用户名: 密码: 验证码:
盾构隧道混凝土管片构件抗火性能试验及模拟分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾会对隧道产生严重的损坏,结构的抗火性能是盾构隧道火灾安全工程的一个重要组成部分。本文采用试验研究与数值模拟相结合的方法,从材料、构件、结构三个层次研究了盾构隧道混凝土管片构件的抗火性能,取得了研究成果如下:
     (1)对盾构隧道管片混凝土进行了抗火性能的试验研究,得到了高温下(后)混凝土和钢筋力学性能变化规律,获得了掺加聚丙烯纤维后抗渗性能随温度变化的规律。
     (2)对盾构隧道混凝土管片构件在荷载和温度耦合作用下的抗火性能进行了试验研究,研究了高温下构件的力学行为,获得了内部温度场分布情况和挠度变化,进行了损伤构件的静载试验,得到了不同受火温度后构件剩余承载力的规律。
     (3)建立管片构件有限元模型,对其进行与试验工况相同温度的热力耦合数值模拟。将数值模拟结果与试验结果进行对比,验证数值模拟结果的准确性,为进一步理论研究构件高温后承载力提供基础数据。
     (4)基于盾构管片构件试验结果和理论分析,对盾构隧道管片结构在火灾下(后)温度及力学行为的行为进行了数值模拟研究,得到了温度、荷载水平对衬砌管片的内力影响规律,分析了管片衬砌温度场变化规律及变形特征,建立了管片衬砌结构火灾损伤分析模型,得到了不同工况下截面的极限承载力。
     (5)在试验研究、理论分析和数值模拟的基础上,提出了南京长江盾构隧道的防火措施,运用于实际工程设计及施工,取得了良好的效益。
     取得的试验研究盾构隧道管片混凝土防火性能关键技术参数,模拟分析火灾在隧道内的高温分布、灾变行为特征等研究成果,为制定我国盾构隧道管片混凝土抗火设计关键技术参数,提供科学验依据,对国内类似水下隧道工程的实际应用也有很大的实际价值和指导意义。
Fire would cause serious damage to the tunnel lining structure, for fire resistance performance of tunnel structure, it is an important concern to protect tunnel structure from fire in tunnel fire safety engineering. Experimental research and numerical simulation analysis are applied to study the fire resistance performance of concrete segment component of shield tunnel at three levels i.e. material, structural element and structural system. The main researches are as following:
     (1) Though the experimental research on fire resistance performance of concrete block, laws of mechanical characteristics of concrete during and after high temperature are analysised, effect of temperature on impermeability of concrete before and after high temperature is obtained.
     (2) Though the experimental research on fire resistance performance of concrete segment component of shield tunnel under coupling of load and temperature, the mechanical behavior under fire is studied and the laws of temperature field distribution and deflection change are summarized. Through the static loading test, the failure mode and residual bearing capacity of damaged member are studied.
     (3) Analysis on coupled thermal-mechanical simulation of concrete segment component of shield tunnel by established finite element model. Verify the accuracy of simulation results by compare the simulation results and test results, provide the basic data for the further theoretical studies of residual bearing capacity of concrete segment component structures after fire.
     (4) On the basis of test research and theoretical analysis of concrete segment component, by using finite element analysis, temperature field distribution and mechanical characteristics of shield tunnel structure during and after fire are carried out, the temperature field distribution and deformation features after fire are obtained, ultimate bearing capacity of different fire scenarios are analysised.
     (5) On the basis of test research, theoretical analysis and numerical simulation, fire protection measures in segment structure of Nanjing Yangtze River Tunnel are proposed.
     The obtained key characteristics of fire resistance, temperature distribution and mechanical characteristics can provide not only direct guidance for the fire resistant design of concrete segment component of shield tunnel structures, but also important practical and guilding significance for similar engineering.
引文
[1]Shipp M,Spearpoint M. Measurements of the Severity of Fires Involving Private Motor Vehicles [J].Fire and Materials,1995,19:143-151.
    [2]何世家.隧道火灾和隧道防火涂料[J].消防技术与产品信息,2002(5):41-44.
    [3]Haack A. Fire Protection in Traffic Tunnels-Initial Findings from Large-Scale Tests [J]. Tunnelling and Underground Space Technology, 1992,7(4):363-375.
