用户名: 密码: 验证码:
多元多尺度氧气还原电催化材料的结构调控与功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧气还原反应是一种重要的基本电化学反应,在燃料电池,金属-空气电池,氯碱工业及腐蚀防护等实际工业生产方面具有极为重要的应用。但由于氧气还原反应速率缓慢,过电位高,过程机理复杂,很难在平衡电势附近获得较高的催化电流。因此在实际应用中,必须采用适当的催化剂材料来降低其过电位,提高其反应速率及效率,才能体现出其相应的价值。目前,应用于氧气还原反应的电催化材料主要是炭黑负载贵金属纳米粒子复合催化剂,由于成本较高,稳定性较低,大大限制了其作为商业催化剂的开发应用。因此,设计制备具有高活性、高稳定性的氧气还原反应催化材料对于推进相关领域的研究具有重大的意义。
     本论文以负载型催化剂为研究对象,将纳米级金属、金属合金、金属-碳化物及金属硫化物等具有特定催化效果的粒子以特定的纳米结构复合负载在多尺寸纳米炭材料表面来制备多元多尺度电催化材料,利用催化体系的协同效应选择性地控制氧气还原反应的路径,从而提高其反应效率。通过对多尺度多元催化材料对于氧气还原反应电催化性能及机理的研究,揭示炭载体多尺度效应与纳米氧还原电催化材料性质之间的对应关系,多元催化剂之间的协同效应以及多元催化剂与炭载体之间的复合效应,实现多元多尺度氧气还原电化学催化材料的结构调控,并得到了设计高活性氧气还原催化剂的普适原则。取得的主要研究成果如下:
     (1)以铂金属纳米粒子作为催化活性中心,选取炭微球,碳纳米管,炭纤维,生物基分级多孔炭等几种具有代表性的炭材料作为载体,通过物理或化学的方法对其进行修饰并与铂粒子复合形成负载型催化剂。根据对其催化氧气还原反应的性能进行比较,揭示了炭载体的结构特征对于催化剂材料催化活性及机理的影响:石墨化程度的提高使载体材料的炭层结构规整度提高,负载金属纳米粒子后形成的复合催化剂参加电化学反应时的起始电位虽然提升不大,但具有较大的催化电流密度,从一定程度上提高了催化剂的催化活性。载体材料的表面状态直接影响到活性中心粒子的负载情况,从而对复合催化剂的催化活性及机理产生影响。以生物材料作为前驱体制备的分级多孔炭材料表面含有大量的官能团,不仅能够使活性中心粒子均匀分散,其表面掺杂的少量氮原子还可以直接参与氧气还原反应。其独特的三维立体分级多孔结构能够促进反应过程中的物质传递过程,从而提高其催化活性。较高的石墨化程度;较大的比表面积;表面具有一定的活性,具有多种可供反应的含氧、氮等元素的活性基团,或者实现氮原子在石墨层结构中的掺杂;以及具有大孔-微孔-介孔的三维立体分级多孔结构,是设计高活性催化剂载体材料的普适原则。
     (2)在上述研究的基础上,选取了石墨化程度类似,但尺度不同且具有代表性的四种炭材料作为铂粒子的载体,深入探究复合催化剂对氧气还原反应的催化机理,包括其反应电子数,交换电流密度等参数的比较,揭示了载体的尺度效应对其催化性能及机理的影响:宏观及微观的一维结构有利于电子的集中传递,减少了其他方向上分流,如碳纳米管,炭纤维编织的平面毛毡等,其作为载体材料制备所得的复合催化剂在酸性及碱性溶液中均表现出较高的催化活性及选择性。具有三维立体结构的生物基分级多孔炭载体材料的整流作用虽然不及一维的线状结构,但其对于氧气还原反应的促进作用主要体现在分层及分级孔径分布对反应传质过程的改善和促进。
     (3)选取碳纳米管作为载体材料,以铂,金核壳,合金及分相等不同的结构作为活性中心粒子,制备复合催化剂并对其氧气还原反应催化性能进行了研究。结果证明,其催化活性排序如下:核壳结构>合金结构>分相结构。通过对不同铂,金复合结构催化剂催化过程机理的研究可知,核壳结构主要依靠两种金属的协同效应来提高其电催化性能,合金结构是由于表面原子层排列的改变而引起了氧气亲和力的改变,通过影响氧气的吸附过程来提高催化剂的活性,而对于两者分相结构来说,两种金属之间的作用力较弱,因此电催化性能较差,主要依靠能够在金粒子表面负载的铂纳米粒子来完成对氧气还原反应的催化过程。以铂,铁合金作为研究对象,对所得合金粒子进行不同温度的热处理,进一步得出了合金晶体结构对于其催化性能的影响。随着热处理温度的提高,铁铂合金由面心立方的固溶体结构逐渐向FePt3及FePt金属间化合物的结构转变。FePt金属间化合物对于氧气还原反应催化性能的促进作用较强,但当FePt3与固溶体形成混合结构时,能够得到最高的催化活性。
     (4)为进一步降低催化材料的成本,提高其稳定性,选择静电纺丝法制备的碳化钛及碳化钨纤维与铂粒子进行复合来制备催化剂。碳化钛及碳化钨均以粒子状态分布于杂乱炭层结构组成的纤维中,编织形成了类似于炭纤维毛毡的平面结构。碳化钛的颗粒约为50nm,部分埋伏在炭层结构中,而碳化钨粒子的粒径则小于5nm,基本全部埋伏于炭层中。铂纳米粒子可以通过化学法而均匀负载于纤维的表面,其催化活性通过与碳化物表面的电子转移作用而得到了一定程度的提高。由于铂粒子与碳化钛颗粒直接接触,电子传递损失较小,而铂粒子与碳化钨则是通过炭层结构间接相连,因此碳化钛对于铂粒子催化氧气还原过程的促进作用优于碳化钨纤维。此外,碳化钨及碳化钛本身在碱性溶液中具有催化氧气还原反应通过四电子途径进行的特性,具有替代贵金属作为催化剂的潜力。
     (5)通过对碳纳米管进行表面敏化活化处理,成功的将钴-硫化合物负载于其表面,制备了一种非贵金属氧气还原反应催化剂。经过适当的热处理,得到了多种晶体结构混合而成的钴-硫化合物活性中心粒子,主要为Co9S8及Co3S4的混合。通过对热处理前后及不同钴-硫比例的催化剂催化氧气还原反应性能及机理进行研究,证明了该催化剂主要催化氧气还原反应通过四电子反应途径进行,且Co9S8的晶体组分能够有效的促进复合催化剂的催化性能。
