用户名: 密码: 验证码:
华南瓜类疫霉种群多样性及其化学防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由疫霉菌引起的瓜类疫病是世界性病害,据报道,该病由多种疫霉菌引起,目前该病已成为瓜类生产中危害最严重的病害之一:因病原菌的多样化和抗药性使得对该病的防治极为困难。为了解近年华南地区冬瓜及黄瓜疫病病原菌的构成和病原种群的动态变化,本文对近4年来从广西和广东两省(区)不同瓜类产区分离到的193株疫霉菌进行系统研究,从形态学和分子生物学方面进行了鉴定,测定了部分代表菌株的生物学特性,开展了病原菌的抗药性检测与监测、交配型及其分布调查、致病性分化及遗传多样性的RAPD分析研究,并对冬瓜疫病的化学防治进行了初步研究。主要研究结果如下:
     1、2007~2010年从广西、广东两省(区)9个冬瓜、黄瓜产区采集疫病病株,经分离纯化共获得193株疫霉菌,对其中10株代表菌株的形态、培养性状、寄主范围等生物学特性进行了研究,并对其中89株的rDNA-ITS区域的序列进行了分析。结果表明,在OA培养基上,10株代表菌株(CZ-1, GL-9, GZ-4, LZ-5, NN-20, NN-27, NN-29, YD-6, YL-2和YL-9)气生菌丝较均匀一致,基质菌丝膨大体常见。孢子囊呈卵形、椭圆形到长椭圆形,无乳突,孢囊梗不脱落。孢囊梗一般不分支,孢子囊有内层出现象。绝大多数菌株表现异宗配合特性,藏卵器球形,壁光滑,基部多呈棍棒形,雄器穿雄生。卵孢子球形,满器,偶有不满器。最适生长温度25-31℃,最高生长温度高于37℃。最适生长pH值范围5-7.5,但多数菌株在偏酸性(pH5-6)条件下生长较好。病原菌能利用多种碳氮源,对孔雀石绿有一定的耐性,人工接种能严重侵染冬瓜、黄瓜、节瓜、西瓜、甜瓜等葫芦科作物,对茄科、十字花科、伞形科的部分植物(如马铃薯、大白菜、上海青、胡萝卜)也具较强致病力。将89株供试菌的rDNA-ITS序列与在GenBank中已有的相关菌株的rDNA-ITS序列进行同源性比较,结果表明所有供试菌株与瓜类疫霉Phytophthora melonis和中国疫霉P. sinensis的同源性最高。对基于rDNA-ITS序列构建的48株疫霉菌的分子系统发育树进行分析结果表明,在自举值为99%的水平上供试10株代表菌株与瓜类疫霉P. melonis和中国疫霉P. sinensis聚成一群,明显不同于34株其他疫霉菌,表明供试瓜类疫病菌株应归入瓜类疫霉P. melonis和中国疫霉P. sinensis种内。结合病原菌的形态学、生物学及rDNA-ITS序列分析,将引起华南广东、广西两省(区)冬瓜及黄瓜疫病的病原菌鉴定为瓜类疫霉P.melonis(异名:P.sinensis)。
     2、采用菌丝块无伤接种法,测定193株瓜类疫霉对供试寄主植物冬瓜和黄瓜的致病力差异及其寄主嗜好性。结果表明,病原群体对寄主植物冬瓜和黄瓜的致病力均存在明显分化现象,可分为强致病力、中等致病力及弱致病力3大类群:来自不同地区的瓜类疫霉对寄主植物冬瓜和黄瓜的致病力明显不同,多数样区以强致病力菌株占优势。瓜类疫霉种群中至少存在3种寄主嗜好型(A,B和C型)菌株,A型菌株对冬瓜和黄瓜均表现强致病力,与原始分离寄主无关;B型菌株仅对原始分离寄主冬瓜表现强致病力,而对黄瓜则表现为弱或中等致病力;C型菌株仅对原始分离寄主黄瓜表现强致病力,而对冬瓜则表现为弱或中等致病力。本研究明示了华南瓜类疫霉致病力分化的存在。
     3、对从华南地区分离到的193株瓜类疫霉进行抗药性检测,结果表明,敏感菌株、中等抗性菌株和抗性菌株分别占测试菌株的29.0%、18.1%和52.8%;不同地区、不同寄主分离的菌株的抗性频率和抗性水平差异较大,来源于广东的菌株抗性频率和抗性水平一般高于来源广西的菌株,分离自黄瓜的菌株高于分离自冬瓜的菌株。大部分样点抗性菌株占据优势群体,个别菌株的抗性指数高达4226.9。叶盘漂浮法测定结果和菌落生长速率法相似。在含药平板上对敏感菌株进行甲霜灵抗性诱导结果表明,从60%的敏感菌株中成功诱导出对甲霜灵抗性稳定的突变体,突变体的抗性水平为敏感性亲本的189~407倍;9株来源于未施用过甲霜灵等苯基酰胺类杀菌剂样点的菌株均为敏感性菌株,其EC50值为0.0429~0.5461μg/mL,将它们EC50的平均值0.3200±0.11617μg/mL确定为华南地区瓜类疫霉对甲霜灵的敏感性基线:对两个样点的监测结果表明,瓜类疫霉抗甲霜灵菌株的频率及抗性指数有逐年增高趋势。华南广西和广东两省(区)瓜类疫霉对甲霜灵抗性普遍发生,瓜类疫霉对甲霜灵抗药性产生与其和药剂的接触密切相关。
     4、采用直接配对法对193株瓜类疫霉进行交配型测定,共检测到5种交配型。各种交配型中,以A2交配型占据优势,占群体的51.8%;其次为A0交配型占24.9%;A1,A2交配型的比例最少,仅2株占1.0%。桂林的瓜类疫霉以A0交配型占优势,比例为40.9%,其它地区的瓜类疫霉则以A2交配型占据优势,比例为37.5~66.7%,来自两种寄主的瓜类疫霉都检测到4种交配型的存在,且均以A2交配型占优势,其中3种交配型(A2、A1A2和A0)为来自两种寄主的瓜类疫霉所共有,A1交配型为冬瓜疫病菌独有,而A1,A2则为黄瓜疫病菌独有,表明瓜类疫霉的部分交配型菌株对寄主有专化性。桂林的瓜类疫霉的A1和A2交配型菌株数比值接近1:1,初步确定桂林处于瓜类疫霉起源中心的范围内,可以推测亚洲是瓜类疫霉的起源中心。
     5、从180条RAPD (random amplified polymorphic DNAs)随机引物中所筛选出的多态扩增性强、重复性好的12条引物,对华南9个不同地区的96株瓜类疫霉进行全基因组DNA遗传多样性分析和指纹图谱构建。选用引物对供试菌株进行RAPD-PCR扩增,共产生135条DNA标记图带,其中124条为多态性图带,多态检测率为91.9%。利用NTSYSpc Version2.1软件对供试菌株间的遗传距离进行聚类分析并构建系统树状图,以遗传相似系数为0.81为阈值,将96株供试菌划分为12个RAPD群,多数分离物之间遗传相似性较低,在DNA水平上存在显著的遗传变异,具有较丰富的遗传多样性。RAPD群的划分与地理来源、分离寄主、致病力、交配型及甲霜灵抗性水平等表型特征均无明显的相关性。研究结果显示,不同地区间菌株的遗传分化不同,分离自黄瓜的菌株其遗传分化明显高于分离自冬瓜的菌株。
     6、为了筛选出防治瓜类疫霉所致黑皮冬瓜疫病的高效药剂,对19种常见商品杀菌剂对瓜类疫霉的室内抑制力进行了测定,并对部分杀菌剂进行冬瓜疫病的盆栽和大田防效试验。室内抑制力测定结果表明:烯酰吗啉(商品名:安克)和氟吗啉+代森锰锌(商品名:施得益)对病原菌的抑制力最强,生长抑制率分别为89.36%和87.43%;其余依次为霜脲氰+代森锰锌(商品名:克露)53.07%、甲霜灵+代森锰锌(商品名:金雷多米尔)51.43%、噁霜灵+代森锰锌(商品名:杀毒矾)46.57%、代森锰锌(商品名:大生M-45)46.00%、敌磺钠(商品名:敌克松)45.86%、乙磷铝+代森锌40.43%;其它杀菌剂对病原菌的生长抑制率均在40%以下;嘧菌酯(商品名:阿米西达)、异菌脲(商品名:扑海因)和恶霉灵的毒性最弱,抑制率均为0%。盆栽试验结果表明:烯酰吗啉和氟吗啉+代森锰锌有很好的保护作用,防治效果达100%;其次为敌磺钠、百菌清、乙磷铝+代森锌和甲霜灵+霜霉威,其防治效果为60~74%;其余杀菌剂的防治效果均在60%以下。在治疗作用方面,烯酰吗啉和氟吗啉+代森锰锌的防治效果最好,分别为72%和64%;其次为霜霉威(商品名:普力克)和甲霜灵+霜霉威,防治效果分别为58.00%和53.70%;其余杀菌剂的防治效果均低于50%。大田防效试验中,烯酰吗啉和氟吗啉+代森锰锌对冬瓜疫病的防治效果分别高达84.5%和77.8%,而甲霜灵的防治效果较低,仅30.1%。
Cucurbit blight is a destructive disease of cucurbit crops worldwide, and the disease has become one of the most serious threats to production of cucurbit crops. Multiple Phytophthora species have been reported to be associated with the disease. It is extremely difficult to control the disease because of the diversity and fungicide resistance of Phytophthora pathogens. To ascertain composition and population dynamics of the pathogens causing cucumber and wax gourd blight, Phytophthora isolates were recovered from the diseased cucumber and wax gourd plants and identified based on their morphological and biological characters as well as molecular analysis in South China during2007-2010in this dissertation. Meanwhile, the characteristcs of metalaxyl sensitivity, mating type, virulent differentiation and genetic diversity of the pathogen populations were systematically studied. Lastly, screening highly effective fungicides for chemical control of wax gourd phytophthora blight was carried out. The main results of the study are summarized as follows.