    [4]Vauquelin O, Megret O. Smoke Extraction Experiments in Case of Fire in a Tunnel [J].Fire Safety Journal,2002,37:525-533.
    [5]Kim M B, Choi J S, Han Y S,et al. The Status of Road Tunnel Fire safety in Korea [J]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam, 2003:223-226.
    [6]Lamont D R, Bettis R. Smoke Build-Up Resulting from Hydraulic Oil Fires in a 5.6m2 Tunnel [J]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:193-198.
    [7]Takekuni K, Shimoda A, Yokota M. The Characteristics of Fires in Large-Scale Tunnels on Fire Experiments inside the Shimizu No.3 Tunnel on the New Tomei Expressway [J]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:179-184.
    [8]El-Arabi I A, Duddeck H, Ahrens H. Structural Analysis for Tunnels Exposed to Fire Temperatures [J]. Tunnelling And Underground Space Technology, 1992,7(1):19-24.
    [9]闫治国,杨其新.秦岭特长公路隧道火灾温度场分布试验研究[J].地下空间,2003,23(2):191-195.
    [10]曾巧玲,赵成刚,梅忐荣.隧道火灾温度场数值模拟和试验研究[J].铁道学报,1997,19(3):92-98.
    [11]涂文轩.铁路隧道火灾的试验研究[J].消防技术与产品,1997,(10):32-36.
    [12]柴永模.隧道内发生火灾时的温度初探[J].消防技术与产品信息,2002,(3):16-23.
    [13]张祉道.公路隧道的火灾事故通风[J].现代隧道技术,2003,40(1):34-43.
    [14]Both C, Haar P W, Wolsink G M. Evaluation of Passive Fire Protection Measures for Concrete Tunnel Linings. TNO Report,2003b.
    [15]Olst D V, Bosch R V D. Behaviour of Electrical Cables During Fire In Tunnels [J]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam, 2003:991-992.
    [16]Richter E. Propagation and Development of Temperature from Tests with Railway and Road Vehicles-Comparison between Test Data and Temperature Time Curves of Regulations [J]. Proceedings of the International Conference on Fire in Tunnels. Borhs,1994.
    [17]PIARC. Fire and Smoke Control in Road Tunnels [R].05.05.B. Paris,1999.
    [18]Lonnermark A, lngasonH, Gas Temperatures in Heavy Goods Vehicle Fires in Tunnels [J]. Fire Safety Journal,2005,40:506-527.
    [19]Haack A. Fire Protection in Traffic Tunnels—Initial Findings from Large-Sclae Tests [J]. Tunnelling and Underground Space Technology, 1992,7(4):363-375.
    [20]Haack A. Fire Protection in Traffic Tunnels:General Aspects and Results of the EUREKA Project [J]. Tunnelling and Underground Space Technology,1998,13(4):377-381.
    [21]ITA. Guidelines for Structural Fire Resistance for Road Tunnels [R]. WG 6 Report,2005.
    [22]高伟,译.英吉利海峡隧道穿梭列车火灾试验[J].消防技术与产品信息,1994,(4):39-41.
    [23]彭伟,霍然,胡隆华,等,杨瑞新.隧道内纵向风速对火源上方烟气温度影响的试验[J].中国科学技术大学学报,2006,36(10):1063-1068.
    [24]胡隆华,霍然,王浩波,等.公路隧道内火灾烟气温度及层化高度分布特征试验[J].中国公路学报,2006,19(6):79-82.
    [25]彭伟,霍然,胡隆华,等.隧道火灾的全尺寸试验研究[J].火灾科学,2006,15(4):212-218.
    [26]Yan Z G, Yang Q X, Zhu H H. Large-scaled Fire Testing for Long-sized Road Tunnel [J]. Tunnelling and Underground Space Technology,2006b,21:282.
    [27]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101.
    [28]闫治国,杨其新,朱合华.火灾时隧道内烟流流动状态试验研究[J].土木工程学报,2006,39(4):94-98.
    [29]帅卫红,倪天晓,周湘川,等.实体隧道火灾温度分布试验研究[J].消防科学与技术,2012,31(1):8-12.
