用户名: 密码: 验证码:
基于EGR技术的低排放重型柴油机燃烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境是社会发展的两大主题,节能与减排(包括CO2)是当今世界各国面临的两大共同目标。面对排放法规不断升级,开发环境友好、节能的现代车用柴油机给内燃机领域研究工作者和发动机生产企业不断提出难题与新挑战。
     本文对基于EGR技术路线的低排放重型柴油机燃烧技术进行了开发研究,深入研究了燃烧系统参数对柴油机燃烧、性能和排放的影响机理。在此基础上,研究了基于EGR技术满足国4排放法规的燃烧与排放控制策略,研究开发了满足欧6排放法规的商用重型柴油机,并对EGR系统废气循环引入方式和低十六烷值含氧燃料对柴油机燃烧、性能和排放的影响进行了研究,探寻进一步降低柴油机燃烧过程中碳烟生成和提高循环热效率的技术措施。
     进气增压系统优化研究表明,两级增压较单级增压能明显提升中、低速大负荷时EGR循环能力,改善NOx-燃油消耗率(BSFC)和NOx-碳烟(soot)的折衷(trade-off)关系,同时还使大负荷的排气温度控制在SCR转化效率较高的温度窗口。燃烧室结构优化设计和喷油器优化匹配的研究表明,通过适当降低燃烧室压缩比、优化设计燃烧室结构参数(缩口直径、凹坑深度)并采用带倒锥度喷孔喷油器,能有效改善油气混合历程,提高油气混合和燃烧速率,同时降低soot和BSFC,并将缸内最大燃烧压力降至合理水平。
     喷油控制策略的研究表明,在NOx排放控制在国4水平(3.5g/kW.h)附近时,soot较低,喷油控制策略对其影响较小。但随EGR率进一步增加,小负荷工况通过单次喷射、降低喷油压力和推迟喷油正时耦合控制可同时获得较低的NOx和soot排放,并有效降低最大压力升高率(MPRR);中低转速大负荷时,通过降低喷油压力和推迟喷油定时相结合,在实现等NOx排放水平下显著降低soot排放;高转速中高负荷适宜采用主喷+后喷的多次喷射并耦合高喷射压力的控制策略。
     基于EGR技术路线的不同升功率国4柴油机燃烧技术开发表明,柴油机增压方案和后处理方案的优化选择应根据排放控制目标和发动机的实际升功率而确定。国4的ESC法规测试结果表明,在升功率为29.8kW/L的功率段,两级增压耦合EGR在无后处理下使各项排放指标均满足国4限值要求,加权BSFC相对基于SCR技术的国4柴油机仅增加3%左右。对于低升功率柴油机,相对于单级增压,两级增压并没有明显的优势。
     基于该燃烧技术,通过喷油控制策略和后处理技术耦合,成功开发了满足欧6ESC稳态测试循环的商用重型柴油机。结果表明,采用串联的两级增压和中等强度EGR(低于40%),将NOx原始加权比排放控制在欧5水平,通过缸内燃烧优化,柴油机PM加权值和加权BSFC仍处于较好水平。在依次加装DOC、DPF和SCR后处理系统,通过缸内燃烧与后处理匹配技术,DPF的过滤效率达到90%,SCR转化效率达到85%,ESC稳态测试循环的各项排放指标均满足欧6限值要求,而尿素喷射总量降至原机(SCR机型)的1/4~1/5。
     相比高压EGR(HP-EGR),采用低压EGR(LP-EGR)能有效提高增压系统效率,使柴油机运行在更宽广的EGR率区域,显著降低低速大负荷的soot和BSFC。采用LP-EGR时,通过调节两级增压系统的高、低压涡轮间的废气能量比例能有效降低高转速时的BSFC。针对燃料特性对柴油机影响机理的研究发现,柴油机掺混2,5-二甲基呋喃(DMF)、正丁醇和汽油都能显著降低soot排放,燃料特性改变所导致的滞燃期延长和燃料氧的增加是降低soot的两个主要因素,并且发现着火延迟期延长对降低soot的作用大于燃料中原子氧的作用。石化柴油与低十六烷值含氧燃料混合并耦合中等强度EGR(低于40%),是在简化喷油控制策略和后处理系统条件下实现重型柴油机高效、清洁低温燃烧的有效技术途径。
Energy and environment are the two main themes of social development, andenergy saving and emission reduction are two common goals for all countries in thewhole world. With increasingly stringent emission regulations, it is necessary todevelop modern clean diesel engine with high thermal efficiency, which puts forwardnew challenges to internal combustion engine researchers and engine enterprises.