     1. Totally193isolates of Phytophthora sp. were isolated and purified from wax gourd and cucumber phytophthora blight samples in major vegetable growing areas among9cities of Guangxi Zhuang Autonomous Region and Guangdong province during2007-2010. Comparative studies on morphological, cultural, physiological characters and host range of10representative isolates were conducted. Moreover, sequences of ribosomal DNA-ITS (internal transcribed spacer) of89isolates were analyzed. The representative isolates grew well on OA plates, with white or yellowish colonies and moderate or abundant aerial mycelia. Hyphae transparent, aseptate,4.1-7.6μm (av.5.5μm) in diameter. Hyphal swellings were commonly found and predominantly rounded. Sporangia ovoid, ellipsoid to long ellipsoid, nonpapillate and noncaducous, with a dimension of35.4-86.7x20.4-40.8μm (av.54.4×32.3μm). Sporangia were frequently borne on unbranched sporangiophores. The length-to-width ratio of a sporangium varied from2.43to1.13(av.1.69). Heterothallic, oogonia spherical, smooth-walled,25.5-40.8μm (av.30.9μm) in diameter. Oogonial stalks were frequently club-shaped, rarely tapered. Oospores spherical, thick-walled,22.9-30.7μm (av.26.9μm) in diameter, plerotic or slightly aplerotic. Antheridia were predominantly amphigynous. The optimal temperature and pH value were25.0-30.0℃and5-7.5, respectively, for vegetative growth of the pathogen. The isolates were slightly resistant to malachite green and could utilize multiple carbon and nitrogen sources for their growth. A wide host range of the pathogen was confirmed by artificial inoculations. The rDNA-ITS sequence similarity was compared between the representative isolates causing cucumber and wax gourd blight and38isolates of other Phytophthora spp. registered in GenBank. An optimal phylogenetic tree was established using the Neighbor-Joining method under10000bootstrap replicates. The10representative isolates clustered with the isolates of P. melonis and P. sinensis registered in GenBank at99%bootstrap level, and were clearly differentiated from the remaining34isolates of the other Phytophthora spp. This indicated that the representative isolates were genetically close with P. melonis and P. sinensis. The representative isolates were identified as the members of P. melonis (synonym:P. sinensis) based on their morphological and biological characters as well as ribosomal DNA-ITS sequences.
     2. Virulence of193P. melonis isolates and their host preference were tested and compared by inoculating the mycelial disks on wax gourd and cucumber plants using non-wounding method. The results showed that marked difference of virulence existed in the P. melonis populations. The isolates were divided into highly virulent, moderately virulent and weakly virulent groups. The highly virulent isolates were dominant in most of the areas sampled on both host plants. At least three types (A, B and C) of host preference were found among the P. melonis isolates. The isolates of A-type host preference were highly virulent on both wax gourd and cucumber plants regardless of their original isolation hosts. The isolates of B-type host preference were highly virulent only on the wax gourd plants from which they were isolated, and weakly or moderately virulent on the cucumber plants. The isolates of C-type host preference were highly virulent only on the cucumber plants from which they were isolated, and weakly or moderately virulent on the wax gourd plants. The present study clearly indicated the existence of virulent differentiation in the P. melonis populations in South China.
     3. The sensitivity of193isolates of P. melonis to metalaxyl was tested using mycelial growth rate method in vitro and floating-leaf-disk method in vivo, respectively. The results showed that the sensitive, moderately resistant and resistant isolates were recorded as29.0%,18.1%and52.8%, respectively. The frequency and level of resistance of P. melonis from Guangdong were higher than that from Guangxi. The isolates from cucumber was generally more resistant to metalaxyl than those from wax gourd. The metalaxyl-resistant isolates were frequently detected as a predominant population in most of the sampling sites and the highest resistance index (4226.9) was confirmed. Metalaxyl-resistant (Mtr) mutants could be isolated from approximately60%of the sensitive wild-type isolates. The resistance level of the Mtr mutants was189-407times higher than that of their sensitive parental isolates. The EC50values of9sensitive isolates from a sampling site without a record of phenylamide fungicide application ranged from0.0429to0.5461μg/mL. Their mean EC50value (0.3200±0.1617μg/mL) was considered as the baseline sensitivity of P. melonis to metalaxyl in South China. Metalaxyl-resistant isolates universally occur in South China, especially in the vegetable-growing areas with a longer history of metalaxyl application.
     4. A total of193P. melonis isolates were paired with the reference mating types A1and A2of P. capsici to determine their mating types. The results showed that5mating types of P. melonis were found in9sampling cities. The type A0was predominant in Guilin city, contributing40.9%of the isolates recovered, while the type A2predominant in the other sampling cities with a frequency of37.5-66.7%. The types A0, A2and A1A2were isolated from both hosts, however, the types Al and A1,A2were obtained only from the wax gourd and cucumber plants, respectively, revealing the existence of host-specific mating types of P. melonis in nature. The ratio of types Al and A2isolated from Guilin was close to1:1, indicating that Guilin might be located at the center of geographic origin of P. melonis, and demonstrating that Asia is the geographic origin of P. melonis.