    [30]彭锦志,徐志胜,倪天晓,等.公路隧道集中排烟系统流速分布规律数值模拟研究[J].防灾减灾工程学报,2011,31(4):415-422.
    [31]赵红莉,徐志胜,彭锦志,等.纵向排烟与集中排烟下烟气控制效果的对比研究[J].安全与环境学报,2012,12(1):196-201.
    [32]易亮,杨洋,徐志胜,等.纵向通风公路隧道火灾拱顶烟气最高温度试验研究[J].燃烧科学与技术,2011,17(2):109-114.,2011,17(2):109-114.
    [33]梁平,兰馨,龙新峰.公路隧道火灾的模型试验与数值模拟分析[J].中国西部科技,2008,7(33):1-3.
    [34]Bari S, Naser J. Simulation of Smoke from a Burning Vehicle and Pollution Levels Caused by Traffic Jam in a Road Tunnel [J]. Tunnelling and Underground Space Technology,2005,20:281-290.
    [35]Woodbum P J, Britter R E. CFD Simulations of A Tunnel Fire-Part Ⅰ [J] Fire Safety Journal,1996a,26:35-62.
    [36]Woodbum P J, Britter R E. CFD Simulations of A Tunnel Fire-Part Ⅱ [J] Fire Safety Journal,1996b,26:63-90.
    [37]Modic J. Fire Simulation in Road Tunnels [J]. Tunnelling And Underground Space Technology,2003,18(3):525-530.
    [38]Alan B, Richard C, Paul J.隧道内火灾大小和火灾蔓延模拟研究[J].消防科学与技术,2007,2:125-131.
    [39]王彦富,蒋军成,龚延风,等.公路隧道拱顶附近烟气最高温度的理论预测与试验研究[J].公路,2008,4:212-216.
    [40]Harmathy T. Z., Alto L W. Thermal Properties of Concrete Subject to Elevated Temperature[R]. Concrete for Nuclear Reactors, ACI SP34, Detroit, 1972.376-406.
    [41]Harada T. Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperature [R]. Concrete for Nuclear Reactors, ACI SP34, Detroit,1972.377-406.
    [42]Sullivan P J E,Khouty G A, Grainger B N. Apparatus for measuring the transient thermal strain behavior of unsealed concrete under constant load for temperature up to 700℃ [J]. Magazine of concrete Research,1983,35(125): 229-236.
    [43]Khouty G A, Grainger B N, Sullivan P J E. Strain of concrete during first heating to 600℃ under load [J]. Magazine of concrete Research, 1985,37(133):195-215.
    [44]Cabriel A, Khoury, Brain N, et al. Sullivan Strain of concrete during first cooling from 600℃ under load [J]. Magazine of concrete Research, 1986,38(134):3-12.
    [45]Khouty G A, Majorana C E, Pesavento F, et al. Modelling of heated concrete. [J].Magazine of Concrete Research,2002,54(2):77-101.
    [46]Abrams M S. Behavior of Inorganic Materials in Fire [M]. ASTM STB 685, American Society for Testing and Materials,1979.
    [47]Schneider, Ulrich. Modeling of Concrete Behavior at High Temperature. Design of Structure against Fire [M], Elsevier Applied Science Publishers, London,1986.
    [48]Lea F, Stradine R. Me Resistance to Fire of Concrete and Reinforced Concrete [J]. Engineering, Vol.114, No.2959, Sep.1922.
    [49]Diederichs U, Schneider U. Bond Strength at High Temperature [J] Magazine of Concrete Research,1981(6):75-84.
    [50]Moeley P D, Royles R. Response of the Bond in Reinforced Concrete to High Temperature [J]. Magazine of Concrete Research, No.123, Sep.1983.
    [51]Chih-Huang Chiang, Cho-Liang Tsai. Time-temperature analysis of bond strength of a rebar after fire exposure [J]. Cement and concrete research, 2003,33:1651-1654.
    [52]Luccioni B M, Figueroa MI, Danesi R F. Thermo-mechanic Model for Concrete Exposed to Elevated Temperatures [J]. Engineering Structures, 2003,25:729-742.
    [53]E1-Hawary M M, Ragab A M, EI-Azim A A. Elibiaris Effect of Fire on Shear Behaviour of RC Beams [J]. Computer and Structure,1997,65(2):281-287.
