学方法研究点阵夹芯板等轻质材料结构的复杂振动特性,分析非线性振动现象的规律和机理具有十分重要的科学价值和实用价值。本文主要应用解析方法和数值方法研究了点阵夹芯板的非线性振动响应、非线性刚度特性等问题,分析了分叉和混沌运动,并且实验研究了碳纤维复合材料层合板的非线性动力学特性。论文的主要研究内容包括以下三个方面。
     (1)研究了横向载荷和面内载荷联合作用下四边简支3D-Kagome点阵夹芯板的非线性动力学特性。利用拟夹层板分析方法将点阵夹芯板等效为一块由三层层片组成的复合层合板。基于von Karman板理论和Reddy高阶剪切变形理论推导出点阵夹芯板的非线性振动微分方程,利用Galerkin法得到了系统的两自由度非线性动力学方程,应用多尺度法获得了1:1内共振、1:2内共振和1:3内共振三种共振情况下的平均方程。基于所获得的两自由度非线性动力学方程和四维平均方程,通过数值方法研究了不同共振情况下点阵夹芯板的非线性振动响应,得到了系统的分叉图、波形图和相图。研究结果表明,随着激励幅值的增加,点阵夹芯板的运动状态可以呈现出周期运动和混沌运动之间交替变化的规律。
     (2)根据平均方程获得了系统的频率响应函数,分析了1:2内共振情况下点阵夹芯板的非线性刚度特性和激励幅值作用下的振幅跳跃现象。研究结果表明,两阶模态之间的强耦合效应能够使模态原有的软(硬)刚度特性变为硬(软)刚度特性,并且能够影响振幅跳跃现象产生的频带。此外,还研究了其他两种共振情况下的幅-频响应特性。研究结果表明,三种共振情况下的幅-频响应差异较大。
     (3)利用实验方法研究了四边简支碳纤维复合材料层合板的非线性振动特性。分析了复合材料层合板在定频步进激励幅值情况下振动状态的变化,分析了不同激励幅值下非线性振动现象以及层合板在整个过程中振幅的变化规律。此外,研究了复合材料层合板非线性刚度特性变化的机理,采用定幅缓慢扫频的激励方式,通过寻找在上下扫频过程中跳跃现象发生的频率,判断层合板的非线性刚度特性。对实验数据进行了频谱分析,研究结果表明,亚谐共振的发生应该是刚度特性变化的主要原因。
With the development of aerospace structures, the higher standards are proposed inthe structural design because of the special mechanical environment and performancerequirement of aircraft. In order to meet these requirements, many kinds of light-weightmaterials emerge as the times require. The development of the light-weight material turnsinto a key technology of design and manufacturing for hypersonic aircraft. Thelight-weight materials with several functions are paid more attention and the truss materialis viewed as the most promising light-weight material. The weight of the aircraft can belightened and the strength and stiffness of structures can be maintained by using the trussmaterial on the aircraft. In the mean time, this material can be used to provide a lot offunctions such as oil storage, cooling and electronic shielding.
     The large amplitude nonlinear vibrations of plates often occur in the aircrafts,aero-turbines and aerospace vehicles, which will lead to the serious damages of structures.Because the linear theory is failed to analyze the large amplitude nonlinear vibrations ofstructures, research on nonlinear dynamic properties and the evolution law and mechanismof nonlinear phenomenon of light-weight sandwich plates have important scientific andpractical significance. In this paper, the nonlinear vibration response, hardening andsoftening types of nonlinearity of the truss core sandwich plate are investigated by usinganalytic and numerical methods. Furthermore, the nonlinear behaviors of the carbon fibersandwich plate are studied experimentally. The main contents of this dissertation are asfollows
     (1) The nonlinear dynamics of simply supported at four edges3D-Kagome sandwichplate subjected to transverse and in-plane excitations are investigated. The truss coresandwich plate can be viewed as a continuum laminate according to the equivalentsandwich plate method. Based on the von Karman theory, Reddy third-order sheardeformation plate theory and the Galerkin technique, the two-degree-of-freedom ordinarydifferential equation of motion for the truss core sandwich plate is derived. Then, theaveraged equations of the system are obtained under three resonance case of1:1internalresonance,1:2internal resonance and1:3internal resonance by using the method ofmultiple scales. Numerical simulations are performed to study the vibrations of the trusscore sandwich plate. The results of numerical simulations exhibit the existence of theperiod, multi-period and chaotic responses with the variation of the excitations, whichdemonstrate that those motions appear alternately.