     5. Random amplified polymorphic DNA (RAPD) analysis was used to detect the genetic variation of P. melonis isolates derived from9cities in South China. Among180primers screened, twelve that generated consistent polymorphic bands were applied to amplify the genomic DNA of96isolates collected in South China. In total,135RAPD markers were obtained and124of them showed polymorphism, contributing to91.9%of total bands amplified. Based on the genetic distance, a dendrogram was established with the software NTSYSpc Version2.1, and the96tested isolates were divided into12RAPD groups in0.81genetic similarity coefficient. A lower genetic similarity was detected among majority of the isolates, suggesting the existence of considerably genetic variation and diversity in P. melonis populations at DNA levels in South China. No correlation was obviously found between the RAPD groups and the groups defined by geographic origin, host, virulence, mating type as well as metalaxyl resistance. The results also showed that the degree of genetic variation of the isolates from cucumber was greater than those from wax gourd.
     6. To screen highly effective fungicides for the P. melonis-induced wax gourd phytophthora blight management, the suppressive effects of19fungicides against P. melonis were tested in vitro. The results showed that dimethomorph (trade name:Acrobat) and flumorph+mancozeb showed the highest growth inhibition rates (89.36%and87.43%, respectively) against the pathogen. The growth inhibition rates of the pathogen by cymoxanil+mancozeb (trade name:Curzate), metalaxyl+mancozeb (trade name:Ridomil Gold), oxadixyl+mancozeb (trade name:Sandofan), mancozeb (trade name:Dithane M-45), fenaminosulf (trade name:Dexon) and fosetyl-aluminum+zineb were53.07%,51.43%,46.57%,46.00%,45.86%and40.43%, respectively. The growth inhibition rates of the pathogen by the remaining fungicides were lower than40%. No suppressive efficacy of the pathogen was observed by azoxystrobin (trade name:Amistar), iprodione (trade name: Rovral) and hymexazol. The results of potted tests indicated that both dimethomorph and flumorph+mancozeb showed100%of control efficacy in protective treatments. The control efficacies of fenaminosulf, chlorothalonil, fosetyl-aluminium+zineb and metalaxyl+propamocarb were73.53%,73.53%,64.70%and60.29%, respectively. The therapeutic treatments of dimethomorph and flumorph+mancozeb also showed higher control efficacies (71.71%and63.99%, respectively). The control efficacies of propamocarb (trade name:Previcur) and metalaxyl+propamocarb against the disease were58.00%and53.70%, respectively. The dimethomorph and flumorph+mancozeb showed higher control efficacies (84.5%and77.8%, respectively) against wax gourd phytophthora blight in field trials as compared to a lower control efficacy (30.1%) of metalaxyl.
引文
[1]曹继芬,孙道旺,杨明英,等.云南番茄致病疫霉的交配型、甲霜灵敏感性及毒力类型.菌物学报,2006,25(3):488-495
    [2]曹若彬,林玉松,胡幼梅,等.黄瓜疫病的研究.浙江农业大学学报,1981,7(3):60-67
    [3]陈方新,高智谋,齐永霞,等.棉铃疫病菌对甲霜灵的抗性遗传研究.植物病理学报,2004a,34(4):296-301
    [4]陈方新,高智谋,齐永霞,等.棉铃疫病菌对甲霜灵的抗药性风险研究.植物保护,2004b,30(5):44-47
    [5]陈庆河,翁启勇,王源超,等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析.植物病理学报,2004,34(2):112-116
    [6]成家壮.广州地区瓜菜疫病(死藤)发病条件及防治的初步调查研究.植物保护学报,1980,7(4):209-214
    [7]成家壮.广州地区为害黄瓜的疫霉菌及其致病性的研究.植物保护,1992,18(1):12-13
    [8]董文汉,何永宏,赵永安,等.宝珠梨疫腐病病原菌研究.云南农业大学学报,2002,17(20):143-146
    [9]冯洁,孙文姬,石磊岩,等.中国棉花枯萎病菌生理小种的RAPD分析.菌物系统,2000,19(1):45-50
    [10]冯兰香,杨宇红,谢丙炎,等.中国18省市番茄晚疫病菌生理小种的鉴定.园艺学报,2004,31(6):758-761
    [11]高智谋,郑小波,陆家云.苎麻疫霉对甲霜灵抗性遗传研究.南京农业大学学报,1997,20(3):54-59
    [12]龚龙英,郑小波,刘翔,等.烟草疫霉对烟草的致病性及生理分化研究.南京农业大学学报,1993,16(4):68-72
    [13]顾江涛,丁建成,戚仁德,等.瓜类疫病的发生原因及其无公害防治措施.安徽农业科学,2002,30(1):111-112
    [14]郭书普,高同春,周守年,等.瓜类蔬菜病虫害防治原色图鉴.安徽:安徽科学技术出版社,2005
    [15]韩秀英,马志强,李红霞,等.黄瓜霜霉病菌对嘧菌酯的敏感基线研究.农药学学报,2004, 6(2):76-79
    [16]黄建坤,戚佩坤.广州地区黄瓜疫病病原菌的鉴定及防治研究.华南农学院学报,1982,3(2):36-45
    [17]贾菊生.新疆辣椒疫病及防治研究.植物病理学报,1992,22(3):257-263
    [18]贾菊生,梅桂兰.新疆哈密瓜疫病掘氏疫霉及寄主范围的初步研究.八一农学院学报,1991,14(3):29-33
    [19]康天芳.几种杀菌剂对甜瓜蔓枯病的室内毒力测定.甘肃农业大学学报,2002,37(1):78-81
    [20]赖传雅.农业植物病理学.北京:科学出版社,2003
    [21]赖莉玉,张世德.山东黄瓜品种资源抗病性鉴定.山东农业科学,1992,(1):20-23
    [22]李晖,李国英,丁胜利.新疆主要农作物疫霉菌种类鉴定.植物病理学报,1999,29(4):364-371
    [23]李梅云,李天飞,刘开启,等.烟草黑胫病木霉生防菌株的筛选.中国烟草科学,2001,(2):43-461
    [24]李淑娥,王志田,汤钿,等.哈密瓜疫霉病及防治研究.植物保护学报,1986,13(1):53-58
    [25]李卫民,晏卫红,黄思良,等.广西黑皮冬瓜疫病的病原菌鉴定及其生物学特性.植物病理学报,2007,37(3):333-336
    [26]李锡香,朱德蔚.黄瓜种质资源描述规范和数据标准.北京:中国农业出版社,2005:90-91
    [27]李智军,龙卫平,郑锦荣,等.广东辣椒疫霉菌分离鉴定及其致病力和生理小种分化研究.华南农业大学学报,2007,28(1):50-54
    [28]梁喜龙,冯乃杰,杜吉到,等.疫霉菌的研究现状及展望.杂粮学报,200424(6):354-358
    [29]刘爱媛.链霉素对几种卵菌的抑制作用.植物保护学报,2001,28(3):254-258
    [30]刘任,卢兆金.哈茨木霉T2菌株对辣椒士传真菌病害的控制作用.仲凯农业技术学院学报,2003,16(1):6-11
    [31]刘永刚,吕和平,谢丙炎,等.辣椒疫病发病因子和化学防治技术研究.西北农业学报,2004,13(3):56-59
    [32]刘永刚,张海英,郭建国,等.甘肃省辣椒疫霉菌的交配型分布及其致病力差异.植物保护学报,2008,35(5):448-452
    [33]刘兆敏,田艳忠,沈崇尧,等.天津市黄瓜疫霉菌生物学特性及防治研究.莱阳农学院学报,1995,12(4):275-280
    [34]楼兵干,张炳欣.基于rDNA ITS序列探讨部分腐霉种的系统发育与其形态特征.菌物学报, 2005,24(2):207-220
    [35]鲁红学,赵明敏,徐世清.芦荟黑斑病发生规律及室内药剂筛选.中国农学通报,2007,23(7):452-456
    [36]陆家云,龚龙英.南京地区黄瓜疫病菌的鉴定及生物学特性的研究.南京农学院学报,1982,(3):28-38
    [37]陆家云,龚龙英,何汉兴.疫霉属真菌生物学及分类研究.南京农学院学报,1984,(1):20-31
    [38]陆家云,郑小波.中国樟疫霉A1交配型的研究.植物病理学报,1988,18:129-135
    [39]陆少峰,吴永官,黄思良,等.19种杀菌剂对黑皮冬瓜疫病病菌室内毒力测定.广西农业科学,2007a,38(5):527-529
    [40]陆少峰,吴永官,黄思良,等.冬瓜疫病防治研究进展.中国农学通报,2007b,23(11):301-304
    [41]卢学松,王长方,游泳.几种新型杀菌剂对番茄晚疫病的药效试验.福建农林科技,2001(2):12-13
    [42]罗方芳,朱天圣,虞皓.安克锰锌等几种杀菌剂防治瓜类疫病药效评价.广东农业科学,2000,(5):50-51
    [43]吕佩珂,李明远,吴钜文,等.中国蔬菜病虫原色图谱.北京:农业出版社,1998:28-29
    [44]吕新,兰成忠,李本金,等.福建致病疫霉群体遗传多样性分析.福建农业学报,2008,23(2):149-153
    [45]马国胜,高智谋.安徽省烟草黑胫病菌的交配型及其地理分布研究.植物病理学报,2006,36(6):566-568
    [46]马国胜,高智谋,吴向辉.疫霉菌的交配型与性分化(综述).安徽农业大学学报,2003,30(3):250-254
    [47]马荣群,黄粤,宋正旭,等.辣椒炭疽病3病原核糖体基因ITS区的序列测定及分析.西南农业学报,2007,20(6):1234-1236
    [48]孟祥栋,魏佑营,马红RAPD技术在冬瓜和节瓜品种鉴定中的应用.上海农业学报,1996,12(4):45-49