The oxygen reduction reaction (ORR) is an important electrochemicalreaction, which is widely applied in the fuel cells, metal-air batteries,chlor-alkali industry and corrosions. However, the sluggish kinetics of theORR resulted from the high overpotential, complicated process and smallexchange current density, limits the practical applications. As a result, weshould introduce some electrocatalysts to lower the overpotential and improvethe reaction efficiency of the ORR process. Carbon supported platinum (Pt/C)is now developed as the catalysts for the ORR process, but the high cost andlack of stability highly limit the applications as the commercial catalysts forthe devices. Thus, the design of new electrocatalysts with high catalyticactivity and stability is quite a demanding task for the investigations of theORR process.
     This thesis mainly focused on the supported electrocatalysts for the ORRprocess, applying metal, metal alloy, metal-carbide, and non-metalmetal-sulfide nanoparticles supported on various carbon materials in order toobtain the multi-phase multi-scale electrocatalysts, which could promote thereaction rates and efficiency of the ORR process. The influences of the support material sizes, various compositions of the catalytic nanoparticles, andthe synergetic effects between the support materials were investigated byanalyzing the activity and mechanism of the multi-scale multi-phaseelectrocatalysts for the ORR process. The controlled synthesis ofelectrocatalysts was accomplished, and some principles for the design of highefficiency electrocatalysts towards the ORR process were also investigated.The main achievements are listed as below:
     (1) Platinum (Pt) nanoparticles supported on carbon materials with variousmorphologies and structures, such as carbon spheres, carbon nanotubes,carbon fiber mats and hierarchical porous carbons fabricated frombio-materials were synthesized and applied as the electrocatalysts for the ORRprocess. High graphitization of the carbon materials could improve theregularity of the graphite sheets, and catalytic activities for the ORR process interms of current densities. The surface state of support materials alsoinfluenced the catalytic properties of the electrocatalysts. The hierarchicalporous carbons (HPC) fabricated from the bio-materials possessed not onlyhigh surface areas, but also large amounts of surface functional groups, whichcould make the nanoparticles highly dispersed. Some nitrogen atoms insertedinto the frameworks of the carbons and improved the catalytic activities of theHPC supported electrocatalysts. The principles of the support materials for thehighly active electrocatalysts were high graphitization and surface area;certain amounts of surface functional groups or nitrogen atoms doped on the surface carbon frameworks; hierarchical porous structures which couldpromote the mass transportation.
