用户名: 密码: 验证码:
环己烷及其单烷基衍生物燃烧反应动力学的实验和模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的燃烧提供了全球的主要能源,促进了经济和社会的高速发展,同时产生了大量的污染物,造成了严重的环境问题,危害人类健康和人类社会的可持续发展。为了解决能源的紧缺和减少污染物的排放,需要发展清洁高效发动机,并对化石燃料的燃烧反应动力学开展深入的研究。环烷烃燃料是化石燃料的重要组成部分,在新探明的油砂中,可能包含有更高质量分数的环烷烃。我国的大庆RP-3航空煤油中也含有很高含量的环烷烃。环己烷及其衍生物的燃烧过程生成大量的不饱和二烯化合物如致癌性的1,3-丁二烯,并且具有较高的碳烟排放趋势。考虑到环烷烃燃料在实际燃料和替代燃料中的重要性,以及污染物的排放和控制,需要开展该类燃料的详细的实验及模型研究。
     本论文选取了三种典型的环烷烃组分,环己烷、甲基环己烷和乙基环己烷开展系统研究。在实验上,将先进的同步辐射真空紫外光电离质谱技术和变压力流动管热解实验平台相结合,开展了三种燃料在30-760Torr下的热解实验。通过扫描光电离效率谱,对热解产物进行了鉴定。通过选取合适的光子能量,实现了近阈值电离,得到了反应物和热解产物随温度变化的摩尔分数分布。将流动管热解装置和气相色谱/气质联用相结合,开展了乙基环己烷的变压力热解实验,由于色谱更好的分离效率和更低的检测限,对同分异构体进行了更有效的区分,并探测到一些低浓度的产物,如3-辛烯。色谱分析结果和光电离质谱分析符合良好且相互补充,实现了对热解产物更加全面的探测和分析。利用同步辐射真空紫外光电离质谱技术开展了甲基环己烷和乙基环己烷的层流预混火焰,当量比为1.75,压力为30Torr。火焰中探测到的碳氢化合物和热解中类似。通过近阈值电离扫描炉子位置,得到了火焰物种的摩尔分数的空间分布。通过单铂铑热电偶(Pt-10%Rh/Pt)对流动管内部的温度分布进行了测量,以及镀有抗催化涂层的双铂铑热电偶(Pt-6%Rh/Pt-30%Rh)对火焰温度进行了测量。在热解和火焰中,生成了大量不饱和的二烯化合物,且随着支链长度的增加,更易生成长链的二烯;探测到一系列C6-C8的环状烯烃、二烯和三烯,为理解环己烷和支链环己烷中的芳烃,如苯、甲苯、乙基苯和苯乙烯等的生成机理提供了重要实验依据。
     文献中对环烷烃燃料,尤其是支链环烷烃的反应路径及速率常数研究匮乏,且对燃料的初始分解路径存在争议。本工作采用高精度量化方法对甲基环己烷和乙基环己烷体系的重要反应路径和速率常数进行了计算。首先,详细研究了甲基环己烷的开环异构和脱甲基的解离反应。计算的势能曲线表明,在所有的开环路径中,临近支链的C-C断键异构反应具有最低的能垒,并且脱甲基路径和异构化路径存在竞争。在计算的势能面的基础上,通过RRKM/ME方法计算了这些路径的温度及压力依赖的速率常数,讨论了脱甲基路径和异构化路径随温度及压力的分支比变化。其次,计算了H原子进攻甲基环己烷的H提取反应的势能曲线和速率常数,计算结果和文献报道的速率常数符合良好。甲基环己烷自由基(C7H13)和乙基环己烷自由基(C8H15)的后续异构和解离反应的分支比,直接关系到各类中间体的生成比例。为了得到更加准确的分支比,计算了这两类自由基的后续开环及解离路径的势能曲线,并得到了甲基环己烷自由基反应通道的温度及压力依赖的速率常数。该理论研究很好的阐明了支链环己烷体系的初始分解机理和相关路径的竞争关系,为长链环己烷衍生物燃烧反应动力学模型的发展提供了理论指导。
     通过文献调研和理论计算,发展了详细的环己烷、甲基环己烷和乙基环己烷的燃烧反应动力学模型。在燃料子机理的发展中,主要考虑的反应类型包括:燃料的单分子解离和异构化路径;燃料的H提取反应路径;C6-C8烯烃的解离和H提取反应路径;燃料自由基的解离和异构化路径;C6-C8烯烃自由基的解离和异构化路径,以及C6-C8环状烯烃化合物的解离和逐步脱氢路径等。正文中详细讨论了这些路径的速率常数来源,包含了最新的实验测量和理论计算。将发展的三种燃料的子机理与文献中C0-C4的基础模型(USC Mech Ⅱ和丁烯热解模型)相结合,发展了详细的环己烷及两种支链环己烷的燃烧反应动力学模型。利用动力学模拟软件CHEMKIN-PRO对本论文开展的流动管热解和层流预混火焰进行了模拟,通过比较模型预测和实验测量对模型进行了验证和优化。为了使模型具有较为宽广的适用范围,根据文献中的低压层流预混火焰、射流搅拌反应器氧化的物种分布,以及宏观的燃烧参数如点火延时和火焰传播速度对模型进行了进一步的验证和优化。验证的实验数据的当量比范围为0.25-∞,压力范围为30-7600Torr,温度范围为700-2100K。本工作发展的燃烧反应动力学模型的模拟结果比较好的预测了三种燃料热解、氧化和火焰中物种的浓度分布,以及点火延时和火焰传播速度等宏观燃烧参数。
     在本工作的流动管热解氛围下,三种燃料通过单分子解离和H提取反应进行消耗,这两种类型的反应对燃料消耗的贡献具有压力依赖效应。在研究的低压层流预混火焰和射流搅拌反应器氧化中,燃料主要的消耗路径为H提取反应,在富燃火焰中,H原子进攻引发的H提取反应占主导;而在射流搅拌反应器氧化中,燃料主要通过OH自由基的H提取反应进行消耗。此外,在热解和富燃火焰中,自由基主要通过p-解离和异构化路径进行反应,而在射流搅拌反应器氧化中,自由基的氧化反应路径对自由基的消耗起到重要作用。基于实验观测和模型研究,详细讨论了三种燃料燃烧过程中芳烃的生成机理。
     最后,详细探讨了三种燃料燃烧化学动力学的异同,包括流动管热解中三种燃料的反应活性、热解中间体的摩尔分数分布等;三种燃料的富燃低压层流预混火焰的火焰结构和火焰中间体分布,以及常压和高压下环己烷与两种支链环己烷火焰传播速度的差异。
     在结论和展望部分,对本论文的工作进行了总结,并对未来的工作提出了展望:包括开展更长支链和多支链环己烷衍生物以及环烷烃燃烧过程中的重要中间体的实验和模型研究,开展环己烷和支链环己烷的低温氧化机理研究等。
The combustion of fossil fuels provides most of the energy used worldwide, promoting the rapid growth of society and economy. However, large amount of pollutants were emitted, which are harmful to human health and the sustainability of human society. The design of high efficiency and low emission engines, as well as the development of detailed kinetic model of fossil fuels are crucial to alleviate the energy shortage and reduce the pollution. Cycloalkanes are an important component family of fossil fuel and their surrogates. Moreover, the new discovery of oil sands may contain larger fractions of cycloalkanes. The China NO.3Kerosene also has large mass fraction of cycloalkanes. The combustion of cyclohexane and its derivatives produces large amount of dienes, such as carcinogenic1,3-butadiene. They also have relatively high sooting tendency via the dehydrogenation process to generate aromatics. Thus, considering the importance of cycloalkane fuels and pollutants emission controlling, it is required to get a deep understanding of their combustion mechanism and develop their detailed kinetic models.
     In this work, three of the classic cycloalkanes, including cyclohexane, methylcyclohexane (MCH) and ethylcyclohexane (ECH) were chosen for a systemic study. In experiment, the pyrolysis of the three fuels at30-760Torr was investigated in a flow reactor by the state-of-the-art synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The pyrolysis species were identified by the energy scan to achieve the photoionization efficiency spectra. Their mole fractions with temperatures were quantified by near threshold ionization. The flow reactor pyrolysis apparatus was coupled with the GC/GC-MS analysis to investigate ethylcyclohexane pyrolysis. More isomers were separated and low concentration intermediates such as3-octene was quantified. The data sets by the two analytical methods are in good agreement and complementary. The laminar premixed flames of MCH and ECH were also studied by SVUV-PIMS with equivalence ratio of1.75at30Torr. The hydrocarbons measured in flames are in accord with the pyrolysis intermediates. The mole fractions of reactants, diluent Ar and intermediates were quantified along the axial of the flame. The temperature profiles along the flow reactor were measured by an S-type thermocouple, while the flame temperature was measured by B-type thermocouple coated with Y2O3-BeO anti-catalytic ceramic. In pyrolysis and flames, lots of chain and branched dienes were measured. The tendency for long chain dienes formation increases as the side chain increases of the cyclohexanes. A set of cyclic C6-C8alkenes, dienes and trienes were measured, which provide experimental evidence of novel aromatic formation pathways.