     (2) The frequency-response functions are obtained based on the averaged equation inpolar form. The hardening and softening types of nonlinearity and the jump phenomenonwith the excitation amplitude are analyzed under1:2internal resonance. It is concluded that the hardening (softening) nonlinearity of certain mode can be change to softening(hardening) nonlinearity when the two modes are strongly coupled. It also can be seen thatthe frequency band at which the jump phenomenon with the excitation amplitude occurscan be changed by the coupling of two modes. In addition, the frequency-responsebehaviors are studied under1:1internal resonance and1:3internal resonance of the trusscore sandwich plate. It is seen that there are huge differences between thefrequence-response behaviors under the three resonance cases.
     (3) The nonlinear dynamic behaviors of a simply supported carbon compositelaminated plate are investigated experimentally. The variation of vibration state is studiedunder the excitation of stepped amplitudes and fixed frequency in first part, the evolutionlaw of periodic and chaotic motions for the plate is obtained. The mechanism of thehardening and softening types of nonlinearity is analyzed in the second part, theexperimental frequency-response curves are plotted and the type of nonlinearity isobtained based on the test data of low speed frequency sweeps. The amplitude spectrumsof the test plate demonstrate that the change of the nonlinear trends may be caused by thesub-harmonic resonance.
引文
1.方岱宁,张一慧,崔晓东,轻质点阵材料力学与多功能设计,北京,科学出版社,2009.
    2. A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. F. Ashby and H. N. G. Wadley, Thetopological design of multifunctional cellular metals, Progress in Materials Science46,p309-327,2001.
    3. T. Kim, H. P. Hodson and T. J. Lu, Fluid-flow and end wall heat-transfercharacteristics of an ultralight lattice-frame materia1.International Journal of Heatand Mass Transfer47, p1129-1140,2004.
    4. T. Kim, H. P. Hodson and T. J. Lu, Contribution of vortex structures and flowseparation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material, International Journal of Heat and Mass Transfer48,p4243-4264,2005.
    5. L. J. Lu, L. Valdevit and A. G. Evans, Active cooling by metallic sandwich structureswith periodic cores, Progress in Materials Science50, p789-815,2005.
    6.范华林,杨卫,轻质高强点阵材料及其力学性能研究进展,力学进展37,p99-112,2007.
    7. C. Chen, T. J. Lu and N. A. Fleck, Effect of imperfections on the yielding oftwo-dimensional foams, Journal of the Mechanics and Physics of Solids47,p2235-2272,1999.
    8. T. J. Lu and J. M. Ong, Characterization of aluminum alloy foams with closed andsend-open cells, Journal of Materials Science36, p2773-2786,2001.
    9. J. C. Wallach and L. J. Gibson, Mechanical behavior of a three-dimensional trussmaterial, International Journal of Solids and Structures38, p7181-7196,2001.
    10. J. C. Wallach and L. J. Gibson, Defect sensitivity of a3D truss material, ScriptaMaterialia45, p639-644,2001.
    11. V. S. Deshpande and N. A. Fleck, Effective properties of the octet-truss lattice material,Journal of Mechanics and Physics of Solids49, p1747-1769,2001.
    12. V. S. Deshpande and N. A. Fleck, Collapse of truss core sandwich beams in3-pointbending, International Journal of Solids and Structures38, p6275-6305,2001.
    13. S. Chiras and D. R. Mumm, The structural performance of near-optimized truss corepanels, International Journal of Solids and Structures39, p4093-4115,2002.
    14. S. Hyun and A. M. Karlsson, Simulated properties of Kagome and tehragonal trusscore panels, International Journal Solids and Structures40, p6989-6998,2003.
    15. J. Wang and A. G. Evans, On the performance of truss panels with Kagome cores,International Journal of Solids and Structures40, p6981-6988,2003.
    16. R. G. Hutchinson and N. Wicks, Kagome plate structures for actuation, InternationalJournal Solids and Structures40, p6969-6980,2003.
    17. H. N. G. Wadley, N. A. Fleck and A. G. Evans, Fabrication and structural performanceof periodic cellular metal sandwich structures, Composites Science and Technology63,p2331-2343,2003.
    18. Y. Sugimura, Mechanical response of single-layer tetrahedral trusses under shearloading, Mechanics of Materials36, p715-721,2004.
    19. D. D. Symons and R. G. Hutchinson, Actuation of the Kagome double-layer grid, part1: prediction of performance of the perfect structure, Journal of the Mechanics andPhysics of Solids53, p1855-1874,2005.
    20. D. D. Symons and J. Shieh, Actuation of the Kagome double-layer grid, part2: effectof imperfections on the measured and predicted actuation stiffness, Journal of theMechanics and Physics of Solids53, p1875-1891,2005.
    21.阎军,程耿东,周期点阵类桁架材料等效弹性性能预测及尺度效应,固体力学学报26,p421-428,2005.