    [49]缪承杜,洪葵.真菌分类技术的研究进展.安徽农业科学,2007,35(22):6695-6697
    [50]彭埃天,刘景梅,陈霞.阿米西达防治冬瓜霜霉病药效试验初报.广东农业科学,2006,(5):105-106
    [51]彭化贤,刘波微,李薇.四川辣椒疫霉菌生物学特性和辣椒抗霉疫病性鉴定方法初探.云南 农业大学学报,2005,20(1):140-144
    [52]戚仁德,丁建成,高智谋,等.安徽省辣椒疫霉对甲霜灵的抗药性监测.植物保护学报,2008,35(6):245-250
    [53]戚仁德,丁建成,顾江涛,等.辣椒疫霉致病力分化的初步研究.植物保护学报,2002,29(2):189-190
    [54]邱思鑫,何红,阮宏椿,等.内生芽抱杆菌TB2防治辣椒疫病效果及其机理初探.植物病理学报,2004,34(2):173-179
    [55]申承环.高寒地区日光节能温室黄瓜疫病药剂防治试验.北方园艺,2011,(15):184-185
    [56]沈崇尧,王有琪,田林,等.甘肃省辣椒疫病病原菌鉴定及生物学特性研究.云南农业大学学报,1990,(2):72-77
    [57]申贵,王源超,郑小波.不同寄主来源寄生疫霉菌株的遗传变异分析.生物多样性,2003,11(6):486-490
    [58]孙文秀,张修国.不同地区辣椒疫霉致病力分化及其DNA多态性分析.长江大学学报(自然科学版),2008a,5(3):41-44,62-67
    [59]孙文秀,张修国.致病性和非致病性辣椒疫霉菌群体的遗传多态性.华中农业大学学报,2008b,27(6):723-727
    [60]孙文秀,张修国,贾永健,等.不同地区辣椒疫霉菌遗传多样性的RAPD分析.植物病理学报,2005,35(4):340-344
    [61]唐德志,孙毓彬,何苏琴.甘肃白兰瓜、西瓜疫霉种的鉴定研究.西北农业大学学报,1990,18(4):74-79
    [62]唐德志,孙毓彬,何苏琴.掘氏疫霉卵孢子在田间越冬的研究.植物病理学报,1991a,21(1):59-63
    [63]唐德志,孙毓彬,何苏琴,等.畦作防治西瓜疫病研究.西北农业大学学报,1991b,19(3):105-107
    [64]田林山.冬瓜菌核病的发生与综合防治.吉林蔬菜,2009,(04):51
    [65]王长林,沈镝,等.冬瓜和节瓜种质资源描述规范和数据标准.北京:中国农业出版社,2008:66-67
    [66]王得元,安康,王汝贤.广州市辣椒疫病病原鉴定.广东农业科学,2001,(2):37-39
    [67]王革,李梅云,段玉琪,等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究.云南大学学报(自然科学版),2001,23(3):222-226
    [68]王革,郑小波,陆家云,等.云南省烟草黑胫病菌的交配型及其分布.南京农业大学学报,1997a,20(1):31-34
    [69]王革,郑小波,陆家云,等.云南省烟草黑胫病菌致病力分化的研究.南京农业大学学报,1997b,20(4):30-35
    [70]王汉荣,茹水江,王连平,等.黄瓜嫁接防治枯萎病和疫病技术的研究.当代蔬菜,2005(11):37-38
    [71]王汉荣,茹水江,王连平,等.浙江省南瓜疫病的病原菌鉴定及生物学特性研究.浙江农业学报,2003,15(1):13-18
    [72]王化波,王晓鸣,朱振东.中国大豆疫霉菌遗传多样性的RAPD分析.菌物系统,2003,22(2):2]9-227
    [73]王建营,郑小波.苎麻疫霉群体的RAPD分析.菌物系统,2003,22(2):228-234
    [74]王平,陆家云.掘氏疫霉同宗配合、异宗配合特性的研究.真菌学报,1988,7(2):102-111
    [75]王万能,肖崇刚.烟草黑胫病的综合防治及其研究进展.广西农业科学,2004,(2):42-43
    [76]王文桥,马志强,张小风,等.致病疫霉抗药性、交配型和适合度.植物病理学报,2002,32(3):278-283
    [77]王燕华,杨顺宝.上海地区黄瓜疫病菌的分离及鉴定.植物保护,1980,(5):2-4
    [78]王颖.瓜类疫病菌的鉴定以及Phytophthora melonis和P. sojae的分子检测[学位论文].南京农业大学,江苏南京,2007
    [79]王源超,张正光,郑小波.核糖体基因ITS作为芝麻疫霉、恶疫霉分类辅助性状的研究.菌物系统,2000,19(4):485-491
    [80]王子迎,王源超,张正光,等.中国和美国大豆疫霉群体遗传结构的RAPD比较分析.科学通报,2006,51(16):1913-1919
    [81]魏岑.农药混剂研制及混剂品种.北京:化学工业出版社,1999,24
    [82]文景芝,陈宏宇.大豆疫霉病菌致病性分化研究.中国油料作物学报,2002,24(1):63-66
    [83]文景芝,贾文香,张明厚,等.黑龙江省南瓜疫霉病病原鉴定.植物病理学报,1997,28(3):261-262
    [84]吴永官,黄思良,陈振东,等.12种杀菌剂防治黑皮冬瓜疫病的药效试验.见:彭友良,王振中.中国植物病理学会2008年学术年会论文集.广州,2008年7月,640
    [85]吴永官,陆少峰,黄思良,等.华南地区瓜类疫霉对甲霜灵的田间抗药性.微生物学报,2011,51(8):102-111
    [86]夏烨,刘学敏,金焕贵.甲霜灵、福美双及其复配对辣椒疫病菌的毒力测定.农药科学与管理,2002,23(1):26-28
    [87]谢大森.冬瓜生产现状及育种趋势.江西农业学报,2001,13(2):60-63
    [88]谢大森,何晓明,彭庆务.冬瓜嫁接育苗技术研究.中国蔬菜,2003,(3):35-36
    [89]谢大森,何晓明,彭庆务,等.冬瓜主要农艺性状的相关与通径分析.华北农学报,2002,17(增刊):124-127
    [90]谢大森,何晓明,彭庆务.冬瓜种质资源的综合鉴评.中国蔬菜,2009a,(8):36-41
    [91]谢大森,何晓明,彭庆务.外源DNA导入冬瓜条件的优化及其运用.分子植物育种,2009b,7(3):624-628
    [92]谢大森,赵芹,何晓明,等.瓜类疫病研究进展.热带作物学报,2010,31(3):503-507
    [93]谢联辉.普通植物病理学.北京:科学出版社,2006,75-82
    [94]谢双大,朱天圣,虞皓,等.冬瓜与节瓜枯萎病病原菌鉴定.广东农业科学,1994,(2):36-38
    [95]谢志庚,李顺功,王万立.安克对辣椒疫霉菌的毒性测定.天津农林科技,1999,10(5):26-27
    [96]徐静静,蔺宇,朱振东.植物病原菌SSR标记开发与利用.植物保护,2008,34(1):14-21
    [97]徐静静,王晓鸣,武小菲,等.大豆疫霉多态性SSR标记开发及遗传多样性分析.植物病理学报,2009,39(4):337-346
    [98]杨君丽,咸文荣,王淑艳.19种药剂对辣椒疫霉菌防效的测试.北方园艺,2003,(3):70
    [99]杨学辉,肖崇刚,袁洁.贵州辣椒疫病病原鉴定及生物学特性研究.西南农业大学学报(自然科学版),2004,26(4):414-416
    [100]杨雅云,罗文富,杨艳丽.马铃薯及番茄晚疫病菌的核糖体DNA-ITS区段序列分析.云南农业大学学报,2005,20(2):188-192
    [101]杨宇红,冯兰香,谢丙炎,等.番茄晚疫病菌对甲霜灵的抗性.植物保护学报,2003,30(1):57-62
    [102]杨宇红,谢丙炎,冯兰香,等.中国番茄晚疫病菌交配型及其分布研究.菌物学报,2004,23(3):351-355
    [103]杨志辉,朱杰华,张凤国.中国马铃薯晚疫病菌AFLP遗传多样性分析.菌物学报,2008,27(3):351-359
    [104]姚国胜,杨志辉,朱杰华,等.中国部分地区马铃薯寄主上致病疫霉SSR基因型分析.菌物学报,2009,28(2):275-282
    [105]叶广继.青海马铃薯晚疫病菌群体遗传多样性研究[学位论文].青海大学,青海西宁 2008
    [106]尹敬芳,张文华,李健强,等.辣椒疫病生防菌的筛选及其抑菌机制初探.植物病理学报,2007,37(1):88-94
    [107]张国珍,梁月,戴万安.西藏辣椒疫病病原鉴定、生物学特性及室内杀菌剂生物测定.西藏农业科技,2003,26(4):23-30
    [108]张修国,罗文富,杨艳丽,等.烟草黑胫病菌株亲缘关系的RAPD分析.菌物系统,2000,19(1):3944
    [109]张正光,王源超,郑小波.大豆疫霉和苜蓿疫霉rDNA ITS序列分析.菌物学报,2003,22(4):542-548
    [110]赵志坚,曹继芬,李灿辉,等.云南致病疫霉交配型、甲霜灵敏感性、mtDNA单倍型及其群体演替研究.中国农业科学,2007,40(4):727-734
    [111]赵智娴,董锦艳,莫明和,等.日本亮耳菌对植物病原真菌的拮抗试验.云南大学学报(自然科学版),2002,24(6):475-477
    [112]浙江农业大学园艺系蔬菜病害课题组,杭州市江干区农业局.黄瓜疫病病原菌的鉴定.微生物学通报,1978,5(1):3-5
    [113]郑服丛,Elaine W.用RAPD对中国热带地区疫霉菌分类的初步研究.热带作物学报,1998,19(2):1-6
    [114]郑小波.疫霉菌及其研究技术.北京:中国农业出版社,1997
    [115]郑小波,龚龙英,刘翔,等.掘氏疫霉有性生殖后代交配型和致病力遗传研究.南京农业大学学报,1994,17(1):39-42
    [116]郑小波,陆家云.掘氏疫霉遗传学研究Ⅱ.交配型遗传与变异的研究.真菌学报,1992,11(2):134-141
    [117]郑莹,段玉玺,陈立杰,等.沈阳地区丝瓜疫病病原菌研究.植物保护,2008,34(5):27-31
    [118]中国农业科学院蔬菜花卉研究所.中国蔬菜品种志.北京:中国农业科技出版社,2001
    [119]朱桂宁,蔡健和,胡春锦,等.广西山药炭疽病病原菌的鉴定与ITS序列分析.植物病理学报,2007,37(6):572-577
    [120]朱桂宁,黄福新,冯兰香,等.番茄晚疫病菌对甲霜灵、霜脲氰和烯酰吗啉的敏感性检测.中国农业科学,2008,41(5):1355-1365
    [121]朱豪红,陈景成,吴永官,等.玉林市黑皮冬瓜疫病发生影响因素分析及防治技术措施.中国植保导刊,2009,29(4):22-23
    [122]祝明亮,白江兰,李梅云,等.烟草黑胫病菌对甲霜灵的抗药性风险.农药,2007,46(10):709-712
    [123]朱有勇,王云月,Dilbag S M,等.棉花黄萎病菌致病类型及其分子指纹分析.中国农业科学,1998,31(3):56-61
    [124]朱振东,王晓鸣,常汝镇,等.黑龙江省大豆疫霉菌生理小种鉴定及大豆种质的抗性评价.中国农业科学,2000,33(1):62-67
    [125]朱宗源,陆金萍,周新根,等.上海郊区青椒疫病病原菌鉴定及其生物学特性.上海农业学报,1992,8(3):36-41
    [126]左豫虎,侯巨梅,康振生,等.大豆疫霉菌抗甲霜灵特性研究.菌物学报,2005,24(3):422-428
    [127]Abu-El Samen F, Secor G A, Gudmestad N C. Genetic variation among asexual progeny of Phytophthora infestans detected with RAPD and AFLP markers. Plant Pathology,2003,52: 314-325
    [128]Ando K, Grumet R. Evaluation of altered cucumber plant architecture as a means to reduce Phytophthora capsici disease incidence on cucumber fruit. Journal of the American Society for Horticultural Society,2006,131:491-498
    [129]Andrivon D. Races of Phytophthora infestans in France,1991-1993. Potato Research,1994,37: 279-286
    [130]Ann P-J, Ko W-H. Effect of chloroneb and ethazol on mating type of Phytophthora parasitica and P.cinnamomi. Botanical Bulletin of Academia Sinica,1989,30:207-210
    [131]Ann P-J, Tsai J-N. Phytophthora blight of peace lily in Taiwan. Plant Pathology Bulletin,2000, 9:145-150