     There is scarce theoretical study on cyclohexanes, especially for cyclohexanes with side chains. For methylcyclohexane, there exists dispute for the initial unimolecular channels. In this work, the reaction pathways as well as the rate constants were studied by high level quantum chemistry calculation. Firstly, the ring-opening isomerization and dissociation channels of MCH were investigated. From the viewpoint of energy barriers, the ring opening via the C-C bond fission adjacent to the side chain has the lowest barrier among all the isomerization pathways; the dissociation channel via methyl loss is competitive with the ring-opening pathways. The temperature-and pressure-dependent rate constants were calculated by RRKM/ME theory based on the potential energy surface. Secondly, the H-abstraction reactions of MCH via H atom attack were calculated. The obtained rate constants agree well with the literature values. In combustion process, the MCH and ECH radicals connect the consumption of fuels and the formation of intermediates. The branching ratios of these radicals have significant effect on the distribution of the combustion intermediates. To get a more reasonable prediction of the branching ratios, the energy barriers of these radicals'isomerization and dissociation were investigated. The pressure-and temperature-dependent rate constants were calculated for the MCH radicals. The calculation on isomerization and dissociation of MCH, and reactions of MCH and ECH radicals provides new insight into the reaction mechanism of mono-alkylated cyclohexanes. They are beneficial for the rate constants and branching ratio estimation in kinetic model development.
     A detailed kinetic model of cyclohexane, methylcyclohexane and ethylcyclohexane combustion was developed. The rate constants come from literature review and calculation in this work. In the submechanism development, the reaction classes include the isomerization and dissociation of fuels; the H-abstraction of fuels; the dissociation and H-abstraction of C6-C8alkenes; the dissociation and isomerization of fuel radicals; the dissociation and isomerization of C6-C8alkenyl radicals; and the dissociation and stepwise dehydrogenation of C6-C8cyclic alkenes. Detailed description was given in the text for the source of the rate constants, including the latest experimental measurement and theoretical calculation. The detailed kinetic model of the three fuels was built through the combination of the newly developed submechanism with the C0-C4base model. The C0-C4mechanism mainly comes from USC Mech II and the pyrolysis model of three butene isomers. The simulation was carried out with the CHEMKIN-PRO software. The pyrolysis and flame data in this work were used as validation target. Through the comparison between experiment and simulation, the model was optimized. Furthermore, the model was validated by species mole fraction in premixed flames and jet-stirred reactor (JSR) oxidation, and global combustion properties of ignition delay times and laminar flame speeds reported in the literature. The covered experimental conditions compose of equivalence ratio0.25-∞, pressure30-76000Torr, and temperature700-2100K. The simulation predicts satisfactorily the species speciation in pyrolysis, oxidation and flames, and also global combustion properties.
     Under the pyrolysis circumstance in this work, the three fuels were consumed by both unimolecular decomposition and H-abstraction reactions. The contribution of these two types of reactions has pressure dependence. In the flame and JSR oxidation, the fuel was mainly consumed by H-abstraction reactions. In the fuel-rich flames, the H-abstraction by H atom attack is dominant, while in JSR oxidation, OH radical attack on the fuels is much more prevalent. For radicals, its direct β-C-C scission and isomerization are prevalent in pyrolysis and rich flames, while in JSR oxidation, the oxidation reactions of radicals play important roles. The formation of aromatics was discussed based on the experimental observation and kinetic modeling of the three fuels combustion.
     The chemical kinetics of the three fuels combustion were discussed in detail, such as the reactivity of the three fuels and the mole fraction distribution of intermediates in flow reactor pyrolysis; the flame structure and intermediates distribution of the three fuel-rich low pressure laminar premixed flames; and the disparity of laminar flame speeds between cyclohexane and the C1-C2mono-alkylated cyclohexanes from1to10atm.
     In the conclusion and perspective chapter, a brief summary of this work and perspective for cycloalkanes combustion chemistry study were given. In the future, it is needed to carry out experimental and kinetic modeling study for cycloalkanes with long and complex side chains; also for the important intermediates formed in cyclohexane and mono-alkylated cyclohexanes combustion process. It is required to develop the low-temperature oxidation mechanism of cyclohexane and mono-alkylated cyclohexanes.
引文
[1].丁勇,于弘文,万忠兵,et al.2011.中国统计年鉴-2011[M].中国统计出版社.
    [2].尧命发.2012.“均质压燃、低温燃烧”新一代内燃机燃烧技术[J].内燃机,2:1-4.
    [3]. International Energy Outlook 2010 [R]. U.S. Energy Information Administration.
    [4]. Basic research needs for clean and efficient combusiton of 21th century transportation fuels[R]. http://www.sc.doe.gov/bes/reports/files/CTF_rpt.pdf.
    [5].工程热物理与能源利用学科发展战略研究报告(2011-2020)[M].科学出版社.
    [6]. Petit JR, Jouzel J, Raynaud D, et al.1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,399 (6735):429-436.
    [7]. Stanglmaier RH, Roberts CE.1999. Homogeneous charge compression ignition (HCCI):benefits, compromises, and future engine applications [J]. SAE, SAE-1999-01-3682.
    [8]. Elkelawy M, Zhang Y, Hagar AE, et al.2008. Challenging and future of homogeous charge compression ignition engines:an advanced and novel concepts review[J]. J. Power & Energy Systems,2:1108-1119.
    [9]. Kohse-Hoinghaus K, Jeffries JB.2002. Applied Combustion Diagnostics[M]. New York:Taylor & Francis,9-127.
    [10]. Melton LA.1984. Soot diagnostics based on laser heating[J]. Appl. Opt.23 (13):2201-2208.
    [11]. McIlroy A.1998. Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy[J]. Chem. Phys. Lett.,296 (1-2):151-158.
    [12]. Akhter MS, Chughtai AR, Smith DM.1985. The structure of hexane soot Ⅰ: spectroscopic studies[J]. Appl. Spectrosc.,39 (1):143-153.
    [13]. Oltmann H, Reimann J, Will S.2010. Wide-angle light scattering (WALS) for soot aggregate characterization[J]. Combust. Flame,157 (3):516-522.
    [14]. Vasu SS, Davidson DF, Hong ZK, et al.2009. Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature[J]. Energy Fuels,23 (1):175-185.
    [15]. Davidson DF, Hong Z, Pilla GL, et al.2010. Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves[J]. Combust. Flame,157 (10):1899-1905.
    [16]. Lam K-Y, Ren W, Hong ZK, et al.2012. Shock tube measurements of 3-pentanone pyrolysis and oxidation[J]. Combust. Flame,159 (11):3251-3263.
    [17]. Matras D, Villermaux J.1973. Un reacteur continu parfaitement agite par jets gazeux pour l'etude cinetique de reactions chimiques rapides[J]. Chem. Eng. Sci.,28(1):129-137.
    [18]. Dagaut P, Cathonnet M.2006. The ignition, oxidation, and combustion of kerosene:A review of experimental and kinetic modeling[J]. Prog. Energy Combust. Sci.,32(1):48-92.
    [19]. Battin-Leclerc F.2008. Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates[J]. Prog. Energy Combust. Sci.,34 (4):440-498.
    [20]. Battin-Leclerc F, Blurock E, Bounaceur R, et al.2011. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models[J]. Chem. Soc. Rev.,40 (9):4762-4782.
    [21]. Battin-Leclerc F, Herbinet O, Glaude PA, et al.2010. Experimental confirmation of the low-temperature oxidation scheme of alkanes[J]. Angew Chem Int Edit,49 (18):3169-3172.
    [22]. Qi F.2013. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proc. Combust. Inst.,34:33-63.
    [23]. Porter R, Glaude P-A, Buda Fdr, et al.2008. A tentative modeling study of the effect of wall reactions on oxidation phenomena[J]. Energy Fuels,22 (6): 3736-3743.
    [24]. Herbinet O, Battin-Leclerc F, Bax S, et al.2011. Detailed product analysis during the low temperature oxidation of n-butane[J]. Phys. Chem. Chem. Phys., 13(1):296-308.
    [25]. Dubreuil A, Foucher F, Mounai'm-Rousselle C, et al.2007. HCCI combustion: Effect of NO in EGR[J]. Proc. Combust. Inst.,31 (2):2879-2886.
    [26]. Bahrini C, Morajkar P, Schoemaecker C, et al.2013. Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements[J]. Phys. Chem. Chem. Phys.,15 (45):19686-19698.