     In this paper, the combustion technology of a low-emissions heavy-duty (HD)engine with exhaust gas recirculation (EGR) technology, and the effects ofcombustion control parameters on diesel combustion, performance and emissionswere investigated. The combustion and emission control strategies based on EGRtechnology to meet China Stage IV were studied and a HD diesel engine meeting Euro6was successfully developed. In addition, the impacts of EGR introduction way andlow cetane number (CN) oxygenated fuels on diesel combustion, performance andemissions were investigated, the aim of which was to explore the efficiently technicalways to reduce soot and enhance thermal efficiency for diesel engine.
     The results of boost system optimization show that, compared to single-stageturbocharger, two-stage turbocharger (2TC) can obviously improve EGR recyclabilityand the trade-off of NOx-soot and NOx-BSFC at low speed and high load conditions,meanwhile, the exhaust temperature is much closer to the temperature region whereSCR has high conversion efficiency. The combustion chamber with reducedcompression ratio was designed and the optimization matching of injector wasperformed. The results show that, soot, BSFC and the maximum in-cylinder pressurecan be lowered by properly reducing compression ratio, optimizing structureparameters of combustion chamber (reentrant diameter and bowl depth, etc.) andusing Bosch injector with eight taper holes.
     The results of fuel injection control strategy show that, with increased EGR rate,NOx, soot and the maximum rate of pressure rise can be efficiently reducedsimultaneously at low loads by reducing injection pressure and postponing injectiontiming with single injection strategy. At low speed and high load conditions, soot andBSFC can also be improved by employing the same control strategy used at low loads.However, it is suitable to employ higher injection pressure and post injection toreduce soot and BSFC at high speed conditions.
     The experimental study on China Stage IV of diesel engine based on EGR technology was performed under different liter power conditions. The results showthat, the scheme of turbocharger and after-treatment should be optimally selectedaccording to emission control target and practical liter power of diesel engine. ESCcycle test results show that, all emissions can completely meet the limits of ChinaStage IV for the power section of29.8kW/L by using2TC without anyafter-treatment device, and the weighted BSFC is only higher3%compared with thatof the original engine. This means that2TC has the potential to further reduce dieselemissions and meet future more stringent emission regulations.
     Based on the combustion technology used above, a commercial diesel enginemeeting Euro6was developed successfully. ESC cycle test results of Euro6showthat, NOx weighted emissions can be reduced to the level of Euro5by using2TC andmedium EGR (<40%) with a low level of PM and a good engine performance. Allemissions can completely meet the limits of Euro6by the combined use of DOC,DPF and SCR. At the same time, the average conversion efficiencies of DPF and SCRare as high as90%and85%respectively, and the urea consumption is reduced toabout one fourth to one fifth of the original level through the optimal combinationcontrol of raw NOx emissions and urea/NOx equivalence ratio.
     Compared to HP-EGR, diesel engine can run over a wider region of EGR rate byusing LP-EGR, which can enhance the efficiency of turbocharging system, and reducesoot and BSFC greatly at low speed and high load conditions. When using LP-EGR,BSFC can be reduced efficiently at high speed by adjusting exhaust energy betweenhigh pressure turbine and low pressure turbine. The study on effects of fuel propertieson engine illustrates that, soot can be reduced dramatically via blending2,5-dimethylfuran (DMF), n-butanol and gasoline into diesel fuel. Extended ignitiondelay and fuel oxygen are two key factors to reduce soot emissions, and ignition delayhas greater effects on soot reduction compared to fuel oxygen. Overall, using low CNoxygenated fuel combined with medium EGR (<40%) is an efficient way for dieselengine to achieve clean diesel low-temperature combustion with high thermalefficiency under the condition of simplified injection strategy and after-treatmentsystem.