    22.张卫红,吴琼,周期性金属桁架夹层板的力学性能研究进展,昆明理工大学学报30,p25-28,2005.
    23. Ji-Hyun Lim and Ki-Ju Kang, Mechanical behavior of sandwich panels withtetrahedral and Kagome truss cores fabricated from wires, International JournalSolids and Structures43, p5228-5246,2006.
    24.王展光,单建,金字塔栅格夹心夹层板动力响应分析,力学季刊27,p707-713,2006.
    25.杨亚政,杨嘉陵,轻质多孔材料研究进展,力学季刊28,p503-516,2007.
    26.郑华勇,吴林志,马力等,Kagome点阵夹芯板的抗冲击性能研究,工程力学8,p86-92,2007.
    27. Y. H. Lee and B. K. Lee, Wire-woven bulk Kagome truss cores, Acta Materialia55,p6084-6094,2007.
    28. D. T. Queheillalt and Y. Murty, Mechanical properties of an extruded pyramidal latticetruss sandwich structure, Scripta Materialia58, p76-79,2008.
    29. C. H. Lim and I. Jeon, A new type of sandwich panel with periodic cellular metalcores and its mechanical performances, Materials and design30, p3082-3039,2009.
    30.朱小芹,刘华,点阵材料夹芯简支梁在冲击载荷下的动力响应,复合材料学报26,p162-167,2009
    31.李拓,江俊,点阵多孔金属夹芯板振动特性分析及优化设计,动力学与控制学报7,p39-44,2009.
    32. B. Wang and L. Z. Wu, Mechanecal behavior of the sandwich structures with carbonfiber-reinforced pyramidal lattice truss core, Materials and Design31, p2659-2663,2010.
    33. M. Li, L. Z. Wu, L. Ma, B. Wang and Z. Guan, Mechanical Response ofAll-composite Pyramidal Lattice Truss Core Sandwich Structures, Journal ofMaterials Science&Technology27, p570-576,2011.
    34. J. Luo, L. Ma and L. Z. Wu, Free vibration analysis of all-composite tetrahedral latticetruss core sandwich beam, Acta Mechanica Solida Sinica32, p339-354,2011.
    35. J. S. Park, J. H. Joo, B. C. Lee and K. J. Kang, Mechanical behaviour of tube-wovenKagome truss cores under compression, International Journal of Mechanical Sciences53, p65-73,2011
    36. Y. G. Sun and L. Gao, Structural responses of all-composite improved-pyramidal trusssandwich cores, Materials&Design43, p50-58,2012.
    37. H. Liu, H. Liu, J. L. Yang and S. G. Zhao, Cantilever sandwich beams with pyramidaltruss cores subjected to tip impact, Science China12, p1-7,2012.
    38. J. Luo, L. Ma and L. Z. Wu, Free vibration analysis of simply supported sandwichbeams with lattice truss core, Materials Science and Engineering: B177, p1712-1716,2012.
    39.刘均,方形蜂窝夹层结构振动与冲击响应分析,华中科技大学博士学位论文,2007.
    40. K. M. Liew, L. Jiang, M. K. Lim and S. C. Low, Numerical evaluation of frequencyresponses for delaminated honeycomb structures, Computers and structures55,p191-203,1995.
    41. L. Jiang, K. M. Liew, M. K. Lim and S. C. Low, Vibratory behavior of delaminatedhoneycomb structures: A3-D finite element modeling, Computers and structures55,p773-788,1995.
    42. K. M. Liew and C. S. Lim, Analysis of dynamic responses of delaminated honeycombpanels, Composite structures39, p111-121,1997.
    43. W. S. Burton and A. K. Noor, Assessment of continuum models for sandwich panelhoneycomb cores, Computer methods in applied mechanics and engineering145,p341-360,1997.
    44. T. Saito, R. D. Parbery and S. Kawano, Parameter identification for aluminumhoneycomb sandwich panels based on orthotropic timoshenko beam theory, Journal ofsound and vibration208, p271-287,1997.
    45.徐胜今,宋宇,王本利,马兴瑞,正交异性蜂窝夹层板的动力学分析,复合材料学报15,p74-80,1998.
    46. X. F. Xu and P. Z. Qiao, Homogenized elastic properties of honeycomb sandwich withskin effect, International journal of solids and structures39, p2153-2188,2002.
    47. E. Nilsson and A. C. Nilsson, Prediction and measurement of some dynamicproperties of sandwich structures with honeycomb and foam cores, Journal of soundand vibration251, p409-430,2002.
    48. M. Ruzzene, Vibration and sound radiation of sandwich beam with honeycomb trusscore, Journal of sound and vibration277, p741-763,2004.