     (2) Several carbon materials with similar graphitization but different sizesand morphologies were selected as the support materials for the Ptnanoparticles. The multi-scale effect of the support materials to the ORRprocess was further analyzed by investigating the mechanism of the reaction,including calculating the numbers transferred during the process and theexchange current densities. The results indicated that the one-dimensionalcarbon materials in macroscopic and microscopic scales, such as carbonnanotubes and carbon fibrous mats, could help the charge transformationduring the catalytic process, which made the corresponding electrocatalystsexhibit high catalytic activity, as well as good selectivity for the ORR process.The promotion effects of three-dimensional HPC support material mainly liedin the influence of the hierarchical porous structures to the mass transportationduring the ORR process.
     (3) The carbon nanotube supported Pt-gold (Au) nanoparticles, includingcore-shell, alloy and segregated, were synthesized and their catalyticproperties were characterized. The result indicated that the Pt-Au core-shellstructure exhibited better catalytic activity than the alloy and segregatedstructures. Through the analysis of the ORR mechanisms, we found that thecore-shell structures could improve the catalytic activity through thesynergetic effects between the two metals. In the case of Pt-Au alloy, the surface structures of the nanoparticles changed, and the affinity of the oxygenwas also strengthened. The synergetic effects between Pt and Au was quiteweak in the Pt-Au segregated structures, thus the ORR catalytic process wasmainly accomplished by the Pt nanoparticles supported on the Au particles. Inorder to further analyze the crystalline structure effects to the electrocatalyticactivity for the ORR process, Pt-Ion (Fe) alloy nanoparticles supported oncarbon nanotubes were synthesized and heat-treated at different temperatures.As the temperature increased, the crystalline structures of Pt-Fe alloytransformed from face centered cubic solid solution to the intermetalliccompounds of FePt3or FePt. The result indicated that FePt compound washighly active for the ORR process, but the highest activity was obtained withthe mixture of solid solution and FePt3structure.
     (4) In order to further reduce the cost and improve the stability of theelectrocatalysts, the TiC and WC fibrous mats were compound with Ptnanoparticles and applied as the electrocatalysts for the ORR process. The TiCand WC particles were insert into the carbon sheets to form the fibers andinterwoven to form the fibrous mat. TiC particles partially inserted in thecarbon sheets with the diameter of~50nm while the WC particles fullyinserted with the diameter of~5nm. Pt nanoparticles could be highlydispersed on the surface of the fibers, and the catalytic activities wereimproved through the surface charge transformation. The enhancement of TiCfibers was more significant than the WC fibers due to the direct contact between the Pt and TiC particles instead of interconnect though the carbonatoms. Furthermore, the TiC and WC fibers also exhibited certain catalyticactivities in the alkaline solutions through the four-electron pathway, whichmight be developed as an alternative electrocatalysts of the metal materials.
     (5) The non-metal cobalt-sulfur compounds supported on the carbonnanotubes were synthesized after sensitizing and activating the surface of thesupport materials. Through the appropriate heat-treatment, the cobalt-sulfurparticles changed to the mixture of mainly Co9S8and Co3S4, and the catalyticactivities and mechanism before and after the heat-treatment were compared.The results indicated that the carbon nanotube supported cobalt-sulfur particlemainly catalyzed the ORR proceed through the four-electron pathway and theCo9S8could highly improve the catalytic activities compared with the othercompounds.