引文
[1]周龙保,刘巽俊,高宗英,内燃机学,北京:机械工业出版社,2005
    [2]苏万华,赵华,王建昕等,均质压燃低温燃烧发动机理论与技术,北京:科学出版社,2010
    [3]盛杨怿,我国石油供给需求现状及战略分析,经济前沿,2005,11(5):8-11
    [4]21世纪我国石油供给分析,中国石油学会石油炼制分会,2005
    [5]牛建英,战略矿产资源供应安全研究:[博士论文],北京;中国地质大学,2007
    [6]中国汽车工业信息: http://www.autoinfo.gov.cn/autoinfo_cn/index.htm
    [7]梁刚,2002年和2001年世界石油储量和产量,国际石油经济,2003,11(1):54-55
    [8]陈元千,我国未来石油产量和最终可采储量的预测,石油科技论坛,2003(1):26-31
    [9]中国内燃机工业协会组编,中国内燃机工业诞辰一百周年纪念文集,北京:机械工业出版社,2008
    [10]李俄收,吴社强,柴油机有害排放物及其抑制研究,中国农机化,2010(1):79-83
    [11] J. B. Heywood, Internal combustion engine fundamentals, New York:McGraw-Hill Book Company,1998
    [12] J. Warnatz, U. Maas&R. W. Dibble, Combustion: Physical&ChemicalFundamentals, Modelling&Simulation, Experiments, Pollutant Formation(4thed.), Berlin Heidelberg: Springer-Verlag,2006
    [13]机动车污染已成城市空气质量大患,中国环境报,2004.9.6
    [14]熊思浩,王群,朱镕基昨日宣布中国已经核准《京都议定书》,新华通讯社,1999
    [15]苏万华,中国汽车驱动技术的发展趋势,汽车安全与节能学报,2011(1):25-33
    [16] John E. Dec, A conceptual model of DI diesel combustion based on laser-sheetimaging, SAE Paper970873,1997
    [17] John E. Dec, Christoph Espey, Chemiluminescence imaging of auto ignition in aDI diesel engine, SAE Paper982685,1998
    [18] Patrick F. Flynn, Russell P. Durrett, JohnE. Dec, et al, Diesel combustion: Anintegrated view combining laser diagnostics, chemical kinetics, and empiricalvalidation, SAE Paper1999-01-0509,1999
    [19] Carsten Baumgarten, Mixture Formation in Internal Combustion Engine, NewYork: Springer-Verlag,2006
    [20] Dickey, D., Ryan, T., Matheaus, A., NOx Control in Heavy-Duty DieselEngines-What is the Limit?, SAE Paper980174,1998
    [21] Cherian A. Idicheria, Lyle M., Pickett.Effect of EGR on diesel premixed-burnequivalence ratio, Proceedings of the Combustion Institute,2007,31(2):2931-2938
    [22] Akihama K, Takatori Y, Inagaki K., Mechanism of the smokeless rich Dieselcombustion by reducing temperature, SAE Paper2001-01-0655,2001
    [23] Kitamura T, Ito T, Senda J, et al, Mechanism of smokeless diesel combust ionwith oxygenated fuels based on the dependence of the equivalence ratio andtemperature on soot particle formation, International Journal of Engine Research,2002,3(4):223-247
    [24] Kamimoto T, Bae M., High Combustion Temperature for the Reduction ofParticulate in Diesel Engines, SAE Paper880423,1988
    [25] Heywood J B., Internal combustion engine fundamentals, New York:McGraw-Hill Book Company,1998
    [26] Sylvain Mendez, Julian T. Kashdan, Gilles Bruneaux, et al, Formation ofUnburned Hydrocarbons in Low Temperature Diesel Combustion, SAE Paper2009-01-2729,2009
    [27] Gary D. Neely, Shizuo Sasaki, Yiqun Huang, et al, New Diesel Emission ControlStrategy to Meet US Tier2Emissions Regulations, SAE2005-01-1091,2005
    [28] Richard Opat, Youngchul Ra, Manuel A. Gonzalez, et al, Investigation of Mixingand Temperature Effects on HC/CO Emissions for Highly Diluted LowTemperature Combustion in a Light Duty Engine, SAE Paper2007-01-0193,2007
    [29]刘斌,物理化学因素对清洁高效柴油燃烧过程影响的试验研究:[博士学位论文],天津;天津大学,2007
    [30] Ryan T W, Callahan T J, Homogeneous Charge Compression Ignition of DieselFuel, SAE Paper961160,1996
    [31] Gray AW, Ryan T W, Homogeneous Charge Compression Ignition (HCCI) ofDiesel Fuel,SAE Paper971676,1997