    49.陈昌亚,宋汉文,王德禹,陶明德,卫星结构铝蜂窝板非线性振动试验与参数辨识研究,振动与冲击23, p8-11,2004
    50. A. Chen and J. F. Davalos, A solution including skin effect for stiffness and stress fieldof sandwich honeycomb core, International journal of solids and structures42,p2711-2739,2005.
    51. Y. Frostig, O. T. Thomsen and I. Sheinman, On the non-linear high-order theory ofunidirectional sandwich panels with a transversely flexible core, International Journalof Solids and Structures42, p1443-1463,2005.
    52. S. D. Yu and W. L. Cleghorn, Free flexural vibration analysis of symmetrichoneycomb panels, Journal of Sound and Vibration284, p189-204,2005.
    53. H. Sekine, H. Shirahata and M. Matsuda, Vibration characteristics of compositesandwich plates and layup optimization of their laminated FRP composite faces,Advanced Composite Materials14, p181-197,2005.
    54. I. Cielecka and J. Jedrysiak, A non-asymptotic model of dynamics of honeycomblattice-type plates, Journal of sound and vibration296, p130-149,2006.
    55. Z. Li and M. J. Crocker, Effects of thickness and delamination on the damping inhoneycomb-foam sandwich beams, Journal of sound and vibration294, p473-485,2006.
    56.刘人怀,夹层板壳非线性理论分析,暨南大学出版社,2007.
    57.黄须强,吕朝阳,蔡明晖,李永强,四边简支条件下对称蜂窝夹层板的弯曲振动分析,东北大学学报28, p1616-1619,2007.
    58.孙佳,张伟,蜂窝夹层板的非线性动力学研究,动力学与控制学报6,p150-155,2008.
    59. Y. J. Luo, S. L. Xie and X. N. Zhang, The actuated performance of multi-layerpiezoelectric actuator in active vibration control of honeycomb sandwich panel,Journal of Sound and Vibration317, p496-513,2008.
    60. Y. Q. Li and Z. Q. Jing, Free flexural vibration analysis of symmetric rectangularhoneycomb panels with SCSC edge supports, Composite Structures83, p154-158,2008.
    61. Y. Q. Li and D. W. Zhu, Free flexural vibration analysis of symmetric rectangularhoneycomb panels using the improved Reddy’s third plate theory, CompositeStructures88, p33-39,2009.
    62.刘长亮,横向和面内载荷联合作用下蜂窝夹层板的非线性振动与混沌动力学,北京工业大学硕士论文,2010.
    63. J. Liu, Y. S. Chen and R. F. Li, A semi-analytical method for bending,buckling, andfree vibration analyses of sandwich panels with square-honeycomb cores,International Journal of Structural Stability and Dynamics10, p127-151,2010.
    64. Y. Q. Li and F. Li, Geometrically nonlinear free vibrations of the symmetricrectangular honeycomb sandwich panels with simply supported boundaries,Composite Structures92, p1110-1119,2010.
    65. V. N. Burlayenko and T. Sadowski, Influence of skin/core debonding on free vibrationbehavior of foam and honeycomb cored sandwich plates, International Journal ofNon-Linear Mechanics45, p959-968,2010.
    66. R. S. Sharma and V. P. Raghupathy, Influence of core density, core thickness, and rigidinserts on dynamic characteristics of sandwich panels with polyurethane foam as core,Journal of Reinforced Plastics and Composites29, p3226-3236,2010.
    67. V. N. Burlayenko and T. Sadiwski, Dynamic behaviour of sandwich plates containingsingle/multiple debonding, Computational Materials Science50, p1263-1268,2011.
    68. Jin-Yih Kao, Chun-Sheng Chen and Wei-Ren Chen, Parametric vibration response offoam-filled sandwich plates under periodic loads, Mechanics of Composite Materials48, p525-538,2012.
    69. J. H. Zhang and W. Zhang, Multi-pulse chaotic dynamics of non-autonomousnonlinear system for a honeycomb sandwich plate, Acta Mechanica223, p1047-1066,2012.
    70. J. N. Reddy, Mechanics of laminated composite plates and shells, CRC Press,2004.
    71. D. Hui, Soft-spring nonlinear vibrations of antisymmetrically laminated rectangularplates, International Journal of Mechanics Science27, p397-408,1985.
    72. C. C. Lin and L. W. Chen, Large-amplitude vibration of an initially imperfectmoderately thick plate, Journal of Sound and Vibration135, p213-224,1989.
    73. A. Bhimaraddi, Large amplitude vibrations of imperfect antisymmetric angle-plylaminated plates, Journal of Solid Structures162, p457-470,1993.