    [132]Ashby S F. Oospores in cultures of Phytophthora faberi. Kew Bulletin,1922:257-262
    [133]Babadoost M. Outbreak of Phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Disease,2000,84:1345
    [134]Bakonyi J, L'aday M, Dula T, et al. Characterisation of isolates of Phytophthora infestans from Hungary. European Journal of Plant Pathology,2002,108:139-146
    [135]Banihashemi Z and Mirtalebi M. Safflower seedling a selective host to discriminate Phytophthora melonis from Phytophthora drechsleri. Journal of Phytopathology,2008,156: 499-501
    [136]Barak E, Edgington L V, Ripley B D. Bioactivity of the fungicide metalaxyl in potato tubers against some species of Phytophthora, Fusarium, and Alternaria, related to polyphenoloxidase activity. Canadian Journal of Plant Pathology,1984,6:304-308
    [137]Bhat R G, Mcblain B A, Schmittenner A F. The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae. Mycological Research,1993, 97(7):865-870
    [138]Bowers J H, Papavizas G C and Johnston S A. Effect of soil temperature and soil-water matric potential on the survival of Phytophthora capsici in natural soil. Plant Disease,1990,74:771-778
    [139]Brasier C M. Evolutionary biology of Phytophthora. Annual Review of Phytopathology,1992, 30:153-171
    [140]Cafe-Filho A C, Duniway J M and Davis R M. Effects of the frequency of furrow irrigation on root and fruit rots of squash caused by Phytophthora capsici. Plant Disease,1995,79:44-48
    [141]Carlisle D J, Cooke L R and Brown A E. Phenotypic and genotypic characterisation of Northern Ireland isolates of Phytophthora infestans. European Journal of Plant Pathology,2001,107: 291-303
    [142]Chang H S, Shu I M, Ko W H. Hormone production and reception among isolates of Phytophthora melonis from Taiwan. Annals of Phytopathological Society of Japan,1984,50: 27-30
    [143]Chang T-T and Ko W-H. Effect of metalaxyl on mating type of Phytophthora infestans and P. parasitica. Annals of Phytopathological Society of Japan,1990a,56:194-198
    [144]Chang T T and Ko W H. Evidence for absence of hybridization in crosses between Phytophthora infestans and Phytophthora parasitica. Mycological Research,1993,97: 675-678
    [145]Chang T T and Ko W H. Resistance to fungicides and antibiotics in Phytophthora parasitica: genetic nature and use in hybrid determination. Phytopathology 1990b,80:1414-1421
    [146]Chen W. Restriction fragment length polymorphism in enzymatically amplified ribosomal DNAs of three heterothallic Pythium species. Phytophthology,1992,82:1467-1472
    [147]Colas V, Lacourt I, Ricci P, et al. Diversity of virulence in Phytophthora parasitica on tobacco, as reflected by nuclear RFLPs. Phytopathology,1998,88:205-212
    [148]Cooke DEL, Drenth A, Duncan J M, et al. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology,2000,30:17-32
    [149]Cooke DEL, Duncan J M. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycological Research,1997,101: 667-677
    [150]Crandall B A, Gravatt G F. The distribution of Phytophthora cinnamomi. Ceiba,1967,13:43-45,57-78
    [151]Crawford A R, Bassam B J, Drenth A, et al. Evolutionary relationships among Phytophthora species deduced from rDNA sequence analysis. Mycological Research,1996,100:437-443
    [152]Daayf F, Platt H W. Assessment of mating types and resistance to metalaxyl of Canadian populations of Phytophthora infestans in 1997. American Journal of Potato Research,1999, 76:287-295
    [153]Daayf F, Platt H W, Mahuku G, et al. Relationships between pathotypes and RAPDs, Gpi-allozyme patterns, mating types, and resistance to metalaxyl of Phytophthora infestans in Canada in 1997. American Journal of Potato Research,2001,78:129-139
    [154]Davidse L C, Hofman A E, Velthuis G C M. Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Experimental Mycology,1983,7:344-361
    [155]Drenth A and Guest D A. Diversity and Management of Phytophthora in Southeast Asia. Australian Centre for International Agricultural Research. Canberra,2004,7
    [156]Drenth A. Whisson S C, MacLean D J, et al. The evolution of races of Phytophthora sojae in Australia. Phytopathology,1996,86(2):163-169
    [157]Elena K. Pathogenicity of Phytophthora nicotianae isolates to tobacco and tomato cultivars. Phytopathologia Mediterranea,2000,39:245-250
    [158]Erwin D C. Variability within and among species of Phytophthora. In Phytophthora:its Biology, Taxonomy, Ecology, and Pathology (ed. DC Erwin, S. Bartnicki-Garcia & PH Tsao), St Paul, Minnesota:The American Phytopathological Society,1983,149-165
    [159]Erwin D C and Ribeiro O K. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, Minn,1996
    [160]Flier W G, Grunwald N J, Kroon L P N, et al. The population structure of Phytophthora infestans from the Toluca Valley of central Mexico suggests genetic differentiation between populations from cultivated potato and wild Solanum spp. Phytopathology,2003,93:382-390
    [161]Forster H, Tyler B M, and Coffey M D. Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. Molecular Plant Microbe Interactions,1994,7(6):780-791
    [162]Fry W E, Drenth A, Pielman L J. Population genetic structure of Phytophora infestans in the Netherlands. Phytopathology,1991,81:1330-1336
    [163]Fry W E, Goodwin S B. Re-emergence of potato and tomato late blight in the United States. Plant Disease,1997,81(12):1349-1357
    [164]Fry W E, Goodwin S B, Dyer A T, et al. Historical & recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Disease,1993,77(7):653-661
    [165]Gallegly M E, Galindo J. Mating types and oospores of Phytophthora infestans in nature in Mexico. Phytopathology,1958,48:274-277
    [166]Gallegly M E, Hong C X. Phytophthora Identifying Species by Morphology and DNA Fingerprints. American Phytopathological Society Press, St. Paul, Minn,2008