    [54]Kang S W, Hong S G. Behavior of Concrete Members at Elevated Temperatures Considering Inelastic Deformation [J]. Fire Technology, 2003,39:9-22.
    [55]Thienel K C, Rostay. Transient Creep of Concrete Under Biaxial Stress and High Temperature [J]. Cement and Concrete Research,1996,26(9):1409-1422.
    [56]Ichikawa Y, England G L. Prediction of moisture migration and pore pressure build-up in concrete at high temporature [J]. Nuclear Engineering and design.2004,228:245-250.
    [57]Kodur V. K. R,Sultan M. A. Effect of Temperature on Thermal Properties of High-Strength Concrete [J]. Journal of Materials in Civil Engineering,2003, 46(2):2577-2581.
    [58]Scott T. S,Ronald G. B,Anthony E. F. Fire Endurance of High-Strength Concrete Slabs [R]. ACI Mater J,1988,85(2):102-108.
    [59]Carlos C,Durrani A. J. Effect of Transient High Temperature on High-Strength Concrete [M]. ACI Mater J,1990,87(1):47-53.
    [60]Phan T,Carino N. J. Review of Mechanical Properties of HSC at Elevated Temperature [J]. Journal of Materials in Civil Engineering,1998,10(1): 58-64.
    [61]Shi X. D,Tan T. H,Tan K H, et al. Concrete Constitutive Relationships Under Different Stress-Temperature Paths [J]. Journal of Structural Engineering, 2002,128(12):1511-1518.
    [62]Shcrefler B. A,Khoury G. A,Gawin D, et al. Thermo-Hydro-Mechanical Modeling of High Performance Concrete at High Temperatures [J] Engineering ComputationsJ2002,19(7):787.
    [63]Thienel K C,Rostay F S. Transient Creep of Concrete Under Biaxial Stress and High Temperature [J]. Cement and Concrete Research,1996, 26(9):1409-1422
    [64]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [65]徐或.火灾高温后钢筋力学性能的试验研究[D].长沙:长沙铁道学院,2000.5.
    [66]朱玛.火灾高温后混凝土力学性能的试验研究[D].长沙:长沙铁道学院,2000.5.
    [67]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [68]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究.1990,(1):37-43.
    [69]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报.2002,35(6):44-47.
    [70]陆洲导.钢筋混凝十梁对火灾反应的分析[J].同济大学工程结构研究所,1989.
    [71]李卫,过镇海.高温中混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [72]张大长,吕志涛.火灾对RC、PC构件材料性能的影响[J].南京建筑工程学院学报,1998,(2):25-31.
    [73]郭鹏,张洪源,董毓利,等.高温加热循环下混凝土强度变化的机理[J].青岛建筑工程学院学报,2000,21(4):80-86.
    [74]吴波,马忠诚.高温后高强混凝土力学性能试验研究[J].土木工程学报,2000,33(2):8-12.
    [75]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析[J].建筑材料学报,2003,6(2):182-189.
    [76]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋本构关系[J].四川建筑科学研究,1990,17(1):37-43.
    [77]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,18(3):287-297.
    [78]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J].土木工程学报,2000,33(6):6-16.
    [79]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力-应变关系[J].工程力学,1997,14(2):28-35.
    [80]吴波,马忠诚.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42-49.
    [81]胡倍雷,宋玉普.高温后混凝土在复杂应力状态下的变形和强度特性的试验研究[J].四川建筑科学研究,1994,(1):47-50.
    [82]徐志胜,段雄伟,吴德兴,等.含水量对隧道衬砌混凝土耐火性能影响试验研究[J].铁道科学与工程学报,2010,7(5):30-31.
    [83]李固华,郑盛娥,杨彦克.高温后砾石混凝土性能实验研究[J].混凝土与水泥制品,1991(6):16-17.
    [84]范进,吕志涛.高温后预应力钢丝性能的试验研究[J].工业建筑,2002,32(9):59-64.
    [85]张自坚,陈荣荣,张建文.砼经火烧后的抗压强度及本构关系[J].浙江 丝绸工学院学报,1994(2):52-57.
    [86]彭立敏.隧道火灾后衬砌残余强度的试验研究与分析[J].隧道及地下工程,1997,18(3):57-64.