    74. Y. S. Shih and P. T. Blotter, Non-linear vibration analysis of arbitrarily laminated thinrectangular plates on the elastic foundation, Journal of Sound and Vibration167,p433-459,1993.
    75. H. Ohnabe, Non-linear vibration of heated orthotropic sandwich plates and shallowshells, International Journal of Non-Linear Mechanics30, p501-508,1995.
    76. A. Abe. Y. Kobayashi and G. Yamada, Two-mode response of simply supportedrectangular laminated plates, International Journal of Non-Linear Mechanics33,p675-690,1998.
    77. A. Abe and Y. Kobayashi, Three-mode response of simply supported rectangularlaminated plates, International Journal Series-Mechanical Systems Machine Elementsand Manufacturing41, p51-59,1998.
    78. A. A. Khdeir and J. N. Reddy, Dynamic response of antisymmetric angle-plylaminated plates subjected to arbitrary loading, Journal of Sound and Vibration126,p437-445,1988.
    79. P. Ribeiro and M. Petyt, Geometrical non-linear, steady state, forced, periodicvibration of Plates, part I: model and convergence studies, Journal of Sound andVibration226, p955-983,1999.
    80. W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate,Journal of Sound and Vibration239, p1013-1036,2001.
    81. W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externallyexcited thin plate, Nonlinear Dynamics24, p245-268,2001.
    82. P. Yu, W. Zhang and Q. S. Bi, Vibration analysis on a thin plate with the aid ofcomputation of normal forms, International journal of non-linear mechanics36,p597-627,2001.
    83. C. S. Chen, W. S. Cheng, R. D. Chien and J. L. Dong, Large amplitude vibration of aninitially stressed cross ply laminated plates, Applied Acoustics63, p939-956,2002.
    84. B. Harras and R. Benamar and R. G. White, Geometrically non-linear free vibration offully clamped composite laminated rectangular composite plates, Journal of Soundand Vibration251, p579-619,2002.
    85. J. Yang, S. Kitipornchai and K. M. Liew, Large amplitude vibration ofthermo-electro-mechanically stressed FGM laminated plates, Computer Methods inApplied Mechanics and Engineering192, p3861-3885,2003.
    86. A. Y. T. Leung, J. Niu, C. W. Lim and K. Song, A new unconstrained third-order platetheory for Navier solutions of symmetrically laminated plates, Computers andstructures81, p2539-2548,2003.
    87. J. Yang and S. Kitipomchai, Large amplitude vibration behavior of stressed FGMlaminated plates, Computer Methods in Applied Mechanics and Engineering19,p285-298,2004.
    88. M. Ye, J. Lu, Q. Ding and W. Zhang, Nonlinear dynamics of a parametrically excitedrectangular symmetric cross-ply laminated composite plate, Acta Mechanica Sinica37,p64-71,2004.
    89. S. Kitipornchai, J. Yang and K. M. Liew, Semi-analytical solution for nonlinearvibration of laminated FGM plates with geometric imperfections, InternationalJournal of Solids and Structures41, p2235-2257,2004.
    90. X. L. Huang, H. S. Shen and J. J. Zheng, Nonlinear vibration and dynamic response ofshear deformable laminated plates in hygrothermal environments, Composites Scienceand Technology64, p1419-1435,2004.
    91. Yen-Liang Yeh, The effect of thermo-mechanical coupling for a simply supportedorthotropic rectangular plate on non-linear dynamics, Thin-Walled Structures43,p1277-1295,2005.
    92. M. Ye, J. Lu, W. Zhang and Q. Ding, Local and global nonlinear dynamics of aparametrically excited rectangular symmetric cross-ply laminated composite plate,Chaos, Solitons and Fractals26, p195-213,2005.
    93. M. Ye, Y. H. Sun, W. Zhang, X. P. Zhan and Q. Ding, Nonlinear oscillations andchaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thinplate under parametric excitation, Journal of Sound and Vibration287, p723-758,2005.
    94. W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaosof a symmetric cross-ply laminated thin plate under parametric excitation,International Journal of Bifurcation and Chaos16, p325-347,2006.
    95. M. Soula, R. Nasri, A. Ghazel and Y. Chevalier, The effects of kinematic modelapproximations on natural frequencies and modal damping of laminated compositeplates, Journal of sound and vibration297, p315-328,2006.
    96. K. M. Liew, Multi-pulse chaotic motion for a non-autonomous buckled plate by usingthe extended Melnikov method, Proceedings of the ASME2007InternationalMechanical Engineering Conferences and Exposition, p11-15,2007.
    97. M. H. Yao and W. Zhang, Multi-pulse Shilnikov orbits and chaotic dynamics of aparametrically and externally excited thin plate, International Journal of Bifurcationsand Chaos17, p1-25,2007.