    [167]Gallup C A, and Shew H D. Occurrence of race 3 of Phytophthora nicotianae in North Carolina, the causal agent of black shank of tobacco. Plant Disease,2010,94(5):557-562
    [168]Gevens A J, Ando K, Lamour K H, et al. A detached cucumber fruit method to screen for resistance to Phytophthora capsici and effect of fruit age on susceptibility to infection. Plant Disease,2006,90(10):1276-1282
    [169]Ghimire S R, Hyde K D, Hodgkiss I J, et al. Phenotypes of Phytophthora infestans in Nepal: mating types and metalaxyl sensitivity. Potato Research,2001,44:337-347
    [170]Gisi U, Cohen Y. Resistance to phenylamide fungicides:a case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology,1996,34:549-572
    [171]Goodwin S B. The population genetics of Phytophthora. Phytopathology,1997,87:462-473
    [172]Grover J K, Adiga G, Vats V, et al. Extracts of Benincasa hispida prevent development of experimental ulcer. Journal of Ethnopharmacology,2001,78:159-164
    [173]Gu Y-H, Ko W-H. Evidence for mitochondrial gene control of mating types in Phytophthora. Canadian Journal of Microbiology,2005,51:934-940
    [174]Guharoy S, Bhattacharyya S, Mukherjee S K, et al. Phytophthora melonis associated with fruit and vine rot disease of pointed gourd in India as revealed by RFLP and sequencing of ITS region. Journal of Phytopathoogy,2006,154:612-615
    [175]Giirtler H. Physiological races of Phytophthora infestans in Denmark and low temperature storage of isolates. Potato Research,1984,27:25-31
    [176]Haas J H, Buzzell R I. New races 5 and 6 of Phytophthora megasperma var. sojae and differential reactions of soybean cultivars for races 1 to 6. Phytopathology,1976,66:1361-1362
    [177]Hartman G L, and Huang Y H. Pathogenicity and virulence of Phytophthora capsici isolates from Taiwan on tomatoes and other selected hosts. Plant Disease,1993,77(6):588-591
    [178]Hausbeck M K and Lamour K H. Phytophthora capsici on vegetable crops:Research progress and management challenges. Plant Disease,2004,88(12):1292-1303
    [179]Heather W A and Pratt B H. Association of Phytophthora drechsleri Tucker with death of Pinus radiata D. Don in Southern New South Wales. Australian Journal of Botany,1975,23(2): 285-288
    [180]Hildebrand A A. A root and stalk rot of soybean caused by Phytophthora megasperma Drechsler var. sojae var. nov. Canadian Journal of Botany,1959,37:927-957
    [181]Ho H H. Phytophthora drechsleri causing blight of cucumis species in China. Mycologia,1984, 76(1):115-121
    [182]Ho H H. Phytophthora melonis and P. sinensis synonymous with P. drechsleri. Mycologia,1986, 78(6):907-912
    [183]Ho H H. Synoptic keys to the species of Phytophthora. Mycologia,1981,73:705-714
    [184]Ho H-H. Taiwan Phytophthora. Botanical Bulletin of Academia Sinica.1990,31:89-106
    [185]Islam S Z, Babadoost M, Lambert K N, et al. Characterization of Phytophthora capsici isolates from processing pumpkin in Illinois. Plant Disease,2004,89(2):191-197
    [186]Ivanovic M, Niepold F and Ivanovic M. Survey of Phytophthora infestans populations in Serbia:Mating type, metalaxyl resistance and virulence properties. Potato Research,2003, 46(4):39-45
    [187]Ivors K, Garbelotto M, Vries I D E, et al. Microsatellite markers identify three lineages of Phytophthora ramorumin US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology,2006,15:1493-1505
    [188]Jee H J, Nam K W and Cho W D. Severe root rot on hydroponically-grown lettuce caused by Phytophthora drechsleri. Plant Pathology Journal,2001,17(5):311-314
    [189]Knapova G, Gisi U. Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathology,2002,51(5):641-653
    [190]Knapova G, Schlenzig A, Gisi U. Crosses between isolates of Phytophthora infestans from potato and tomato and characterization of Fl and F2 progeny for phenotypic and molecular markers. Plant Pathology,2002,51:698-709
    [191]Ko W-H. Hormonal regulation of sexual reproduction in Phytophthora. Botancial Studies,2007, 48:365-375
    [192]Ko W H. Mating-type distribution of Phytophthora coloasiae on the island of Hawaii. Mycologia, 1979,71:434-437
    [193]Ko W H. Sexuality, evolution and origin of Phytophthora. Plant Protection Bulletin (Taiwan, R. O.C.),1980,22:141-151
    [194]Ko W H, Chang H S and Su H J. Isolates of Phytophthora cinnamomi from Taiwan as evidence for an Asian origin of the species. Transactions of the British Mycological Society,1978,71: 496-499
    [195]Ko W H, Lee C J and Su H J. Chemical regulation of mating type in Phytophthora parasitica. Mycologia,1986,78:134-136
    [196]Kolmer J A, Liu J Q and Sies M. Virulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathology,1995,85:276-285
    [197]Kreutzer W A. A Phytophthora rot of cucumber fruit. Phytopathology,1937,27:955
    [198]Kreutzer W A, Bodine E W and Durrell L W. Cucurbit diseases and rot of tomato fruit caused by Phytophthora capsici. Phytopathology,1940,30:972-976
    [199]Lamour K H and Hausbeck M K. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology,2000,90:396-340
    [200]Lamour K H and Hausbeck M K. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology,2001,91:553-557
    [201]Laviolette F A, Athow K L. Three new physiologic races of Phytophthora megasperma var. sojae. Phytopathology,1977,67:267-268
    [202]Layton A C, Athow K L and Laviolette F A. Inheritance of resistance to Phytophthora megasperma f. sp. glycinea in a soybean plant introduction. Plant Disease,1984,68(12):1080-1083
    [203]Layton A C, Kuhn D N. In planta formation of heterokaryons of Phytophthora megasperma f. sp. glycinea. Phytopathology.1990,80(7):602-606
    [204]Lazarovits G, Ward E W B. Relationship between localized glyceollin accumulation and metalaxyl treatment in the control of phytophthora rot in soybean hypocotyls. Phytopathology, 1982,72(9):1217-1221