    [87]彭立敏,刘小兵,杜思村.不同燃烧温度量级对隧道衬砌强度损伤程度的试验研究[J].铁道学报,1997(5):88-95.
    [88]谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报(自然科学版),1998(5):87-92.
    [89]沈蓉,凤凌云,戎凯.高温(火灾)后钢筋力学性能的评估[J].四川建筑科学研究,1991(2):5-9.
    [90]周新刚,吴江龙.高温后混凝土与钢筋粘结性能的试验研究[J].工业建筑,1995(5):37-40.
    [91]张凤维.钢筋与混凝土高温粘结性能研究[D].长沙:中南大学,2008.5.
    [92]Harmathy T Z. Effect of moisture on the fire endurance of building elements. [R] Philadelphia:ASTM publication STP,1965,74-95.
    [93]Khoury G A. Effect of Fire on Concrete and Concrete Structures [J]. Progress of Structure Engineering Material,2000,(2):429-447.
    [94]Anderberg Y. Spalling phenomena of HPC and OC. Proceedings of International Workshop on Fire Performance of Hight Concrete (NIST Special Publication 919) [R]. Gait hersburg:NIST,1997,69-73.
    [95]Poon C S, Azhar S, Anson M, et al. Comparison of the strength and durability performance of normal and high-strength pozzolanic concretes at elevated temperatures [J]. Cement and Concrete Research,2001,31 (9):1291-1300.
    [96]Poon C S, Azhar S, Anson M, et al. Performance of metakaolin concrete at elevated temperatures [J]. Cement & Concrete Composites,2003,25 (1):83-89.
    [97]Hertz K D. Limits of spalling of fire-exposed concrete [J]. Fire Safety Journal,2003,38 (2):103-116.
    [98]Hertz K D. Danish Investigations on Silica Fume concrete at elevated temperatures [J]. ACI Materials Journal,1992,89(4):345-347.
    [99]Faris A. Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire [J]. Fire Materials,2002,26:127-130.
    [100]Both C, Wolsink G M, Breunese A J. Spalling of Concrete Tunnel Linings in Fire [J]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003c:227-231.
    [101]Phan T, Carino N J. Review of Mechanical Properties of HSC at Elevated Temperature [J]. Jounral of Materials In Civil Engineering,1998, 10(1):58-64.
    [102]Sanjayan G, Stocks L J. Spalling of High Strength Silica Fume Concrete in Fire [J].ACI Materials Journal,1993,90 (2):170-173.
    [103]Kalifa P, Menneteau F D, Quenard D. Spalling and Pore Pressuer in HPC at High Temperatures [J]. Cement and Concerte Research,2000,30: 1915-1927.
    [104]Noumowe A N, Clastres P, Debicki G, Costaz J L. Transient Heating Efect on High Strength Concrete [J]. Nuclear Engineering and Design, 1996,166:99-108.
    [105]Hertz K D. Limits of Spalling of Fier-exposed Concrete [J]. Fier Safety, 2003,38(2):103-116.
    [106]Yabuki M, Abo El-Wafa Ahmed M, Ayano T, Sakata K. Fire Resistance of Polypropylene Fiber Reinforce Concrete [J]. Jounral of the Society of Materials Science,2002,51 (10):1123-1128.
    [107]Suhaendi S L. Residual Strength and Permeabilny of Hybrid Fiber Reinforced High Strength Concrete Exposed to High Temperature [D] Sapporo, Japan:Hokkaido University,2004.
    [108]Savov K, Lackner R, Mang H A. Stability Assessment of Shallow Tunnels Subjected to Fire Load [J]. Fire Safety Journal,2005,40:745-763
    [109]段雄伟.公路隧道火灾衬砌混凝土试件损伤试验研究[D].长沙:中南大学,2010.5.
    [110]朋改非,陈延年,AnsonM.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2(3):193-198.
    [111]王正友,廖明成,丁水军,等.混杂纤维高性能混凝土高温性能试验[J].焦作工学院学报(自然科学版),2002,21(5):338-340.
    [112]鞠丽艳,张雄.聚丙烯纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2004,7(1):25-28.
    [113]肖建庄,王平.掺聚丙烯纤维高性能混凝土高温后的抗压性能[J].建筑材料学报,2004,7(3):281-285.