    98. Y. X. Hao, W. Zhang, J. Yang and L. H. Chen, Periodic and chaotic motions of asimply supported FGM plate with two-degree-of-freedom, Advanced MaterialsResearch47, p1137-1140,2008.
    99. Y. X. Hao, L. H. Chen, W. Zhang, J. G. Lei, Nonlinear oscillations, bifurcations andchaos of functionally graded materials plate, Journal of sound and vibration312,p862-892,2008.
    100. J. H. Zhang, W. Zhang, M. H. Yao and X. Y. Guo, Multi-pulse Shilnikov chaoticdynamics for a non-autonomous buckled thin plate under parametric excitation,International Journal of Nonlinear Sciences and Numerical Simulation9, p381-394,2008.
    101. N. Singh, A. Lal and R. Kumar, Nonlinear bending response of laminated compositeplates on nonlinear elastic foundation with uncertain system properties, EngineeringStructures30, p1101-1112,2008.
    102. T. Park, S. Y. Lee, J. W. Seo and G. Z. Voyiadjis, Structural dynamic behavior of skewsandwich plates with laminated composite faces, Composites: Part B39, p316-326,2008.
    103. W. Zhang and Z. G. Yao, Bifurcations and chaos of composite lami-nated piezolelctricrectangular plate with one-to-two internal resonance, Science in China Series E:Technological Sciences52, p731-742,2009.
    104. S. K. Lai, C. W. Lim, Y. Xiang and W. Zhang, On asymptotic analysis for largeamplitude nonlinear free vibration of simply supported laminated plates, ASMEJournal of Vibration and Acoustics131,051010-1,2009.
    105.郭翔鹰,张伟,复合材料层合板的混沌运动分析,振动与冲击28,p139-144,2009.
    106. J. Yang, Y. X. Hao, W. Zhang and S. Kitipornchai, Nonlinear dynamic response of afunctionally graded plate with a through-width surface crack, Nonlinear Dynamics59,p207-219,2010.
    107. X. Y. Guo, W. Zhang and M. H. Yao, Nonlinear dynamics of angle-ply compositelaminated thin plate with third-order shear deformation, Science China TechnologicalSciences53, p612-622,2010.
    108. Y. X. Hao, W. Zhang and X. L. Ji, Nonlinear dynamic response of functionally gradedrectangular plates under different internal resonances, Mathematical Problems inEngineering738648,2010.
    109. M. H. Yao, W. Zhang and Z. G. Yao, Multi-pulse orbits dynamics of compositelaminated piezoelectric rectangular plate, Science China Technological Sciences54,p2064-2079,2011.
    110. F. Alijani, F. Bakhtiari-Nejad and M. Amabili, Nonlinrar vibrations of FGMrectangular plates in thermal environments, Nonlinear Dynamics66, p251-270,2011.
    111. F. Alijani, M. Amabili, K. Karagiozis and F. Bakhtiari-Nejad, Nonlinear vibrations offunctionally graded doubly curved shallow shells, Journal of Sound and Vibration330,p1432-1454,2011.
    112. M. Amabili, K. Karazis and K. Khorshidi, Nonlinear vibrations of rectangularlaminated composite plates with different boundary conditions, International Journalof Structural Stability and Dynamics11, p673-695,2011.
    113. S. Pradyumna and A. Gupta, Dynamic stability of laminated composite plates withpiezoelectric layers subjected to periodic in-plane load, International Journal ofStructural Stability and Dynamics11, p297-311,2011
    114. A. K. Upadhyay, R. Pandey and K. K. Shukla, Nonlinear dynamic response oflaminated composite plates subjected to pulse loading, Communications in NonlinearScience and Numerical Simulation16, p4530-4544,2011.
    115. M. Sayed and A. A. Mousa, Second-order approximation of angle-ply compositelaminated thin plate under combined excitations, Communications in NonlinearScience and Numerical Simulation17, p5201-5216,2012.
    116. Z. G. Song and F. M. Li. Active aeroelastic flutter analysis and vibration control ofsupersonic composite laminated plate. Composite Structures94, p702-713,2012.
    117. F. C. Moon and P. J. Holmes, A magneto-elastic strange attractor, Journal of Soundand Vibration65, p275-296,1979.
    118. W. Y. Teseng and J. Dugundji, Nonlinear vibration of a beam under harmonicexcitation, ASME Journal of Applied Mechanics37, p467-476,1971.
    119. L. Maestrello, A. Frendi and D. E. Brown, Nonlinear vibration and radiation from apanel with transition to chaos, AIAA Journal30, p2631-2638,1992.