    [27]. Bahrini C, Herbinet O, Glaude P-A, et al.2012. Quantification of hydrogen peroxide during the low-temperature oxidation of alkanes[J]. J. Am. Chem. Soc.,134 (29):11944-11947.
    [28]. Blocquet M, Schoemaecker C, Amedro D, et al.2013. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique[J]. Proc. Natl. Acad. Sci.,110: 20014-20017.
    [29]. Brumfield B, Sun WT, Ju YG, et al.2013. Direct In situ quantification of HO2 from a flow reactor[J]. J. Phys. Chem. Lett.,4 (6):872-876.
    [30]. Brumfield B, Sun WT, Wang Y, et al.2014. Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor[J]. Opt. Lett.,39 (7):1783-1786.
    [31]. Biordi JC, Lazzara CP, Papp JF.1974. Molecular-beam mass-spectrometry applied to determining kinetics of reactions in flames.1. empirical characterization of flame perturbation by molecular-beam sampling probes[J]. Combust. Flame,23 (1):73-82.
    [32]. Biordi JC.1977. Molecular beam mass spectrometry for studying the fundamental chemistry of flames[J]. Prog. Energy Combust. Sci.,3 (3): 151-173.
    [33]. Hansen N, Cool TA, Westmoreland PR, et al.2009. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J]. Prog. Energy Combust. Sci.,35 (2): 168-191.
    [34]. Cord M, Husson B, Lizardo Huerta JC, et al.2012. Study of the low temperature oxidation of propane[J]. J. Phys. Chem. A,116 (50):12214-12228.
    [35]. Serinyel Z, Herbinet O, Frottier O, et al.2013. An experimental and modeling study of the low-and high-temperature oxidation of cyclohexane[J]. Combust. Flame,160:2319-2332.
    [36]. NIST/EPA/NIH Mass Spectral Library (NIST 08)[EB/OL].
    [37]. Dagaut P.2002. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel[J]. Phys. Chem. Chem. Phys.,4 (11):2079-2094.
    [38]. Zeppieri S, Brezinsky K, Glassman I.1997. Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends[J]. Combust. Flame,108 (3):266-286.
    [39]. Curran HJ, Pitz WJ, Westbrook CK, et al.1998. Oxidation of automotive primary reference fuels at elevated pressures[J]. Proc. Combust. Inst.,27 (1): 379-387.
    [40]. Mueller MA, Kim TJ, Yetter RA, et al.1999. Flow reactor studies and kinetic modeling of the H2/O2 reaction[J]. Int. J. Chem. Kinet.,31 (2):113-125.
    [41]. Curran HJ, Fischer SL, Dryer FL.2000. The reaction kinetics of dimethyl ether. II:Low-temperature oxidation in flow reactors [J]. Int. J. Chem. Kinet.,32 (12): 741-759.
    [42]. Li J, Zhao Z, Kazakov A, et al.2004. An updated comprehensive kinetic model of hydrogen combustion[J]. Int. J. Chem. Kinet.,36 (10):566-575.
    [43]. Li J, Zhao Z, Kazakov A, et al.2007. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. Int. J. Chem. Kinet.,39 (3):109-136.
    [44]. Zhao Z, Chaos M, Kazakov A, et al.2008. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether[J]. Int. J. Chem. Kinet., 40:1-18.
    [45]. Tsang W.1978. Thermal stability of cyclohexane and l-hexene[J]. Int. J. Chem. Kinet.,10:1119-1138.
    [46]. Tsang W, Walker JA, Manion JA.1998. Single-pulse shock-tube study on the decomposition of 1-pentyl radicals[J]. Proc. Combust. Inst.,27 (1):135-142.
    [47]. Tsang W.2005. Mechanism and rate constants for the decomposition of 1-pentenyl radicals[J]. J. Phys. Chem. A,110 (27):8501-8509.
    [48]. Tsang W, Walker JA, Manion JA.2007. The decomposition of normal hexyl radicals[J]. Proc. Combust. Inst.,31 (1):141-148.
    [49]. McGivern WS, Awan IA, Tsang W, et al.2008. Isomerization and decomposition reactions in the pyrolysis of branched hydrocarbons: 4-methyl-1-pentyl radical[J]. J. Phys. Chem. A,112 (30):6908-6917.
    [50]. Tsang W, McGivern WS, Manion JA.2009. Multichannel decomposition and isomerization of octyl radicals[J]. Proc. Combust. Inst.,32 (1):131-138.
    [51]. Manion JA, Awan IA.2013. The decomposition of 2-pentyl and 3-pentyl radicals[J]. Proc. Combust. Inst.,34 (1):537-545.
    [52]. Gudiyella S, Brezinsky K.2012. High pressure study of n-propylbenzene oxidation[J]. Combust. Flame,159:940-958.
    [53]. Gudiyella S, Brezinsky K.2013. The high pressure study of n-propylbenzene pyrolysis[J]. Proc. Combust. Inst.,34 (1):1767-1774.
    [54]. Malewicki T, Brezinsky K.2013. Experimental and modeling study on the pyrolysis and oxidation of n-decane and n-dodecane[J]. Proc. Combust. Inst., 34(1):361-368.
    [55]. Malewicki T, Comandini A, Brezinsky K.2013. Experimental and modeling study on the pyrolysis and oxidation of iso-octane[J]. Proc. Combust. Inst.,34 (1):353-360.
    [56]. Malewicki T, Gudiyella S, Brezinsky K.2013. Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel[J]. Combust. Flame,160 (1):17-30.
    [57]. Pousse E, Glaude PA, Fournet R, et al.2009. A lean methane premixed laminar flame doped with components of diesel fuel:I. n-Butylbenzene[J]. Combust. Flame,156(5):954-974.
    [58]. Pousse E, Porter R, Warth V, et al.2010. Lean methane premixed laminar flames doped by components of diesel fuel II:n-Propylcyclohexane[J]. Combust. Flame,157 (1):75-90.
    [59]. Pousse E, Tian ZY, Glaude PA, et al.2010. A lean methane premixed laminar flame doped with components of diesel fuel part III:Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane[J]. Combust. Flame, 157(7):1236-1260.
    [60]. Sarathy SM, Yeung C, Westbrook CK, et al.2011. An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame[J]. Combust. Flame,158 (7):1277-1287.
    [61]. Dayma G, Sarathy SM, Togbe C, et al.2011. Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor[J]. Proc. Combust. Inst.,33 (1):1037-1043.
    [62]. Yeung C, Thomson MJ.2013. Experimental and kinetic modeling study of 1-hexanol combustion in an opposed-flow diffusion flame[J]. Proc. Combust. Inst.,34 (1):795-802.
    [63]. Mani Sarathy S, Niemann U, Yeung C, et al.2013. A counterflow diffusion flame study of branched octane isomers[J]. Proc. Combust. Inst.,34 (1): 1015-1023.
    [64]. Cool TA, Nakajima K, Mostefaoui TA, et al.2003. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry[J]. J. Chem. Phys.,119 (16):8356-8365.
    [65]. Cool TA, McIlroy A, Qi F, et al.2005. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Rev. Sci. Instrum.,76 (9):094102.
    [66]. Zhang TC, Wang J, Yuan T, et al.2008. Pyrolysis of Methyl tert-Butyl Ether (MTBE).1. experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization[J]. J. Phys. Chem. A,112 (42): 10487-10494.
    [67]. Zhang TC, Zhang LD, Hong X, et al.2009. An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry[J]. Combust. Flame,156 (11):2071-2083.
    [68]. Zhang YJ, Cai JH, Zhao L, et al.2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure[J]. Combust. Flame, 159:905-917.
    [69]. Cai JH, Zhang LD, Zhang F, et al.2012. Experimental and kinetic modeling study of n-butanol pyrolysis and combustion[J]. Energy Fuels,26:5550-5568.
    [70]. Cai JH, Zhang LD, Yang JZ, et al.2012. Experimental and kinetic modeling study of tert-butanol combustion at low pressure[J]. Energy,43:94-102.
    [71]. Cai JH, Yuan WH, Ye LL, et al.2013. Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion[J]. Combust. Flame,160 (10): 1939-1957.
    [72]. Li YY, Zhang LD, Wang ZD, et al.2013. Experimental and kinetic modeling study of tetralin pyrolysis at low pressure[J]. Proc. Combust. Inst.,34 (1): 1739-1748.
    [73]. Lucassen A, Wang ZD, Zhang LD, et al.2013. An experimental and theoretical study of pyrrolidine pyrolysis at low pressure[J]. Proc. Combust. Inst.,34 (1): 641-648.
    [74]. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159 (7):2243-2253.
    [75]. Wang ZD, Ye LL, Yuan WH, et al.2014. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion[J]. Combust. Flame, 161:84-100.