    [114]董香军.纤维高性能混凝土高温、明火力学与爆裂性能研究[D].大连: 大连理工大学,2007.2.
    [115]Witteveen J, Twilt L, Bylaard F S K. The Stability of Braced and Unbraced Frames at Elevated Tempetatures [M]. Second International Colloquium on Column Strength,Liege,1977.
    [116]Ellingood B, James R. Reliability of RC Beam Subjected to Fire[J]. Journal of Structural Engineering,1977,103(ST9):1047-1059.
    [117]Gustaferro A H, Abrams M, Sand Salse E A B. Fire Resistance of Prestressed Concrete Beams [R]. Study C:Structural Behavior During Fire Tests. Research and Development Department Bulletion, No. RD009.01 B, PC A, Skokie,1971.29.
    [118]Ellingwood B and Shaver J R. Efects of Fire on Reinforced Concrete members [J]. Journal of structural Engineering, ASCE 106(11),1980. 2151-2166.
    [119]Ellingwood B and Lin T D. Flexure and Shear Behavior of Concrete Beams During Fires [J]. Journal of structural Engineering, ASCE,V.117,No.2, MarApr,1991.440-458.
    [120]Gustaferco A H and Selvaggino S L. Fire Endurance of Simply Supported Prestcessed Concrete Slabs [J]. Journal, PCI, V 12, No.1, Feb,1967.37-52.
    [121]Huang Z, Burgess I W and Plank R J. Nonlinear Analysis of Reinforced Concrete Slabs Subjected to Fire [J]. ACI Structural Journal,1999, 96(1):127-135.
    [122]Allen L W and Hannathy TZ. Fire Endurance Selected Concrete Masonry Walls [J].ACI Journal, Proceeding, V69, No.9, Sept,1972.562-568.
    [123]Huang C L D,Gamal N A. Influence of slab thickness on response of concrete walls under fire [J].Numerical Heat Transfer,Part A.1997,19(1): 43-64.
    [124]Wilson E L, Nicked R E. Application of the finite element method to heat conduction analysis [J]. Journal Nuclear Engineering and Design, 1966,4(1):276-286.
    [125]Bathe K J. Finite element procedures in engineering analysis [M].1982.
    [126]Becker R. Structural behavior of simple steel structures with non-uniform longitudinal temperature distributions under fire conditions [J]. Fire Safety Journal,2002,37(5):495-515.
    [127]时旭东,过镇海.钢筋混凝土结构的温度场[J].工程力学,1996,13(1):35-43.
    [128]闵明保,李延和.建筑物火灾后诊断与处理[M].徐州:江苏科学技术出版社,1994:74-77.
    [129]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报,1997,37(6):87-90.
    [130]时旭东,过镇海.钢筋混凝土梁在不同荷载-温度途径下的性能[J].工程力学(增刊),1995,2:705-711.
    [131]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究.土木工程学报,1997,30(4):26-34.
    [132]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的力学性能研究[J].建筑结构学报,1997,18(4):13-22.
    [133]时旭东,过镇海.高温下钢筋混凝土框架受力性能试验研究[J].土木工程学报,2000,33(1):36-45.
    [134]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54.
    [135]姚亚雄,朱泊龙.钢筋混凝土框架结构火灾反应分析[J].同济大学学报,1997,25(3):255-261.
    [136]朱伯龙主编.土木工程防灾国家重点实验室论文集(1991-1992)[M]上海:同济大学出版社,1995.
    [137]刘静.火灾对钢筋混凝土简支梁性能影响的试验研究[D].长沙:中南大学,2003.5.
    [138]徐志良.钢筋混凝土梁在高温与应力共同作用下的试验研究[D].长沙:中南大学,2004.5.
    [139]张威振.足尺钢筋混凝土简支梁高温力学性能的研究[D].长沙:中南大学,2004.11.
    [140]李守雷.轴心受压足尺钢筋混凝土柱高温力学性能研究[D].长沙:中南大学,2005.5.
    [141]黄益良.钢筋混凝土拱形构件高温下力学性能研究[D].长沙:中南大学,2009.5.
    [142]张焱,徐志胜.火灾后碳纤维布约束混凝土棱柱体受力性能试验研究及分析[J].工程力学,2008,25(5):202-209.