    [205]Lebreton L and Andrivon D. French isolates of Phytophthora infestans from potato and tomato differ in phenotype and genotype. European Journal of Plant Pathology,1998,104:583-594
    [206]Lebreton L, Lucas J M, Andrivon D. Aggressiveness and competitive fitness of Phytophthora infestans isolates collected from potato and tomato in France. Phytopathology,1999,89(8): 679-686
    [207]Lee K H, Choi H R and Kim C H. Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. Journal of Ethnopharmacology,2005,97(3):509-513
    [208]Legard D E, Lee T Y and Fry W E. Pathogenic specialization in Phytophthora infestans: aggressiveness on tomato. Phytopathology,1995,85(11):1356-1361
    [209]Leitz R A, Hartman G L, Pedersen W L, et al. Races of Phytophthora sojae on soybean in Illinois. Plant Disease,2000,84(4):487
    [210]Leonian L H. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology,1922,12:401-408
    [211]Leung H, Nelson R J, Leach J E. Population structure of plant pathogenic fungi and bacteria. Advances in Plant Pathology,1993,10:157-205
    [212]Linde C, Drenth A and Wingfield M J. Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. European Journal of Plant Pathology,1999,105:667-680
    [213]Lucas J A, Greer G, Oudemans P V, et al. Fungicide sensitivity in somatic hybrids of Phytophthora capsici by protoplast fusion. Physiological and Molecular Plant Pathology,1990, 36:175-187
    [214]Mahuku G, Peters R D, Platt H W, et al. Random amplified polymorphic DNA (RAPD) analysis of Phytophthora infestans isolates collected in Canada during 1994 to 1996. Plant Pathology,2000,49:252-260
    [215]Marr K L, Xia Y M and Bhattarai N K. Allozymic, morphological, phenological, linguistic, plant use, and nutritional data of Benincasa hispida (Cucurbitaceae). Economic Botany,2007, 61 (1):44-59
    [216]Mayton H, Smart C D, Moravec B C, et al. Oospore survival and pathogenicity of single oospore recombinant progeny from a cross involving US-17 and US-8 genotypes of Phytophthora infestans. Plant Disease,2000,84(11):1190-1196
    [217]Meng X Q, Shoemaker R C and Yang X B. Analysis of pathogenicity and genetic variation among Phytophthora sojae isolates using RAPD. Mycological Research,1999,103 (2):173-178
    [218]Miller S A, Bhat R G and Schmitthenner A F. Detection of Phytophthora capsici in pepper and cucurbit crops in Ohio with two commercial immunoassay kits. Plant Disease,1994,78(4): 1042-1046
    [219]Mills S D, Forsters H, Coffey M D. Taxonomic structure of Phytophthora cryptogea and P. drechsleri based on isozyme and mitochondrial DNA analysis. Mycological Research,1991,95: 31-48
    [220]Mirabolfathy M, Cooke D E L, Duncan J M, et al. Phytophthora pistaciae sp. nov. and P. melonis:the principal causes of pistachio gummosis in Iran. Mycological Research,2001,105: 1166-1175
    [221]Monroy-Barbosa A and Bosland P W. Identification of novel physiological races of Phytophthora capsici causing foliar blight using the New Mexico recombinant inbred pepper lines set as a host differential. Journal of the American Society for Horticultural Science,2011, 136(6):205-210
    [222]Moller K, Dilger M, Habermeyer J, et al. Population studies on Phytophthora infestans on potatoes and tomatoes in southern Germany. European Journal of Plant Pathology,2009,124: 659-672
    [223]Morgan F L, Hartwing E E. Physiologic specialization in Phytophthora megasperma var. sojae. Phytopathology,1965,55:1277-1279
    [224]Mosa A A, Kobayashi K, Ogoshi A. Isoenzyme polymorphism and segregation in isolates of Phytophthora infestans from Japan. Plant Pathology,1993,42:26-34
    [225]Nayar N M, More T A. Cucurbits. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi,1998
    [226]Newhook F J, Waterhouse G M and Stamps D J. Tabular key to the species of Phytophthora de Bary. Mycological Paper,1978,143:1-20
    [227]Niederhauser J S, Cobb W C. The late blight of potatoes. Scientific American,1959,200: 100-112
    [228]Pandey S, Kumar S, Mishra U. Genetic diversity in Indian ash gourd(Benincasa hispida) accessions as revealed by quantitative traits and RAPD markers. Scientia Horticulturae,2008, 118(1):80-86
    [229]Parra G, Ristaino J B. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease.2001,85(10): 1069-1075
    [230]Peters R D, Platt H W and Hall R. Changes in race structure of Canadian populations of Phytophthora infestans based on specific virulence to selected potato clones. Potato Research, 1998,41(4):355-370
    [231]Ramesh M, Gayathri V, Appa Rao A V N, et al. Pharmacological actions of fruit juice of Benincasa hispida. Fitoterapia,1989,60:241-247
    [232]Ristaino J B. Influence of rainfall, drip irrigation, and inoculum density on the development of Phytophthora root and crown rot epidemics and yield in bell pepper. Phytopathology,1991,81: 922-929
    [233]Ristaino J B. Interspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology,1990,80:1253-1259
    [234]Ristaino J B, Hord M J and Gumpertz M L. Population densities of Phytophthora capsici in field soils in relation to drip irrigation, rainfall, and disease incidence. Plant Disease,1992,76(10): 1017-1024
    [235]Ristaino J B and Johnston S A. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease,1999,83(12):1080-1089
    [236]Ristaino J B, Parra G and Campbell C L. Suppression of Phytophthora blight in bell pepper by a no-till wheat cover crop. Phytopathology,1997,87:242-249
    [237]Runno-Paurson E, Fry W E, Myers K L, et al. Characterisation of Phytophthora infestans isolates collected from potato in Estonia during 2002-2003. European Journal of Plant Pathology,2009, 124:565-575
    [238]Saitou N and Nei M. The Neighbor-Joining method:A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425