    [32]阪田一郎,最新发动机技术,丰田汽车技术讲座,天津大学,2003
    [33] Hasegawa R, Yanagihara H, HCCI combustion in DI diesel engine, SAE Paper2003-01-0745,2003
    [34] Suyin Gan, Hoon Kiat Ng, Kar Mun Pang, Homogeneous Charge CompressionIgnition (HCCI) combustion: Implementation and effects on pollutants in directinjection diesel engines, Applied Energy,2011,88:1303-1317
    [35] Nishijima Y, Asaumi Y, Aoyagi Y, Premixed Lean Diesel Combustion (PREDIC)Using Impingement Spray System, SAE Paper2001-01-1892,2001
    [36] Su W H, Lin T J, Pei Y Q, A compound technology for HCCI combustion in aDI diesel engine based on the multi-pulse injection and the BUMP combustionchamber, SAE Paper2003-01-0741,2003
    [37] K Shuji, A Osamu, O Hiroshi, et al. New Combustion Concept for Ultra-Cleanand High-Efficiency Small DI Diesel Engines[C]. SAE Paper1999-01-0655,1999
    [38] Masahiko kondo, Shuji Kimura, Izubo Hirano, et al, Development of NoiseReduction Technologies for a Small Direct-Injection Diesel Engine, JSAEReview21(2000), pp327~333,2000
    [39] Shuji Kimura, An experimental analysis and future trend of Low-temperature andpremixed combustion for Ultra-Clean Diesel, SAE Homogeneous ChargeCompression Ignition system,2005
    [40] Derek Splitter, Rolf Reitz, Reed Hanson, High Efficiency, Low Emissions RCCICombustion by Use of a Fuel Additive, SAE Paper2010-01-2167,2010
    [41] Yang BB, Li SJ, Zheng ZQ, Yao MF, A Comparative Study on DifferentDual-Fuel Combustion Modes Fuelled with Gasoline and Diesel, SAE Paper2012-01-0694,2012
    [42] K Shuji, A Osamu, O Hiroshi, et al, New Combustion Concept for Ultra-Cleanand High-Efficiency Small DI Diesel Engines, SAE Paper1999-01-0655,1999
    [43] Xin He, Russell P.Durrett, Zongxuan Sun, Late Intake Valve Closing as anEmissions Control Strategy at Tier2Bin5Engine-Out NOx Level, SAE Paper2008-01-0637,2008
    [44] Usman Asad, Ming Zheng, Efficiency&Stability Improvements of Diesel LowTemperature Combustion through Tightened Intake Oxygen Control, SAE Paper2010-01-1118,2010
    [45] Huestis E, Erickson PA, Musculus M, In-Cylinder and Exhaust soot inLow-Temperature Combustion Using a Wide-Range of EGR in a Heavy-DutyDiesel Engine, SAE Paper2007-01-4017,2007
    [46]张全长,柴油机低温燃烧基础理论和燃烧控制策略的试验研究:[博士学位论文],天津;天津大学,2010
    [47] Yao MF, Zhang QC, Liu HF, et al, Diesel engine combustion control: medium orheavy EGR,SAE Paper2010-01-1125,2010
    [48] Han D, Ickes AM, Bohac SV, et al, Premixed low-temperature combustion ofblends of diesel and gasoline in a high speed compression ignition engine,ProcCombust Inst,2011,33:3039-3046
    [49]郑朝蕾,柴油机高效清洁燃烧方式基础理论研究:[博士学位论文],天津;天津大学,2008
    [50] Ladommatos N., Abdelhalim S., Zhao H., et al, The dilution, chemical andthermal effects of exhaust gas recirculation on diesel engine emissions-Part1:Effects of reducing inlet charge oxygen,SAE Paper961165,1996
    [51] Ladommatos N., Abdelhalim S., Zhao H., et al, The dilution,chemical andthermal effects of exhaust gas recirculation on diesel engine emissions-Part2:Effects of carbon dioxide,SAE Paper961167,1996
    [52] Ladommatos N., Abdelhalim S., Zhao H., et al, The dilution,chemical andthermal effects of exhaust gas recirculation on diesel engine emissions-Part3:Effects of water vapour,SAE Paper971659