    [76]. Herbinet O, Husson B, Serinyel Z, et al.2012. Experimental and modeling investigation of the low-temperature oxidation of n-heptane[J]. Combust. Flame,159 (12):3455-3471.
    [77]. Battin-Leclerc F, Rodriguez A, Husson B, et al.2014. Products from the oxidation of linear isomers of hexene[J]. J. Phys. Chem. A,118 (4):673-683.
    [78]. Cuoci A, Frassoldati A, Faravelli T, et al.2013. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames[J]. Proc. Combust. Inst.,34 (1):1811-1818.
    [79]. Jin HF, Wang YZ, Zhang KW, et al.2013. An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols[J]. Proc. Combust. Inst.,34 (1):779-786.
    [80]. Jin HF, Cuoci A, Frassoldati A, et al.2014. Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol[J]. Combust. Flame,161 (3):657-670.
    [81]. Zhou ZY, Wang Y, Tang XF, et al.2013. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry[J]. Rev. Sci. Instrum.,84 (1):014101.
    [82]. Skeen SA, Yang B, Michelsen HA, et al.2013. Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry[J]. Proc. Combust. Inst.,34 (1):1067-1075.
    [83]. Skeen SA, Michelsen HA, Wilson KR, et al.2013. Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors [J]. J. Aerosol Sci.,58 (0):86-102.
    [84]. Edwards T, Maurice LQ.2001. Surrogate mixtures to represent complex aviation and rocket fuels[J]. J. Propul. Power,17 (2):461-466.
    [85]. Westbrook CK, Smith PJ. in Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels, Office of Science, U.S. Department of Energy, Livermore,2006.[EB/OL].
    [86]. Hadaller OJ, Johnson JM.2006. World Fuel Sampling Program[R]. CRC Aviation Fuel, Lubricant & Equipment Research Committee of the Coordinating Research Council, Inc.
    [87]. Tim E, Linda S, Rich S, et al, Chemical class composition of commercial jet fuels and other specialty kerosene fuels. In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics:2006.
    [88]. Farrell JT, Cernansky NP, Dryer FL, et al.2007. Development of an experimental database and kinetic models for surrogate diesel fuels[J]. SAE: SAE Paper 2007-01-0201.
    [89]. Pitz WJ, Cernansky NP, Dryer FL, et al.2007. Development of an experimental database and chemical kinetic models for surrogate gasoline fuels[J]. SAE:SAE Paper 2007-01-0175.
    [90]. Colket M, Edwards T, Williams S, et al.2007.45th AIAA Aerospace Sciences Meeting and Exhibit Proceedings[C]. Reno, NV. AIAA Paper 2007-0770.
    [91]. Pitz WJ, Mueller CJ.2011. Recent progress in the development of diesel surrogate fuels[J]. Prog. Energy Combust. Sci.,37 (3):330-350.
    [92]. Curran HJ, Gaffuri P, Pitz WJ, et al.1998. A comprehensive modeling study of n-heptane oxidation[J]. Combust. Flame,114 (1-2):149-177.
    [93]. Sheen DA, Wang H.2011. Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane[J]. Combust. Flame,158 (4): 645-656.
    [94]. Curran HJ, Gaffuri P, Pitz WJ, et al.2002. A comprehensive modeling study of iso-octane oxidation[J]. Combust. Flame,129 (3):253-280.
    [95]. Violi A, Yan S, Eddings EG, et al.2002. Experimental formulation and kinetic model for JP-8 surrogate mixtures[J]. Combust. Sci. Technol.,174 (11-2): 399-417.
    [96]. Agosta A, Cernansky NP, Miller DL, et al.2004. Reference components of jet fuels:kinetic modeling and experimental results[J]. Exp. Therm Fluid Sci.,28 (7):701-708.
    [97]. Northrop Grumman "Diesel Fuel Oils,2003", Report NGMS-232 PPS January 2O04.[R].
    [98]. Silke EJ, Pitz WJ, Westbrook CK, et al.2007. Detailed chemical kinetic modeling of cyclohexane oxidation[J]. J. Phys. Chem. A,111 (19):3761-3775.
    [99]. Shafer L, Striebich R, Gomach J, et al. Novermber 2006. Chemical class composition of commercial jet fuels and other specialty kerosene fuels[J]. AIAA Paper 2006-7972.
    [100].范学军,俞刚.2006.大庆RP-3航空煤油热物性分析[J].推进技术,27(2):187-192.
    [101]. El Bakali A, Braun-Unkhoff M, Dagaut P, et al.2000. Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres[J]. Proc. Combust. Inst.,28:1631-1638.
    [102]. Lemaire O, Ribaucour M, Carlier M, et al.2001. The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene[J]. Combust. Flame,127 (1-2):1971-1980.
    [103]. Law ME, Westmoreland PR, Cool TA, et al.2007. Benzene precursors and formation routes in a stoichiometric cyclohexane flame[J]. Proc. Combust. Inst., 31:565-573.
    [104]. Sirjean B, Buda F, Hakka H, et al.2007. The autoignition of cyclopentane and cyclohexane in a shock tube[J]. Proc. Combust. Inst.,31:277-284.
    [105]. Daley SM, Berkowitz AM, Oehlschlaeger MA.2008. A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures[J]. Int. J. Chem. Kinet.,40 (10):624-634.
    [106]. Yang Y, Boehman AL.2009. Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine[J]. Proc. Combust. Inst.,32:419-426.
    [107]. Ciajolo A, Tregrossi A, Mallardo M, et al.2009. Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame[J]. Proc. Combust. Inst.,32:585-591.
    [108]. Wu FJ, Kelley AP, Law CK.2012. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures[J]. Combust. Flame,159 (4):1417-1425.
    [109]. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159:2243-2253.
    [110]. Vranckx S, Lee C, Chakravarty HK, et al.2013. A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures[J]. Proc. Combust. Inst.,34 (1):377-384.
    [111]. Orme JP, Curran HJ, Simmie JM.2006. Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation[J]. J. Phys. Chem. A,110 (1): 114-131.
    [112]. Pitz WJ, Naik CV, Mhaolduin TN, et al.2007. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proc. Combust. Inst.,31:267-275.
    [113]. Mittal G, Sung CJ.2009. Autoignition of methylcyclohexane at elevated pressures[J]. Combust. Flame,156 (9):1852-1855.
    [114]. Vanderover J, Oehlschlaeger MA.2009. Ignition time measurements for methylcylcohexane-and ethylcyclohexane-air mixtures at elevated pressures [J]. Int. J. Chem. Kinet.,41 (2):82-91.
    [115]. Skeen SA, Yang B, Jasper AW, et al.2011. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model[J]. Energy Fuels,25:5611-5625.
    [116]. Husson B, Herbinet O, Glaude PA, et al.2012. Detailed product analysis during low- and intermediate-temperature oxidation of ethylcyclohexane[J]. J. Phys. Chem. A,116 (21):5100-5111.
    [117]. Ristori A, Dagaut P, El Bakali A, et al.2001. The oxidation of n-propylcyclohexane:Experimental results and kinetic modeling[J]. Combust. Sci. Technol.,165:197-228.
    [118]. Crochet M, Minetti R, Ribaucour M, et al.2010. A detailed experimental study of n-propylcyclohexane autoignition in lean conditions [J]. Combust. Flame, 157 (11):2078-2085.
    [119]. Ji CS, Dames E, Sirjean B, et al.2011. An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames[J]. Proc. Combust. Inst.,33:971-978.
    [120]. Natelson RH, Kurman MS, Cernansky NP, et al.2011. Low temperature oxidation of n-butylcyclohexane[J]. Combust. Flame,158 (12):2325-2337.
    [121]. Hong ZK, Lam K-Y, Davidson DF, et al.2011. A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures [J]. Combust. Flame,158 (8): 1456-1468.
    [122]. Brown TC, K. D. King, T. T. Nguyent.1986. Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes[J]. J. Phys. Chem.,90: 419-424.
    [123]. Aribike DS, Susu AA, Ogunye AF.1981. Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane[J]. Thermochim. Acta, 51 (2-3):113-127.
    [124]. Voisin D, Marchal A, Reuillon M, et al.1998. Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure[J]. Combust. Sci. Technol.,138 (1-6):137-158.
    [125]. Kiefer JH, Gupte KS, Harding LB, et al.2009. Shock tube and theory investigation of cyclohexane and 1-hexene decomposition[J]. J. Phys. Chem. A, 113(48):13570-13583.
    [126]. Brown TC, King KD.1989. Very low-pressure pyrolysis (VLPP) of methyl-and ethynyl-cyclopentanes and cyclohexanes[J]. Int. J. Chem. Kinet.,21 (4): 251-266.
    [127]. Billaud F, Chaverot P, Berthelin M, et al.1988. Thermal decomposition of cyclohexane at approximately 810℃[J]. Ind. Eng. Chem. Res.,27:759-764.