    120. C. L. Zaretzky, Da Silva M R M Crespo, Experimental investigation of non-linearmodal coupling in the response of cantilever beams, Journal of Sound and Vibration174, p145-167,1994.
    121. T. A. Nayfeh, A. H. Nayfeh and D. T. Mook, A theoretical and experimentalinvestigation of a three-degree-of-freedom structure, Nonlinear Dynamics6, p353-374,1994.
    122. J. P. Cusumano and F. C. Moon, Chaotic non-planar vibrations of the thin elastica, PartⅠ: experiment observation of planar instability, Journal of Sound and Vibration179,p185-208,1995.
    123.季进臣,陈予恕,参激屈曲梁的倍周期分叉和混沌运动的实验研究,实验力学12,p248-259,1997.
    124.陈予恕,季进臣,非线性振动系统动力学行为的实验研究,力学进展26,p473-481,1996.
    125. H. Nayfeh, Reduced-order models of weakly nonlinear spatially continuous systems,Nonlinear Dynamics16, p105-125,1998.
    126. R. W. Krauss and A. H. Nayfeh, Experimental nonlinear identification of a singlemode of a transversely excited beam, Nonlinear Dynamics18, p69-87,1999.
    127. K. Yasuda and K. Kamiya, Experimental identification technique of nonlinear beamsin time domain, Nonlinear Dynamics18, p185-202,1999.
    128. J. C. Roberts, Experimental, numerical and analytical results for bending and bucklingof rectangular orthotropic plates, Composite Structures43, p289-299,1999.
    129.金栋平,胡海岩,两柔性梁碰撞振动类型的实验研究,实验力学14,p129-135,1999.
    130. G. J. Turvey and N. Mulcahy, Experimental and computed natural frequencies ofsquare pultruded GRP plates:Effects of anisotropy, hole size ratio and edge supportconditions, Composite Structures50, p391-403,2000.
    131.李银山,圆板振子超谐分岔和混沌运动的实验研究,实验力学16,p347-357,2001.
    132.袁尚平,张惠侨,孙东,简支矩形屈曲薄板超谐振动性能研究,上海交通大学学报31,p48-51,1997.
    133.袁尚平,薄板3倍超谐振动的分析与试验,上海交通大学学报35,p955-960,2001.
    134. K. Woznica, Experiments and numerical simulations on thin metallic plates subjectedto an explosion, Journal of Engineering Materials and Techmology123, p203-209,2001.
    135. N. J. Kessissoglou, An analytical and experimental investigation on active control ofthe flexural wave transmission in a simply supported ribbed plate, Journal of soundand vibration240, p73-85,2001.
    136. Thomas, Asymmetric non-linear forced vibrations of free-edge circular plates-part II:experiments, Journal of Sound and Vibration265, p1075-1101,2003.
    137. G. K. Schleyer, Pulse pressure loading of clamped mild steel plates, InternationalJournal of Impact Engineering28, p223-247,2003.
    138. S. A. Emam and A. H. Nayfeh, On the nonlinear dynamics of a buckled beamsubjected to a primary-resonance excitation, Nonlinear Dynamics35, p1-17,2004.
    139. M. Amabili, Nonlinear vibrations of rectangular plates with different boundaryconditions: theory and experiments, Computers and Structures82, p2587-2605,2004.
    140. C. C. Ma and H. Y. Lin, Experimental measurements on transverse vibrationcharacteristics of piezoceramic rectangular plates by optical methods, Journal ofSound and Vibration286, p587-600,2005.
    141. R. A. Chaudhuri, K. Balaraman and V. X. Kunukkasseril, A combined theoretical andexperimental investigation on free vibration of thin symmetrically laminatedanisotropic plates, Composite Structures67, p85-97,2005.
    142.曹东兴,机械柔性结构的非线性振动、分叉和混沌动力学研究,北京工业大学博士论文,2007.
    143. P. Singhatanadgid, An experimental investigation into the use of scaling laws forpredicting vibration responses of rectangular thin plates, Journal of Sound andVibration209, p482-496,2007.
    144. N. V. Smetankina, Dynamic response of an elliptic plate to impact loading: theory andexperiment, International Journal of Impact Engineering34, p264-276,2007.
    145. S. N. Mahmoodi and N. Jalili, An experimental investigation of nonlinear vibrationand frequency response analysis of cantilever viscoelastic beams, Journal of Soundand Vibration311, p1409-1419,2008.
    146.何运成,柔性梁和板结构非线性振动实验研究,北京工业大学硕士论文,2009.
    147. B. Manzanares-Martinez, J. Flores, L.Gutierrez, R. A. Mendez-Sanchez, G. Monsivais,A. Morales and F. Ramos-Mendieta, Flexural vibrations of a rectangular plate for thelower normal modes, Journal of Sound and Vibration329, p5105-5115,2010.