    [53] Alain Maiboom, Xavier Tauzia, Jean-Fran ois Hétet, Experimental study ofvarious effects of exhaust gas recirculation (EGR) on combustion and emissionsof an automotive direct injection diesel engine,Energy,2008,33:22-34
    [54] Buchwald R., Lautrich G., Maiwald O., et al, Boost and EGR System for theHighly Premixed Diesel Combustion,SAE Paper2006-01-0204,2006
    [55] GD Neely, S Sasaki, Y Huang, et al, New diesel emission control strategy tomeet US tier2emissions regulations,SAE Paper2005-01-1091,2005
    [56] Giorgio Zamboni, Massimo Capobianco, Experimental study on the effects of HPand LP EGR in an automotive turbocharged diesel engine,Applied Energy,2012,94:117-128
    [57] Marc van Aken, Frank Willems, Appliance of high EGR rates with a short andlong route EGR system on a Heavy Duty diesel engine,SAE Paper2007-01-0906,2007
    [58]张然治,任继文,车用发动机增压技术现状及市场预测,车用发动机,1997,2:1-9
    [59]陆家祥,柴油机涡轮增压技术,北京:机械工业出版社,1999
    [60]张晋东,李洪武,车用柴油机涡轮增压技术的新发展,车用发动机,2002,1:1-4
    [61]郑尊清,采用EGR结合DOC实现柴油机低排放的研究:[博士学位论文],天津;天津大学,2009
    [62] Su W H, Lu Y Y, Yu W B, et al, High density-low temperature combustion indiesel engines based on technologies of variable boost pressure and intake valvetiming, SAE Paper2009-01-1911,2009
    [63] Franz X. Moser, Theodor Sams, Rolf Dreisbach, Lowest Engine-Out Emissionsas the Key to the Future of the Heavy-Duty Diesel Engine–New DevelopmentResults
    [64] Watson N., Banisoleiman K., Performance of the highly rated diesel engine witha variable geometry turbocharger, IMechE Conference on Turbocharging andTurbochargers, C121/86, London,1986
    [65] Hawley J.G., Wallace F.J, Cox A., et al, Variable geometry turbocharging forlower emissions and improved torque characteristics,Proceedings of theInstitution of Mechanical Engineers, Part D: Journal of Automobile Engineering,1999,213(2):145-159
    [66] Hawley J.G., Wallace F.W., Cox A., et al, Reduction of steady state NOx levelsfrom an automotive diesel engine using optimized VGT/EGR schedules, SAEPaper1999-01-0835,1999
    [67] Cheong J., Cho S., Kim C, Effect of variable geometry turbocharger on HSDIdiesel engine, SAE Paper2000-05-0124,2000
    [68] Filipi Z.S., Wang Y.S., Assanis D.N, Effect of variable geometry turbine (VGT)on diesel engine and vehicle system transient respons, SAE Paper2001-01-1247,2001
    [69] Zhu Y. X., Combustion development of the new international Sr6.0l V8dieselengine, SAE Paper2004-01-1404,2004
    [70] Wijetunge R.S., Hawley J. G., Vaughan N. D., Application of alternative EGRand VGT strategies to a diesel engine[C], SAE Paper2004-01-0899,2004
    [71] Wahlstr m J., Eriksson L., Nielsen L, Controller tuning based on transientselection and optimization for a diesel engine with EGR and VGT, SAE Paper2008-01-0985,2008
    [72]王天灵,李骏,吴君华等, EGR和VNT的匹配对增压柴油机排放的影响,吉林大学学报:工学版,2006,36(4):493-496
    [73]孙万臣,韩永强,刘忠长等,可变喷嘴涡轮增压器对车用柴油机瞬态性能的影响,汽车工程,2006,28(2):122-124
    [74]吴君华,黄震,王天灵,可变喷嘴增压器与增压柴油机的匹配试验研究,汽车工程,2005,27(1):40-43
    [75]郭林福, VGT电控增压系统的开发及其与柴油机优化匹配的研究:[博士学位论文],北京;北京理工大学,2003
    [76]杨策,马朝臣,沈宏继,大型柴油机可变几何涡轮增压器研制及试验研究,内燃机学报,2002,20(6):551-554