    [239]Savenkova L V and Cherepennikova-Anikina M I. Effect of metalaxyl and N-nitro-N-nitrosomethylurea on mating type of Phytophthora infestans. Journal of Russian Phytopathology of Society,2002,3:33-38
    [240]Schmitthenner A F. Evidence for a new race of Phytophthora megasperma. var. sojae pathogenic to soybean. Plant Disease Reporter,1972,56:536-539
    [241]Schwenk F W and Sim T. Race 4 of Phytophthora megasperma var. sojae from soybean proposed. Plant Disease Reporter.1974,58:352-354
    [242]Schwinn F J and Sozzr D. Recommended methods for detection and measurement of resistance of plant pathogens to fungicides:Method for fungicide resistance in late blight of potato. FAO Plant Protection Bulletin,1982,30:69-71
    [243]Shattock R C. Phytophthora infestans:populations, pathogenicity and phenylamides. Pest Management Science,2002,58:944-950
    [244]Shattock R C. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans. Plant Pathology,1988,37:4-11
    [245]Shew H D. Response of Phytophthora parasitica var. nicotianae isolates to metalaxyl exposure. Plant Disease,1985,69(7):559-561
    [246]Sholberg P L, Walker M C, O'Gorman D T, et al. First report of Phytophthora capsici on cucurbits and peppers in British Columbia. Canadian Journal of Plant Pathology,2007,29(2): 153-158
    [247]Shrestha S K, Shrestha K, Kobayashi K, et al. First report of Al and A2 mating types of Phytophthora infestans on potato and tomato in Nepal. Plant Disease,1998,82(9):1064
    [248]Silvar C, Merino F, Diaz J. Diversity of Phytophthora capsici in Northwest Spain:Analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease,2006,90(9): 1135-1142
    [249]Singh I P, Chaudhary R G, Katiyar P K, et al. Inheritance of resistance to the "Kanpur" race of Phytophthora drechsleri in pigeonpea. Plant Breeding,2003,122:453-455
    [250]Singh U P and Chauhan V B. Oospore formation in Phytophthora drechsleri f. sp. cajani. Journal of Phytopathology,1988,123:89-91
    [251]Sliwka J, Sobkowiak S, Lebecka R, et al. Mating type, virulence, aggressiveness and metalaxyl resistance of isolates of Phytophthora infestans in Poland. Potato Research,2006,49:155-166
    [252]Smoot J J, Gough F J, Lamey H A, et al. Production and germination of oospores in Phytophthora infestans. Phytopathology,1958,48:165-171
    [253]Stamps D J, Waterhouse G M, Newhook F J, et al. Revised tabular key to the species of Phytophthora. Mycological Paper,1990,162:1-28
    [254]Tamietti G and Valentino D. Physiological characterization of a population of Phytophthora capsici Leon, from northern Italy. Journal of Plant Pathology,2001,83 (3):199-205
    [255]Tamura K, Dudley J and Kumar S. MEGA 4:Molecular Evolution Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007,24:1596-1599
    [256]Thompson A H and Phillips A J L. Root rot of cabbage caused by Phytophthora drechsleri. Plant Pathology,1998,37:297-299
    [257]Tian D, Babadoost M. Host range of Phytophthora capsici from pumpkin and pathogenicity of isolates. Plant Disease,2004,88(5):485-489
    [258]Tooley P W, Bunyard B A, Carras M M, et al. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and Environmental Microbiology,1997,63:1467-1475
    [259]Tooley P W, Fry W E, Viliarreal M J. Isozyme characterization of sexual and asexual Phytophthora infestans populations. The Journal of Heredity,1985,76:431-435
    [260]Tooley P W, Therrien C D and Ritch D L. Mating type, race composition, nuclear DNA content, and isozyme analysis of Peruvian isolates of Phytophthora infestans. Phytopathology,1989, 79(4):478-481
    [261]Tucker C M. Taxonomy of the Genus Phytophthora de Bary. University of Missouri Agricultural Experiment Station Research Bulletin,1931,153:1-208
    [262]Verma V K, Behera T K, Munshi A D. Genetic diversity of ash gourd [Benincasa hispida (Thunb.) Cogn.] inbred lines based on RAPD and ISSR markers and their hybrid performance. Scientia Horticulturae,2007,113(3):231-237
    [263]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18(24):7213-7218
    [264]Whisson S C, Maclean D J, Manners J M, et al. Genetic relationships among Australian and North American isolates of Phytophthora megasperma f. sp. glycine assessed by multicopy DNA probes. Phytopathology,1992,82:863-868
    [265]Williams J G, Kubelik A R, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18(22):6531-6535
    [266]Yu Y and Zhuang W. Phytophthora sinensis, a new species causing blight on cucumis sativus. Mycotaxon,1982,14:181-188
    [267]Yucel S. A study on soil solarization and combined with fumigant application to control Phytophthora crown blight(Phytophthora capsici Leonian) on peppers in the East Mediterranean region of Turkey. Crop Protection,1995,14:653-655
    [268]Zebeau M, Voss P. Selective restriction fragment amplification:a general method for DNA fingerprinting. European Pattern Application, Number92402629, Publication number 0534858A1,1993
    [269]Zentmyer G A. Distribution of the Al mating type of Phytophthora cinnamomi. Phytopathology, 1976,66:701-703
    [270]Zentmyer G A. Origin of Phytophthora cinnamomi:Evidence that it is not an indigenous fungus in the Americas. Phytopathology,1977,67:1373-1377
    [271]Zhang K M, Zheng F C, Li Y D, et al. Isolates of Phytophthora colocasiae from Hainan Island in China:evidence suggesting an Asian origin of this species. Mycologia,1994,86:108-112
    [272]Zhang X G, Zheng G S, Han H Y, et al. RAPD PCR for diagnosis of Phytophthora parasitica var. nicotianae isolates which cause black shank on tobacco. Journal of Phytopathology,2001,149 (10):569-574
    [273]Zhu X Q, Wang Y H, Guo L G Genetic diversity revealed by RAPD analysis among isolates of Phytophthora infestans from different locations in China. Acta Phytopathologica Sinica,2006,36 (3):249-258
    [274]Zitkiewicz E, Rafalski A, Laubuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700