    148. N. H. Nayfeh and D. T. Mook, Nonlinear oscillations, New York: Wiley,1979.
    149. A. Abe, Y. Kobayashi and G. Yamada, Nonlinear dynamic behaviors of clampedlaminated shallow shells with one-to-one internal resonance, Journal of Sound andVibration304, p957-968,2007.
    150. W. Zhang, X. Y. Guo and S. K. Lai, Research on periodic and chaotic oscillations ofcomposite laminated plates with one-to-one internal resonance, International Journalof Nonlinear Sciences and Numerical Simulation10, p1567-1583,2009.
    151. A. Abe, Validity and accuracy of solutions for nonlinear vibration analyses ofsuspended cables with one-to-one internal resonance, Nonlinear Analysis: Real WorldApplications11, p2594-2602,2010.
    152. S. B. Li, W. Zhang and Y. X. Hao. Multi-pulse chaotic dynamics of a functionallygraded material rectangular plate with one-to-one internal resonance, InternationalJournal of Nonlinear Sciences and Numerical Simulation11, p351-362,2010.
    153. M. Eftekhari, S. Ziaei-rad and M. Mahzoon, Vibration suppression of asymmetricallycantilever composite beam using internal resonance under chordwise base excitation,International Journal of Non-Linear Mechanics48, p86-100,2013.
    154. T. S. Parker and L. O. Chua, Practical numerical algorithms for chaotic systems, NewYork: Springer-Verlag,1989.
    155. A. Karimin and M. Belhaq, Dynamic near three-to-one internal resonance incomposite stiffened panels, Mechanics Research Communications38, p214-219,2011.
    156. J. L. Huang, R. K. L. Su, W. H. Li and S. H. Chen, Stability and bifurcation of anaxially moving beam tuned to three-to-one internal resonances, Journal of Sound andVibration330, p471-4852011.
    157. M. Sayed and M. Kamel,1:2and1:3internal resonance active absorber for non-linearvibrating system, Applied Mathematical Modelling36, p310-332,2012.
    158. S. A. Emam and A. H. Nayfeh, Non-linear response of buckled beams to1:1and3:1internal resonances, International Journal of Non-Linear Mechanics52, p12-25,2013.
    159. M. Amabili, Theory and experiments for large-amplitude vibrations of rectangularplates with geometric imperfections, Journal of Sound and Vibration291, p539-565,2006.
    160. M. Amabili, Theory and experiments for large-amplitude vibrations of circularcylindrical panels with geometric imperfections, Journal of Sound and Vibration298,p43-72,2006.
    161. K. Nagai, Experiments and analysis on chaotic vibrations of a shallow cylindricalshell-panel detailed experimental results and analytical results are presented onchaotic vibrations of a shallow cylindrical shellpanel subjected to gravity and periodicexcitation, Journal of Sound and Vibration305, p492-520,2007.
    162. L. Kurpa, Nonlinear vibrations of shallow shells with complex boundary: R-functionsmethod and experiments, Journal of Sound and Vibration306, p580-600,2007.
    163. A. F. Arrieta, S. A. Neild and D. J. Wagg, Nonlinear dynamic response and modelingof a bi-stable composite plate for applications to adaptive structures, NonlinearDynamics58, p259-272,2009.
    164. S. A. Nayfeh and A. H. Nayfeh, Energy transfer from high-to low-frequency modes ina flexible structure via modulation, Journal of Vibration and Acoustics116, p203-207,1994.
    165. A. H. Nayfeh and C. M. Chin, Nonlinear interactions in a parametrically excitedsystem with widely spaced frequencies, Nonlinear Dynamics7, p195-216,1995.
    166. X. Y. Guo, W. Zhang, M. H. Zhao and Y. C. He, A new kind of energy transfer fromhigh-frequency mode to low-frequency mode in a composite laminated plate,submitted to Acta Mechanica,2012.
    167. J. E. Chen, W. Zhang, X. Y. Guo and M. Sun, Theoretical and experimentalinvestigation on nonlinear response of composite laminated plate, NonlinearDynamics,2013, DOI10.1007/s11071-013-0896-6.
    168.陈予恕,非线性振动,天津:天津科学技术出版社,1983.
    169.刘延柱,陈立群,非线性振动,北京:高等教育出版社,2001.
    170.张义民,机械振动,北京:清华大学出版社,2007.
    171. L. N. Virgin. Introduction to experimental nonlinear dynamics: a case study inmechanical vibration, Cambridge. U.K., New York: Cambridge University Press,2000.
    172. S. Wiggins, Global Bifurcations and Chaos, Spring-Verlag: New York.1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700