    [77] Pflüger F, Regulated two-stage turbocharging-3K-warner's new charging systemfor commercial diesel engines, The Sixth International Conference onTurbo-charging and Air Management Systems, London,1998
    [78] Christmann R, Schmalzl H, Schmitt F, et al, Regulated2-stage turbocharging forpassenger car and commercialvehicle engine, MTZ Worldwide Edition,2005,66(1):6-9
    [79] Byungchan Lee, Zoran Filipi, Dennis Assanis, et al, Simulation-basedAssessment of Various Dual-Stage Boosting Systems in Terms of Performanceand Fuel Economy Improvements, SAE Paper2009-01-1471,2009
    [80] J. R. Serrano, F. J. Arnau, V. Dolz, et al, Analysis of the capabilities of atwo-stage turbocharging system to fulfil the US2007anti-pollution directive forheavy duty diesel engines, International Journal of Automotive Technology,2008,9:277-288
    [81] Buchwald R., Lautrich G., Maiwald O., et al, Boost and EGR System for theHighly Premixed Diesel Combustion, SAE Paper2006-01-0204,2006
    [82] E. Mattarelli, C. A. Rinaldini, A. Mazza, et al, Development of a2-StageSupercharging System for a HSDI Diesel Engine, SAE paper2009-01-2757,2009
    [83]刘系暠,魏名山,马朝臣等,不同海拔下单级和二级增压柴油机的仿真,内燃机学报,2010,28(5):447-452
    [84]何义团,马朝臣,魏名山等,二级增压系统压气机性能试验研究,北京理大学学报,2007,27(6):496~500
    [85]刘博,邓康耀,崔毅等,基于调节能力的柴油机可调两级增压系统匹配方法,内燃机学报,2011,29(2):157-162
    [86]赵令猛,二级增压系统对重型柴油机性能和排放影响的试验研:[硕士学位论文],广西;广西大学,2010
    [87]徐家龙,柴油机电控喷油技术,北京:人民交通出版社,2004
    [88] Yamaguchi I., Nakahira T., Komori M., et al, An image analysis of high speedcombustion photographs for D.I. diesel engine with high pressure fuel injection,SAE Paper901577,1990
    [89] Pierpont D.A., Reitz R.D., Effects of injection pressure and nozzle geometry onD.I. diesel emissions and performance, SAE Paper950604,1995
    [90] Tsujimura T, Goto S, Study on Improvement of Combustion and Effect of FuelProperty in Advanced Diesel Engine, SAE Paper2010-01-1117,2010
    [91] Mamoru Oki, Shuichi Matsumoto, Yoshio Toyoshima,180MPa Piezo CommonRail System, SAE Paper2006-01-0274v001,2006
    [92] Han Z., Uludogan A., Hampson G.J., et al, Mechanism of soot and NOx emissionreduction using Multiple-Injection in a diesel engine, SAE Paper960633,1996
    [93] Hountalas D.T., Kouremenos D.A., Pariotis E.G., et al, Investigation concerningthe effect of post-fuel injection on the performance and pollutants of heavy-dutydiesel engines using a multi-zone combustion model, THIESEL2002Conference on Thermo and Fluid Dynamics Processes in Diesel Engines, Spain,2002
    [94] Benajes J., Molina S.A., Garcia J.M, Influence of pre-and post-injection on theperformance and pollutant emissions in a HD diesel engine, SAE Paper2001-01-0526,2001
    [95] Molina S., Payri F., Benajes J., et al, Influence of the post-Injection pattern onperformance, soot and NOx emissions in a HD diesel engine, SAE Paper2002-01-0502,2002
    [96] Badami M., illo F., Mallamo F., Influence of multiple injection strategies onemissions, combustion noise and bsfc of a DI common-rail diesel engine, SAEPaper2002-01-0503,2002
    [97]田径,刘忠长,韩永强等,基于EGR耦合多段喷射技术实现超低排放,内燃机学报,2010:28(3):228-234
    [98] Yao MF, Wang H, Zheng, ZQ, Yue Y, Experimental study of n-butanol additiveand multi-injection on HD diesel engine performance and emissions, Fuel,2010,89:2191–2201