    [143]张焱,徐志胜.CFRP加固火灾损伤后钢筋混凝土梁抗弯性能试验研究 [J].西安建筑科技大学学报,2008,40(1):40-45.
    [144]强健.地铁隧道衬砌结构火灾损伤与灾后评估方法研究[D].上海:同济大学,2007.3.
    [145]李强,郭军,夏铃.公路隧道衬砌火灾后力学行为分析[J].重庆交通大学学报(自然科学版),2010,29(5):693-696.
    [146]闫治国.隧道衬砌结构火灾高温力学行为及耐火方法研究[D].上海:同济大学,2007.2.
    [147]闫治国,朱合华,梁利.火灾高温下隧道衬砌管片力学性能试验[J].同济大学学报(自然科学版),2012,40(6):823-828.
    [148]闫治国,朱合华.火灾时隧道衬砌结构内温度场分布规律试验[J].同济大学学报(自然科学版),2012,40(2):167-172.
    [149]朱合华,沈奕,闫治国.火灾下大直径盾构隧道结构力学特性有限元分析[J].地下空间与工程学报,2012,8(增1):1609-1614.
    [150]常岐,闫治国,朱合华,等.火灾下隧道衬砌结构力学行为的热力耦合分析[J].地下空间与工程学报,2010,6(增1):1425-1428.
    [151]贺小强.火灾时沉管隧道的有限元分析[D].上海:上海大学,2006.2.
    [152]章伟.火灾下盾构隧道衬砌结构反应数值分析[J].中国高新技术企业,2010,(25):32-34.
    [153]韩向阳.南京长江隧道管片结构耐火性分析[J].铁道工程学报报,2011,(4):67-70.
    [154]汪洋.隧道火灾下衬砌结构安全性能分析[D].长沙:中南大学,2008.5.
    [155]廖仕超.隧道火灾下衬砌结构承载力研究[D].长沙:中南大学,2011.5.
    [156]赵志斌.火灾作用下长江隧道衬砌结构温度场和温度应力研究[D].武汉:武汉理工大学,2006.4.
    [157]张焱.特长公路隧道排烟道顶隔板结构抗火性能试验研究[D].长沙:中南大学,2010.5.
    [158]穆松.长江隧道管片混凝土高温特性研究[D].武汉:武汉理工大学,2007.5.
    [159]徐志胜,杨刚,吴德兴,等.特长公路隧道排烟道牛腿温度场研究[J].铁道科学与工程学报,2010,7(3):82-86.
    [160]陈正杰,狄永媚,杨志豪.隧道内排烟道植筋牛腿耐火试验研究[J]地下工程与隧道,2008,1:34-37.
    [161]Zeng Q. L,Zhao C. QGao F. P. Application of A Semi-analysis Element Method For Analyzing Transient Three-Dimensional Temperature Field in Tunnel After Fire[M].Proeeeding of the Fourth International Symposium on Structural Engineering For Young Expert. Beijing:1996.
    [162]彭立敏,刘小兵,韩玉华.隧道火灾后衬砌承载能力的可靠度评估方法[J].中国铁道科学,1998(4):89-95.
    [163]Park S. Y,Oh H. K,Shi Y. S, et al. A Case Study on the Fire Damage of the Underground Box Structures and its Repair Works [M].Proceeding of ITA World Tunnel Congress and 32nd ITA Assembly. Seoul:2006.
    [164]Bjegovic D, Stipanovic I, Carevic M. Fire Testing of Precast Tunnel Elements [M]. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:251-254.
    [165]Wetzig V, Streuli U. Fire and Temperature Protection at The Exhaust of The Gotthard-Base-Tunnel [M]. Proceedings of ITA World Tunnel Congress 2003.Amsterdam,2003.
    [166]柴永模.隧道内发生火灾时的温度分布规律初探[J].消防技术与产品信息,2002,(3):16-23.
    [167]陈立道,王锦,吴晓宇.道路隧道火灾预防与控制研究[J].地下空间,2003,23(1):72-74.
    [168]Commission of European Communities. Eurocode No.2, Design of Concrete Structures, Part 10:Structure Fire Design[S]. April,1990.
    [169]段文玺.建筑结构的火灾分析和处理(二)[J].工业建筑.1985,(8):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700