    [128]. Bennett PJ, Gregory D, Jackson RA.1996. Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine[J]. Combust. Sci. Technol.,115 (1-3):83-103.
    [129]. McEnally CS, Pfefferle LD.2004. Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames[J]. Combust. Flame,136 (1-2):155-167.
    [130]. Li WJ, Law ME, Westmoreland PR, et al.2011. Multiple benzene-formation paths in a fuel-rich cyclohexane flame[J]. Combust. Flame,158 (11): 2077-2089.
    [1]. Qi F.2013. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry[J]. Proc. Combust. Inst.,34:33-63.
    [2].张泰昌,朱爱国,洪新,et al.2007.国家同步辐射实验室U14C光束线气体滤波器的研制[J].中国科学技术大学学报37:582-585.
    [3]. Cheng ZJ, Xing LL, Zeng MR, et al.2014. Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures[J]. Combust. Flame: in press, doi:10.1016/j.combustflame.2014.03.022.
    [4].袁涛.2010.正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [5].张义军.2011.C4系列烷烃和烯烃的热解实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [6].谢铭丰.2012.C3-C5直链脂肪酸甲酯的热解实验及动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [7].杨玖重.2012.苯和苯/C2H6O混合燃料低压燃烧的实验与模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [8].蔡江淮.2013.丁醇燃烧反应动力学的实验与模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [9].李玉阳.2010.芳烃燃料低压预混火焰的实验和动力学模型研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [10]. Qi F, Yang R, Yang B, et al.2006. Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization[J]. Rev. Sci. Instrum.,77 (8):084101.
    [11]. Kint JH.1970. A noncatalytic coating for platinum-rhodium thermocouples[J]. Combust. Flame,14 (2):279-281.
    [12]. Shandross RA, Longwell JP, Howard JB.1991. Noncatalytic thermocouple coating for low-pressure flames[J]. Combust. Flame,85 (1-2):282-284.
    [13].卫立夏.2006.几种C3含氧化合物的真空紫外光电离及燃烧研究[D]:[博士学位论文].合肥:中国科学技术大学.
    [14]. Hartlieb AT, Atakan B, Kohse-Hoinghaus K.2000. Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame[J]. Combust. Flame,121 (4):610-624.
    [15]. Cool TA, Nakajima K, Taatjes CA, et al.2005. Studies of a fuel-rich propane flame with photoionization mass spectrometry[J]. Proc. Combust. Inst.,30 (1): 1681-1688.
    [16]. Benson SW, Buss JH.1958. Additivity rules for the estimation of molecular properties. Thermodynamic properties[J]. J. Chem. Phys.,29 (3):546-572.
    [17]. Benson SW.1976. Thermochemical Kinetics[M]. JOHN WILEY & SONS.
    [18]. Cohen N.1996. Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds[J]. J. Phys. Chern. Ref. Data,25 (8):1411-1481.
    [19]. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT,2009.
    [20]. Van Speybroeck V, Gani R, Meier RJ.2010. The calculation of thermodynamic properties of molecules[J]. Chem. Soc. Rev.,39 (5):1764-1779.
    [21]. Wheeler SE, Houk KN, Schleyer PvR, et al.2009. A hierarchy of homodesmotic reactions for thermochemistry[J]. J. Am. Chem. Soc.,131 (7): 2547-2560.
    [22]. Mokrushin V, Bedanov V, Tsang W, et al ChemRate, Version 1.5.8; National Institute of Standard and Technology:Gaithersburg, MD,2009.
    [23]. Robertson SH, Glowacki DR, Liang C-H, et al MESMER (Master Equation Solver for Multi-Energy Well Reactions), an object oriented C++program implementing master equation methods for gas phase reactions with arbitrary multiple wells. http://sourceforge. net/projects/mesmer,,2008-2013.
    [24]. Klippenstein SJ, Wagner AF, Dunbar RC, et al Variflex, Version 1.0:Argonne National Laboratory,1999.
    [1]. Prosen EJ, Johnson WH, Rossini FD.1946. Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydro carbons [J]. J. Res. Natl. Bur. Stand.,37:51-56.
    [2]. Beckett CW, Pitzer KS, Spitzer R.1947. The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes[J]. J. Am. Chem. Soc.,69 (10):2488-2495.
    [3]. Fernandez-Alonso MdC, Canada J, Jimenez-Barbero J, et al.2005. Theoretical study of inversion and topomerization processes of substituted cyclohexanes: the relevance of the energy 3D hypersurface[J]. ChemPhysChem,6 (4): 671-680.
    [4]. Tsang W.1978. Thermal stability of cyclohexane and 1-hexene[J]. Int. J. Chem. Kinet.,10:1119-1138.
    [5]. Aribike DS, Susu AA, Ogunye AF.1981. Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane[J]. Thermochim. Acta, 51 (2-3):113-127.
    [6]. Brown TC, K. D. King, T. T. Nguyent.1986. Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes[J]. J. Phys. Chem.,90: 419-424.
    [7]. Kiefer JH, Gupte KS, Harding LB, et al.2009. Shock tube and theory investigation of cyclohexane and 1-hexene decomposition[J]. J. Phys. Chem. A, 113 (48):13570-13583.
    [8]. Voisin D, Marchal A, Reuillon M, et al.1998. Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure[J]. Combust. Sci. Technol.,138 (1-6):137-158.
    [9].. El Bakali A, Braun-Unkhoff M, Dagaut P, et al.2000. Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres[J]. Proc. Combust. Inst.,28:1631-1638.
    [10]. Serinyel Z, Herbinet O, Frottier O, et al.2013. An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane[J]. Combust. Flame,160:2319-2332.
    [11]. Sirjean B, Buda F, Hakka H, et al.2007. The autoignition of cyclopentane and cyclohexane in a shock tube[J]. Proc. Combust. Inst.,31:277-284.
    [12]. Daley SM, Berkowitz AM, Oehlschlaeger MA.2008. A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures[J]. Int. J. Chem. Kinet.,40 (10):624-634.
    [13]. Hong ZK, Lam K-Y, Davidson DF, et al.2011. A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures[J]. Combust. Flame,158 (8): 1456-1468.
    [14]. Lemaire O, Ribaucour M, Carlier M, et al.2001. The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene[J]. Combust. Flame,127 (1-2):1971-1980.
    [15]. Vranckx S, Lee C, Chakravarty HK, et al.2013. A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures[J]. Proc. Combust. Inst.,34 (1):377-384.
    [16]. Yang Y, Boehman AL.2009. Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine[J]. Proc. Combust. Inst.,32:419-426.
    [17]. Silke EJ, Pitz WJ, Westbrook CK, et al.2007. Detailed chemical kinetic modeling of cyclohexane oxidation[J]. J. Phys. Chem. A,111 (19):3761-3775.
    [18]. Bennett PJ, Gregory D, Jackson RA.1996. Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine[J]. Combust. Sci. Technol.,115 (1-3):83-103.
    [19]. Billaud F, Chaverot P, Berthelin M, et al.1988. Thermal decomposition of cyclohexane at approximately 810℃[J]. Ind. Eng. Chem. Res.,27:759-764.
    [20]. Ciajolo A, Tregrossi A, Mallardo M, et al.2009. Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame[J]. Proc. Combust. Inst.,32:585-591.
    [21]. Law ME, Westmoreland PR, Cool TA, et al.2007. Benzene precursors and formation routes in a stoichiometric cyclohexane flame[J]. Proc. Combust. Inst., 31:565-573.
    [22]. Li WJ, Law ME, Westmoreland PR, et al.2011. Multiple benzene-formation paths in a fuel-rich cyclohexane flame[J]. Combust. Flame,158 (11): 2077-2089.
    [23]. McEnally CS, Pfefferle LD.2004. Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames[J]. Combust. Flame,136 (1-2):155-167.
    [24]. Davis SG, Law CK.1998. Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons[J]. Combust. Sci. Technol., 140:427-449.
    [25]. Ji CS, Dames E, Sirjean B, et al.2011. An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames[J]. Proc. Combust. Inst,33:971-978.
    [26]. Wu FJ, Kelley AP, Law CK.2012. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures[J]. Combust. Flame,159 (4):1417-1425.
    [27]. Granata S, Faravelli T, Ranzi E.2003. A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes[J]. Combust. Flame,132 (3): 533-544.
    [28]. Wang H, Dames E, Sirjean B, et al. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19,2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0[EB/OL]
    [29]. Buda F, Heyberger B, Fournet R, et al.2006. Modeling of the gas-phase oxidation of cyclohexane[J]. Energy Fuels,20 (4):1450-1459.
    [30]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2009. Theoretical kinetic study of the reactions of cycloalkylperoxy radicals[J]. J. Phys. Chem. A,113 (25): 6924-6935.