    [99] Su W H, Pei Y Q, Zhang X Y, Mixing-enhanced Combustion in theCircumstances of Diluted Combustion in Direct-injection Diesel Engines, SAEPaper2008-01-0009,2008
    [100] K Lehtoranta, P Matilainen, TJJ Kinnunen, et al, Diesel Particle EmissionReduction by a Particle Oxidation Catalyst, SAE Paper2009-01-2705,2009
    [101]董红义,帅石金,李儒龙等,柴油机排气后处理技术最新进展与发展趋势,小型内燃机与摩托车,2007,36(1):87-92
    [102]覃军,降低柴油机NOx排放的SCR系统控制策略研究:[博士学位论文],武汉;武汉理工大学,2007
    [103]马国胜,谭祖健, SCR在国内的应用与展望,内燃机,2008(1):1-2
    [104]陶建忠,利用选择性催化还原反应(SCR)降低车用柴油机氮氧化物的技术研究:[博士学位论文],山东;山东大学,2008
    [105] Hyung Jun Kim, Su Han Park, Hyun Kyu Suh, et al, Atomization andEvaporation Characteristics of Biodiesel and Dimethyl Ether Compared toDiesel Fuel in a High-Pressure Injection System, Energy&Fuels,2009,23,1734-1742
    [106]尧命发,刘海峰,均质压燃与低温燃烧的燃烧技术研究进展与展望,汽车工程学报,2012,2(2):79-91
    [107] Johnson TV, Diesel emission control in review, SAE Paper2009-01-0121,2009
    [108] Mayer K P, W uensche P, D reisbach R, Heavy-Duty Diesel Engines Developedfor Euro-III to Euro-IV, SAE Paper2005-26-019,2005
    [109] Kazutoshi Mori, Shigeru Matsuo, Shinji Nakayama, Shiroh hiino.Technologyfor Environmental Harmonization and Future of the Diesel Engine[C]. SAE2009-01-0318,2009
    [110] Kaminage Takashi, Kusaka Jin, Improvement of Combustion and Exhaust GasEmission in a Passenger Car Diesel Engine by Modification of CombustionChamber Design, SAE paper2006-01-3436,2006
    [111] Zhu Y, Zhao H, Computational Study of the Effects of the Throat Diameter ofPiston Bowl for the Performance and Emission of a High-SpeedDirect-Injection Diesel Engine, Proc. Automobile Engineering,2006,(220):111-124
    [112]焦运景,张惠明,田远等,直喷柴油机燃烧室几何形状对排放影响的多维数值模拟研究,内燃机工程,2007,(4):11-15
    [113]林学东,王霆,重型车用柴油机低排放直喷燃烧系统参数优化,内燃机学报,2006,24(6):518-525
    [114]林学东,车用柴油机燃烧系统参数优化及其流动分析:[博士学位论文],吉林;吉林大学,2004
    [115] Potz D, Christ W, Dittus B, Diesel nozzle-the deter-mining interface betweeninjection system and combustion chamber,Thermo and Fluid-DynamicProcessesin Diesel Engines, SPAIN,2000:133-143
    [116]郑金保,缪雪龙,洪建海等,共轨系统小压力室喷油嘴喷雾特性,内燃机学报,2011,29(5):431-437
    [117] Bergstrand P, Persson F, F rsth M, et al, A study of the influence of nozzleorifice geometries on fuel evaporation using laser-induced exciplexfluorescence, SAE Paper2003-01-1836,2003
    [118] Kong J, Bae C, Effect of tapered nozzle hole on spray characteristics of highpressure diesel injection ICLASS2009[D].11th International AnnualConference on Liquid Atomization and Spray Systems, Colorado,2009
    [119] Schimid M, Leipertz A, Fettes C, Influence of nozzle hole geometry, railpressure and pre-injection on injection, vaporisation and combustion in asingle-cylinder transparent passenger car common rail engine, SAE Paper2002-01-2665,2002
    [120] Carsten Baumgarten, Mixture formation in internal combustion engines,German: Spinger-Verlag,2006
    [121] Lu XC, Han D, Huang Z, Fuel design and management for the control ofadvanced compression-ignition combustion modes,Prog Energy Combust Sci,2011,37:741-783