    [31]. Tsang W.1988. Chemical kinetic data base for combustion chemistry, part 3: propane[J]. J. Phys. Chern. Ref. Data,17 (2):887-951.
    [32]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2006. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations[J]. J. Phys. Chem. A,110(46):12693-12704.
    [33]. Sivaramakrishnan R, Michael JV.2009. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes[J]. Combust. Flame,156 (5):1126-1134.
    [34]. Cohen N, Westberg KR.1986. The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes[J]. Int. J. Chem. Kinet., 18(1):99-140.
    [35]. Handford-Styling SM, Walker RW.2001. Arrhenius parameters for the reaction HO2+ cyclohexane between 673 and 773 K, and for H atom transfer in cyclohexylperoxy radicals[J]. Phys. Chem. Chem. Phys.,3 (11):2043-2052.
    [36]. Knepp AM, Meloni G, Jusinski LE, et al.2007. Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2[J]. Phys. Chem. Chem. Phys.,9 (31):4315-4331.
    [37]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2008. Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals[J]. J. Phys. Chem. A,112(46):11598-11610.
    [38]. Iwan I, McGivern WS, Manion JA, et al, The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA 2007, CO2.
    [39]. Wang ZD, Ye LL, Yuan WH, et al.2014. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion[J]. Combust. Flame, 161:84-100.
    [40]. Tsang W, Walker JA, Manion JA.1998. Single-pulse shock-tube study on the decomposition of 1-pentyl radicals[J]. Proc. Combust. Inst.,27 (1):135-142.
    [41]. Tsang W.2005. Mechanism and rate constants for the decomposition of 1-pentenyl radicals[J]. J. Phys. Chem. A,110 (27):8501-8509.
    [42]. Tsang W, Walker JA, Manion JA.2007. The decomposition of normal hexyl radicals[J]. Proc. Combust. Inst.,31 (1):141-148.
    [43]. Tsang W, McGivern WS, Manion JA.2009. Multichannel decomposition and isomerization of octyl radicals[J]. Proc. Combust. Inst.,32 (1):131-138.
    [44]. Gong CM, Li ZR, Li XY.2012. Theoretical kinetic study of thermal decomposition of cyclohexane[J]. Energy Fuels,26 (5):2811-2820.
    [45]. Kiefer JH, Shah JN.1987. Unimolecular dissociation of cyclohexene at extremely high temperatures:behavior of the energy-transfer collision efficiency[J]. J. Phys. Chem.,91 (11):3024-3030.
    [46]. Pitz WJ, Naik CV, Mhaolduin TN, et al.2007. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proc. Combust. Inst.,31:267-275.
    [47]. Orme JP, Curran HJ, Simmie JM.2006. Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation[J]. J. Phys. Chem. A,110 (1): 114-131.
    [48]. Dayma G, Glaude PA, Fournet R, et al.2003. Experimental and modeling study of the oxidation of cyclohexene [J]. Int. J. Chem. Kinet.,35 (7):273-285.
    [49]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al. Theoretical kinetic study of the ring opening and dehydrogenation of cyclic alkenes[J]. Manuscript in preparation.
    [50]. Zhang LD, Cai JH, Zhang TC, et al.2010. Kinetic modeling study of toluene pyrolysis at low pressure[J]. Combust. Flame,157 (9):1686-1697.
    [51]. Li YY, Cai JH, Zhang LD, et al.2011. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure[J]. Proc. Combust. Inst.,33 (1):617-624.
    [52]. Li YY, Cai JH, Zhang LD, et al.2011. Investigation on chemical structures of premixed toluene flames at low pressure[J]. Proc. Combust. Inst.,33 (1): 593-600.
    [53]. Wang ZD, Li YY, Zhang F, et al.2013. An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure[J]. Proc. Combust. Inst.,34 (1):1785-1793.
    [54]. Hansen N, Miller JA, Westmoreland PR, et al.2009. Isomer-specific combustion chemistry in allene and propyne flames[J]. Combust. Flame,156 (11):2153-2164.
    [55]. Miller JA, Klippenstein SJ.2003. The recombination of propargyl radicals and other reactions on a C6H6 potential[J]. J. Phys. Chem. A,107 (39):7783-7799.
    [56]. Georgievskii Y, Miller JA, Klippenstein SJ.2007. Association rate constants for reactions between resonance-stabilized radicals:C3H3+C3H3, C3H3+C3H5, and C3H5+C3H5[J]. Phys. Chem. Chem. Phys.,9 (31):4259-4268.
    [57]. Scherer S, Just T, Frank P.2000. High-temeprature investigations on pyrolytic reactions of propargyl radicals[J]. Proc. Combust. Inst.,28 (2):1511-1518.
    [58]. Fernandes RX, Hippler H, Olzmann M.2005. Determination of the rate coefficient for the C3H3+C3H3 reaction at high temperatures by shock-tube investigations[J]. Proc. Combust. Inst.,30 (1):1033-1038.
    [59]. D'Anna A, Kent JH.2003. Aromatic formation pathways in non-premixed methane flames[J]. Combust. Flame,132 (4):715-722.
    [60]. Wu CH, Kern RD.1987. Shock-tube study of allene pyrolysis[J]. J. Phys. Chem.,91 (24):6291-6296.
    [61]. Senosiain JP, Miller JA.2007. The Reaction of n-and i-C4H5 Radicals with Acetylene[J]. J. Phys. Chem. A,111 (19):3740-3747.
    [62]. Lindstedt RP, Skevis G.1997. Chemistry of acetylene flames[J]. Combust. Sci. Technol.,125 (1-6):73-137.
    [63]. Marinov NM, Castaldi MJ, Melius CF, et al.1997. Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame[J]. Combust. Sci. Technol.,128 (1-6):295-342.
    [64]. Miller JA, Georgievskii Y, Allen WD, et al. unpublished data.[J].
    [65]. Hansen N, Miller JA, Kasper T, et al.2009. Benzene formation in premixed fuel-rich 1,3-butadiene flames[J]. Proc. Combust. Inst.,32 (1):623-630.
    [66]. Violi A, Truong TN, Sarofim AF.2004. Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms[J]. J. Phys. Chem. A,108 (22):4846-4852.
    [67]. Seta T, Nakajima M, Miyoshi A.2006. High-Temperature Reactions of OH Radicals with Benzene and Toluene[J]. J. Phys. Chem. A,110 (15):5081-5090.
    [68]. Roy K, Horn C, Frank P, et al.1998. High-temperature investigations on the pyrolysis of cyclopentadiene[J]. Proc. Combust. Inst.,27 (1):329-336.
    [69]. Bacskay GB, Mackie JC.2001. The pyrolysis of cyclopentadiene:quantum chemical and kinetic modelling studies of the acetylene plus propyne/allene decomposition channels[J]. Phys. Chem. Chem. Phys.,3 (12):2467-2473.
    [70]. Wang H, You X, Joshi AV, et al. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC Mech_Ⅱ.htm (2007).[EB/OL].
    [71]. Richter H, Granata S, Green WH, et al.2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame[]J]. Proc. Combust. Inst.,30 (1):1397-1405.
    [72]. Moskaleva LV, Lin MC.2000. Unimolecular isomerization/decomposition of cyclopentadienyl and related bimolecular reverse process:ab initio MO/statistical theory study[J]. J. Comput. Chem.,21 (6):415-425.
    [73]. Zhong X, Bozzelli JW.1998. Thermochemical and Kinetic Analysis of the H, OH, HO2, O, and O2 Association Reactions with Cyclopentadienyl Radical [J]. J. Phys. Chem. A,102 (20):3537-3555.
    [74]. Zhang YJ, Cai JH, Zhao L, et al.2012. An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure[J]. Combust. Flame, 159:905-917.
    [75]. Laskin A, Wang H, Law CK.2000. Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures[J]. Int. J. Chem. Kinet.,32 (10):589-614.
    [76]. Miller JA, Senosiain JP, Klippenstein SJ, et al.2008. Reactions over multiple, interconnected potential wells:unimolecular and bimolecular reactions on a C3H5 potential[J]. J. Phys. Chem. A,112 (39):9429-9438.
    [77]. Davis SG, Law CK, Wang H.1999. Propyne pyrolysis in a flow reactor:an experimental, RRKM, and detailed kinetic modeling study[J]. J. Phys. Chem. A,103 (30):5889-5899.
    [78]. Wang H, Frenklach M.1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J]. Combust. Flame,110:173-221.
    [79]. Miller JA, In private communicatioin.
    [80]. Tokmakov Ⅳ, Park J, Gheyas S, et al.1999. Experimental and theoretical studies of the reaction of the phenyl radical with methane[J]. J. Phys. Chem. A, 103 (19):3636-3645.