    [122] Han D, Ickes AM, Bohac SV, Huang Z, Assanis DN, Premixed low-temperaturecombustion of blends of diesel and gasoline in a high speed compressionignition engine, Proc Combust Inst,2011,33:3039-3046
    [123] Won WH, Heinz P, Tait N, Kalghatgi G, Some effects of gasoline and dieselmixtures on partially premixed combustion and comparison with the practicalfuels gasoline and diesel in a compression ignition engine, Proc Inst Mech Eng,2012
    [124] Jin C, Yao MF, Liu HF, Lee CF, Progress in the production and application ofn-butanol as a biofuel, Renew Sustain Energ Rev,2011,15:4080-4106
    [125] Liu HF, Lee CF, Huo M, Yao MF, Comparison of Ethanol and Butanol asAdditives in Soybean Biodiesel Using a Constant Volume CombustionChamber, Energy Fuels,2011,25:1837-1846
    [126] Miers SA, Carlson RW, McConnell SS, Ng HK, Wallner T, Drive CycleAnalysis of Butanol/Diesel Blends in a Light-Duty Vehicle, SAE Paper2008-01-2381,2008
    [127] R. Roman-Leshkov, C.J. Barrett, Z.Y. Liu, J.A., Dumesic Production ofdimethylfuran for liquid fuels from biomass-derived carbohydrates,Nature,2007,447:982-986
    [128] Zhao HB, Holladay JE, Brown H, Zhang ZC, Metal chlorides in ionic liquidsolvents convert sugars to5-hydroxymethylfurfural, Science,2007,316:1597-1600.
    [129] Mascal M, Nikitin EB, Direct, high-yield conversion of cellulose into biofuel,Angewandte Chemie Int Ed,2008,120:8042-8044
    [130] Zhong SH, Daniel R, Xu HM, et al, Combustion and Emissions of2,5-Dimethylfuran in a Direct-Injection Spark-Ignition Engine, Energy Fuels,2010,24:2891-2899
    [131] Daniel R, Tian G, Xu HM, et al, Effects of spark timing and load on a DISIengine fuelled with2,5-Dimethylfuran, Fuel,2011,90:449-458
    [132] Ryan T, Matheaus A, Fuel Requirements for HCCI Engine Operation, DieselEngine Emissions Reduction Conference25Aug (2002)
    [133] Kitano K, Nishiumi R, Tsukasaki Y, et al, Effects of fuel properties on premixedcharge compression ignition combustion in a direct injection diesel engine, SAEPaper2003-01-1815,2003
    [134] Butts RT, Foster D, Krieger R, et al, Investigation of the Effects of CetaneNumber, Volatility, and Total Aromatic Content on Highly-Dilute LowTemperature Diesel Combustion, SAE Paper2010-01-0337,2010
    [135] Xiao Z, Ladommatos N, Zhao H, The effect of aromatic hydrocarbons andoxygenates on diesel engine emissions, Proc Inst Mech Eng J Automob Eng,2000,214:307-332
    [136] Lapuerta M, Armas O, Herreros JM, Emissions from a diesel–bioethanol blendin an automotive diesel engine, Fuel,2008,87:25-31
    [137] Cheng AS, Dibble RW, Buchholz BA, The effect of oxygenates on dieselengine particulate matter, SAE Paper2002-01-1705,2002
    [138] Choi CY, Reitz RD, An experimental study on the effects of oxygenated fuelblends and multiple injection strategies on DI diesel engine emissions, Fuel,1999,78:1303-1317
    [139] Ren Y, Huang ZH, Miao HY, et al, Combustion and emissions of a DI dieselengine fuelled with diesel-oxygenated blends, Fuel,2008,85:2691-2679
    [140] Wu XS, Huang ZH, Yuan T, et al, Identification of combustion intermediates ina low-pressure premixed laminar2,5-dimethylfuran/oxygen/argon flame withtunable synchrotron, Combust Flame2009,56:1365-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700