    [81]. Asaba T, Fujii N.1971. High temperature oxidation of benzene[J]. Proc. Int. Symp. Shock Tubes Waves,8:1-12.
    [82]. Alzueta MU, Glarborg P, Dam-Johansen K.2000, Experimental and kinetic modeling study of the oxidation of benzene[J]. Int. J. Chem. Kinet.,32 (8): 498-522.
    [83]. Baulch DL, Cobos CJ, Cox RA, et al.1992. Evaluated kinetic data for combustion modelling[J]. J. Phys. Chern. Ref. Data,21 (3):411-734.
    [84]. Taatjes CA, Osborn DL, Selby TM, et al.2008. Absolute photoionization cross-section of the methyl radical[J]. J. Phys. Chem. A,112 (39):9336-9343.
    [85]. Cool TA, Wang J, Nakajima K, et al.2005. Photoionization cross sections for reaction intermediates in hydrocarbon combustion[J]. Int. J. Mass Spectrom., 247 (1-3):18-27.
    [86]. Robinson JC, Sveum NE, Neumark DM.2003. Determination of absolute photoionization cross sections for vinyl and propargyl radicals[J]. J. Chem. Phys.,119 (11):5311-5314.
    [87]. Yang B, Wang J, Cool TA, et al.2012. Absolute photoionization cross-sections of some combustion intermediates[J]. Int. J. Mass Spectrom.,309:118-128.
    [88]. Robinson JC, Sveum NE, Neumark DM.2004. Determination of absolute photoionization cross sections for isomers of C3H5:allyl and 2-propenyl radicals[J]. Chem. Phys. Lett.,383 (5-6):601-605.
    [89]. Cool TA, Nakajima K, Mostefaoui TA, et al.2003. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry[J]. J. Chem. Phys.,119 (16):8356-8365.
    [90]. Koizumi H.1991. Predominant decay channel for superexcited organic molecules[J]. J. Chem. Phys.,95 (8):5846-5852.
    [91]. Wang J, Yang B, Cool TA, et al.2008. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion[J]. Int. J. Mass Spectrom.,269 (3):210-220.
    [92]. Hansen N, Klippenstein SJ, Miller JA, et al.2006. Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations [J]. J. Phys. Chem. A,110 (13):4376-4388.
    [93]. Zhou ZY, Zhang LD, Xie MF, et al.2010. Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes[J]. Rapid Commun. Mass Spectrom.,24 (9):1335-1342.
    [94]. Hansen N, Kasper T, Yang B, et al.2011. Fuel-structure dependence of benzene formation processes in premixed flames fueled by C6H12 isomers[J]. Proc. Combust. Inst.,33 (1):585-592.
    [95]. Hansen N, Li W, Law ME, et al.2010. The importance of fuel dissociation and propargyl plus allyl association for the formation of benzene in a fuel-rich 1-hexene flame[J]. Phys. Chem. Chem. Phys.,12 (38):12112-12122.
    [1]. Prosen EJ, Johnson WH, Rossini FD.1946. Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons[J]. J. Res. Natl. Bur. Stand.,37:51-56.
    [2]. Beckett CW, Pitzer KS, Spitzer R.1947. The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes[J]. J. Am. Chem. Soc.,69 (10):2488-2495.
    [3]. Taylor PH, Rubey WA.1988. Evaluation of the gas-phase thermal decomposition behavior of future jet fuels[J]. Energy Fuels,2 (6):723-728.
    [4]. Brown TC, King KD.1989. Very low-pressure pyrolysis (VLPP) of methyl-and ethynyl-cyclopentanes and cyclohexanes [J]. Int. J. Chem. Kinet.,21 (4): 251-266.
    [5]. Zeppieri S, Brezinsky K, Glassman I.1997. Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends[J]. Combust. Flame,108 (3):266-286.
    [6]. Hawthorn RD, Nixon AC.1966. Shock tube ignition delay studies of endothermic fuels[J]. AIAA J.,4 (3):513-520.
    [7]. Orme JP, Curran HJ, Simmie JM.2006. Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation[J]. J. Phys. Chem. A,110 (1): 114-131.
    [8]. Vasu SS, Davidson DF, Hong ZK, et al.2009. Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature[J]. Energy Fuels,23 (1):175-185.
    [9]. Vasu SS, Davidson DF, Hanson RK.2009. OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures[J]. Combust. Flame,156 (4):736-749.
    [10]. Vanderover J, Oehlschlaeger MA.2009. Ignition time measurements for methylcylcohexane-and ethylcyclohexane-air mixtures at elevated pressures[J]. Int. J. Chem. Kinet.,41 (2):82-91.
    [11]. Sivaramakrishnan R, Michael JV.2009. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes[J]. Combust. Flame,156 (5):1126-1134.
    [12]. Pitz WJ, Naik CV, Mhaolduin TN, et al.2007. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proc. Combust. Inst.,31:267-275.
    [13]. Mittal G, Sung CJ.2009. Autoignition of methylcyclohexane at elevated pressures[J]. Combust. Flame,156 (9):1852-1855.
    [14]. Weber BW, Pitz WJ, Mehl M, et al.2014. Experiments and modeling of the autoignition of methylcyclohexane at high pressure[J]. Combust. Flame, http://dx.doi.Org/10.1016/j.combustflame.2014.01.018.
    [15]. McEnally CS, Pfefferle LD.2005. Fuel decomposition and hydrocarbon growth processes for substituted cyclohexanes and for alkenes in nonpremixed flames[J]. Proc. Combust. Inst.,30:1425-1432.
    [16]. Ji CS, Dames E, Sirjean B, et al.2011. An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames[J]. Proc. Combust. Inst.,33:971-978.
    [17]. Wu FJ, Kelley AP, Law CK.2012. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures[J]. Combust. Flame,159 (4):1417-1425.
    [18]. Skeen SA, Yang B, Jasper AW, et al.2011. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model[J]. Energy Fuels,25:5611-5625.
    [19]. Wang H, Dames E, Sirjean B, et al. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19,2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0[EB/OL]
    [20]. Gong CM, Li ZR, Li XY.2012. Theoretical kinetic study of thermal decomposition of cyclohexane[J]. Energy Fuels,26 (5):2811-2820.
    [21]. Kiefer JH, Gupte KS, Harding LB, et al.2009. Shock tube and theory investigation of cyclohexane and 1-hexene decomposition[J]. J. Phys. Chem. A, 113 (48):13570-13583.
    [22]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2006. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations[J]. J. Phys. Chem. A,110(46):12693-12704.
    [23]. Holbrook KA, Pilling MJ, Robertson SH.1996. Unimolecular Reactions,2nd ed.[M]. Chichester:John Wiley & Sons.
    [24]. Werner HJ, Knowles PJ.1985. A second order multiconfiguration SCF procedure with optimum convergence[J]. J. Chem. Phys.,82 (11):5053-5063.
    [25]. Werner HJ, Knowles PJ.1988. An efficient internally contracted multiconfiguration-reference configuration interaction method[J]. J. Chem. Phys.,89 (9):5803-5814.
    [26]. Davidson ER, Silver DW.1977. Size consistency in the dilute helium gas electronic structure[J]. Chem. Phys. Lett.,52 (3):403-406.
    [27]. Montgomery Jr. JA, Frisch MJ, Ochterski JW, et al.1999. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies[J]. J. Chem. Phys.,110:2822-2827.
    [28]. Werner HJ, Knowles PJ, Knizia G, et al MOLPRO, a package of ab initio programs., version 2010.1.
    [29]. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT,2009.
    [30]. da Silva G, Bozzelli JW.2008. Variational Analysis of the Phenyl+O2 and Phenoxy+O Reactions[J]. J. Phys. Chem. A,112 (16):3566-3575.
    [31]. Zhao L, Ye LL, Zhang F, et al.2012. Thermal decomposition of 1-pentanol and its isomers:a theoretical study[J]. J. Phys. Chem. A,116 (37):9238-9244.
    [32]. Mokrushin V, Bedanov V, Tsang W, et al ChemRate, Version 1.5.8; National Institute of Standard and Technology:Gaithersburg, MD,2009.
    [33]. Yang X, Jasper AW, Giri BR, et al.2011. A shock tube and theoretical study on the pyrolysis of 1,4-dioxane[J]. Phys. Chem. Chem. Phys.,13 (9):3686-3700.
    [34]. Gilbert RG, Smith SC.1990. Theory of Unimolecular and Recombination Reactions[M]. Carlton, Australia:Blackwell Scientific.
    [35]. Zhang SW, Truong TN.2001. Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase a-HMX: an Ab Initio dynamics study[J]. J. Phys. Chem. A,105 (11):2427-2434.
    [36]. Montgomery JA, Ochterski JW, Petersson GA.1994. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method[J]. J. Chem. Phys.,101 (7):5900-5909.
    [37]. Raghavachari K, Trucks GW, Pople JA, et al.1989. A fifth-order perturbation comparison of electron correlation theories[J]. Chem. Phys. Lett.,157 (6): 479-483.
    [38]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2008. Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals[J]. J. Phys. Chem. A,112(46):11598-11610.
    [39]. Iwan I, McGivern WS, Manion JA, et al, The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA 2007, CO2.
    [40]. Linstrom PJ, Mallard WG.2005. NIST Chemistry Webbook, National Institute of Standard and Technology, Number 69, Gaithersburg, MD, http://webbook.nist.gov/[EB/OL]
    [41]. Russell D, Johnson I. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a, August 2013, http://cccbdb.nist.gov/[EB/OL]
    [42]. Klippenstein SJ, Harding LB, Georgievskii Y.2007. On the formation and decomposition of C7H8[J]. Proc. Combust. Inst.,31 (1):221-229.
    [43]. Pant KK, Kunzru D.1997. Pyrolysis of methylcyclohexane:Kinetics and modelling[J]. Chem. Eng. J.,67 (2):123-129.
    [44]. Kim J, Park SH, Lee CH, et al.2012. Coke formation during thermal decomposition of methylcyclohexane by alkyl substituted C5 ring hydrocarbons under supercritical conditions[J]. Energy Fuels,26 (8): 5121-5134.
    [45]. Knepp AM, Meloni G, Jusinski LE, et al.2007. Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2[J]. Phys. Chem. Chem. Phys.,9 (31):4315-4331.
    [1]. Prosen EJ, Johnson WH, Rossini FD.1946. Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons[J]. J. Res. Natl. Bur. Stand.,37:51-56.
    [2]. Huffman HM, Todd SS, Oliver GD.1949. Low temperature thermal data on eight C8H16 alkylcyclohexanes[J]. J. Am. Chem. Soc.,71 (2):584-592.
    [3]. Vanderover J, Oehlschlaeger MA.2009. Ignition time measurements for methylcylcohexane- and ethylcyclohexane-air mixtures at elevated pressures[J]. Int. J. Chem. Kinet.,41 (2):82-91.
    [4]. Ji CS, Dames E, Sirjean B, et al.2011. An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames[J]. Proc. Combust. Inst.,33:971-978.
    [5]. Wu FJ, Kelley AP, Law CK.2012. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures[J]. Combust. Flame,159 (4):1417-1425.
    [6]. Husson B, Herbinet O, Glaude PA, et al.2012. Detailed product analysis during low- and intermediate-temperature oxidation of ethylcyclohexane[J]. J. Phys. Chem. A,116 (21):5100-5111.
    [7]. H. Wang, E. Dames, B. Sirjean, et al. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19,2010 p://melchior.usc.edu/JetSurF/JetSurF2.0)[EB/OL]
    [8]. Wang ZD, Ye LL, Yuan WH, et al.2014. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion[J]. Combust. Flame, 161:84-100.
    [9]. Zhang F, Wang ZD, Wang ZH, et al.2013. Kinetics of decomposition and isomerization of methylcyclohexane:Starting point for kinetic modeling mono-alkylated cyclohexanes[J]. Energy Fuels,27 (3):1679-1687.
    [10]. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159 (7):2243-2253.
    [11]. Oehlschlaeger MA, Davidson DF, Hanson RK.2005. High-temperature ethane and propane decomposition[J]. Proc. Combust. Inst.,30 (1):1119-1127.
    [12]. Linstrom PJ, Mallard WG.2005. NIST Chemistry Webbook, National Institute of Standard and Technology, Number 69, Gaithersburg, MD, http://webbook.nist.gov/[EB/OL].
    [13]. Klippenstein SJ, Harding LB, Georgievskii Y.2007. On the formation and decomposition of C7H8[J]. Proc. Combust. Inst.,31 (1):221-229.
    [14]. Kiefer JH, Gupte KS, Harding LB, et al.2009. Shock tube and theory investigation of cyclohexane and 1-hexene decomposition[J]. J. Phys. Chem. A, 113(48):13570-13583.
    [15]. Pitz WJ, Naik CV, Mhaolduin TN, et al.2007. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine[J]. Proc. Combust. Inst.,31:267-275.
    [16]. Orme JP, Curran HJ, Simmie JM.2006. Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation[J]. J. Phys. Chem. A,110 (1): 114-131.
    [17]. Tsang W.1991. Chemical kinetic data base for combustion chemistry part V. propene[J]. J. Phys. Chern. Ref. Data,20 (2):221-273.
    [18]. Curran HJ.2006. Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition[J]. Int. J. Chem. Kinet.,38 (4):250-275.
    [19]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2008. Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals[J]. J. Phys. Chem. A,112(46):11598-11610.
    [20]. Sirjean B, Glaude PA, Ruiz-Lopez MF, et al.2006. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations[J]. J. Phys. Chem. A,110 (46):12693-12704.
    [21]. Li YY, Tian ZY, Zhang LD, et al.2009. An experimental study of the rich premixed ethylbenzene flame at low pressure[J]. Proc. Combust. Inst.,32: 647-655.
    [22]. Li YY, Cai JH, Zhang LD, et al.2011. Experimental and modeling investigation on premixed ethylbenzene flames at low pressure[J]. Proc. Combust. Inst.,33 (1):617-624.
    [1]. Cool TA, Nakajima K, Mostefaoui TA, et al.2003. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry[J]. J. Chem. Phys.,119 (16):8356-8365.
    [2]. Cool TA, Wang J, Nakajima K, et al.2005. Photoionization cross sections for reaction intermediates in hydrocarbon combustion[J]. Int. J. Mass Spectrom., 247 (1-3):18-27.
    [3]. Wang J, Yang B, Cool TA, et al.2008. Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion[J]. Int. J. Mass Spectrom.,269 (3):210-220.
    [4]. Yang B, Wang J, Cool TA, et al.2012. Absolute photoionization cross-sections of some combustion intermediates[J]. Int. J. Mass Spectrom.,309:118-128.
    [5]. Zhou ZY, Xie MF, Wang ZD, et al.2009. Determination of absolute photoionization cross-sections of aromatics and aromatic derivatives[J]. Rapid Commun. Mass Spectrom.,23 (24):3994-4002.
    [6]. Zhou ZY, Zhang LD, Xie MF, et al.2010. Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes[J]. Rapid Commun. Mass Spectrom.,24 (9):1335-1342.
    [7]. Hansen N, Klippenstein SJ, Miller JA, et al.2006. Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations[J]. J. Phys. Chem. A,110 (13):4376-4388.
    [8]. Soorkia S, Trevitt AJ, Selby TM, et al.2010. Reaction of the C2H radical with 1-butyne (C4H6):low-temperature kinetics and isomer-specific product detection[J]. J. Phys. Chem. A,114 (9):3340-3354.
    [9]. Zhang F, Wang ZD, Wang ZH, et al.2013. Kinetics of decomposition and isomerization of methylcyclohexane:Starting point for kinetic modeling mono-alkylated cyclohexanes[J]. Energy Fuels,27 (3):1679-1687.
    [10]. Linstrom PJ, Mallard WG.2005. NIST Chemistry Webbook, National Institute of Standard and Technology, Number 69, Gaithersburg, MD, http://webbook.nist.gov/[EB/OL].
    [11]. Kiefer JH, Gupte KS, Harding LB, et al.2009. Shock tube and theory investigation of cyclohexane and 1-hexene decomposition[J]. J. Phys. Chem. A, 113 (48):13570-13583.
    [12]. Luo YR.2007. Comprehensive Handbook of Chemical Bond Energies[M]. Boca Raton, FL:CRC Press.
    [13]. Wang ZD, Cheng ZJ, Yuan WH, et al.2012. An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure[J]. Combust. Flame, 159 (7):2243-2253.
    [14]. Crossley SP, Alvarez WE, Resasco DE.2008. Novel micropyrolyis index (MPI) to estimate the sooting tendency of fuels[J]. Energy Fuels,22 (4):2455-2464.
    [15]. Li WJ, Law ME, Westmoreland PR, et al.2011. Multiple benzene-formation paths in a fuel-rich cyclohexane flame[J]. Combust. Flame,158 (11): 2077-2089.
    [16]. Wu FJ, Kelley AP, Law CK.2012. Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures[J]. Combust. Flame,159 (4):1417-1425.
    [17]. Wang H, Dames E, Sirjean B, et al. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19,2010 (http://melchior.usc.edu/JetSurF/JetSurF2.0)[EB/OL]
    [18]. Kelley AP, Smallbone AJ, Zhu DL, et al.2011. Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures:Experimental determination, fuel similarity, and stretch sensitivity[J]. Proc. Combust. Inst.,33 (1):963-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700