引文
[1]贾梦秋,杨文胜.应用电化学[M].北京:高等教育出版社,2004
    [2] Sarah C B. Electrochemistry of proton conducting membrane fuel cells [J]. Platinum Met.Rev.,2005,49(1):27–32
    [3] Weidenkaff A, Ebbinghaus S G, Lippert T. Ln1-xAxCoO3(Ln=Er, La; A=Ca, Sr)/carbonnanotube composite materials applied for rechargeable Zn/Air batteries [J]. Chem. Mater.,2002,14(4):1797–1805
    [4]肖钢.燃料电池技术[M].北京:电子工业出版社,2009
    [5] Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jonsson H.Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J]. J. Phys. Chem.B,2004,108(46):17886–17892
    [6] Santori G F, Moglioni A G. Hydrogenation of aromatic ketones with Pt-and Sn-modifiedPt catalysts [J]. Appl. Catal. A,2004,269:215–223
    [7] Stamenkovic V R, Fowler B, Mun B S, Wang G F, Ross P N, Lucas C A, Markovic N M.Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science2007,315(5811):493–497
    [8] Gottesfeld S, Zawodzinski T A, Alkire R C, Gerischer H, Kolb D M, Tobias C W (Eds.),Advances in Electrochemical Science and Engineering [M]. Weinheim: Wiley–VCH,1997
    [9] Wang Y, Balbuena P B. Potential energy surface profile of the oxygen reduction reactionon a Pt cluster: Adsorption and decomposition of OOH and H2O2[J]. J. Chem. TheoryComput.,2005,1(5):935–943
    [10] Neyerlin K C, Srivastava R, Yu C, Strasser P. Electrochemical activity and stability ofdealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR)[J]. J. Power Sources,2009,186(2):261–267
    [11] Rao C V, Viswanathan B. ORR activity and direct ethanol fuel cell performance ofcarbon-supported Pt-M (M=Fe, Co, and Cr) alloy prepared by polyol reduction method [J].J. Phys. Chem. C,2009,113:18907–18913
    [12] Damjanovic A, Dey A, Bockris J O M. Kinetics of oxygen evolution and dissolution onplatinum electrodes [J]. Electrochim. Acta,1996,11(7):791–814
    [13] Wroblowa H, Pan Y C, Razumney J. Electroreduction of oxygen: A new mechanisticcriterion [J]. J. Electroanal. Chem.,1976,69(2):195–201
    [14] Sepa D B, Vojnovic M V. Reaction intermediates as a controlling factor in the kinetics andmechanism of oxygen reduction at platinum electrodes [J]. Electrochim. Acta,1981,26(6):781–793
    [15]张天成,李友森.过氧化氢漂白介质腐蚀性的研究[C].中国造纸学会第六届学术年会论文选编.1999
    [16] Viral M, Joyce S C. Review and analysis of PEM fuel cell design and manufacturing [J]. J.Power Sources,2003,114(1):32–53
    [17] Nakagawa T, Tsutsumi A, Yoshida K. Performance of an alkaline fuel cell system usingthree-dimensional electrodes [C]. Hydrogen Energy Progress XII, Buenos Aires,1998
    [18] Thomas S C, Ren X, Gottesfeld S, Zelenay P. Direct methanol fuel cells: progress in cellperformance and cathode research [J]. Electrochim. Acta,2002,47:3741–3748
    [19] Joon K. Critical issues and future prospects for molten carbonate fuel cells [J]. J. PowerSources,1996,61(1-2):129–133
    [20] Minh N Q, Takahashi T. Science and technology of ceramic fuel cells [M]. Netherlands:Elsevier Science BV,1995
    [21]谢晓峰,范星河.燃料电池技术[M].北京:化学工业出版社,2004
    [22]吴宇平,张汉平,吴锋.绿色电源材料[M].北京:化学工业出版社,2008.
    [23] Chartouni D, Kuriyama N, Kiyobayashi T, Chen J. Air-metal hydride secondary batterywith long cycle life [J]. J. Alloy Compd.,2002,330-332(17):766–770
    [24] Deiss E, Holzer F, Haas O. Modeling of an electrically rechargeable alkaline Zn-air battery[J]. Electrochimi. Acta,47(25):3995–4010
    [25] Wang X, Sebastian P J, Smit M A, Yang H, Gamboa S A. Studies on the oxygen reductioncatalyst for zinc-air battery electrode [J]. J. Power Sources,2003,124(1):278–284
    [26] Sakai T, Iwaki T, Ye Z, Noreus D. Air-metal hydride battery construction and evaluation[J]. J. Electrochem.Soc.,1995,142(12):4040–4045
    [27]刘曙光.金属空气电池阴极的研究与改进[D].河北工业大学
    [28]日本研发出高性能锂-空气电池[J].物理通报,2009,3:54
    [29] Hine F, Yasuda M, Yoshida T. Studies on the oxide-coated metal anodes for chlor-alkalicells [J]. J. Electrochem. Soc.,1977,124(4):500–505
    [30] Chatenet M, Aurousseau M, Durand R, Andolfatto F. Silver-platinum bimetallic catalystsfor oxygen cathodes in chlor-alkali electrolysis: comparison with pure platinum [J]. J.Electrochem. Soc.,2003,150(3): D47–D55
    [31] Endoh E, Otouma H, Morimoto T. Advanced low hydrogen overvoltage cathode forchlor-alkali electrolysis cells [J]. Int. J. Hydrogen Energy,1988,13(4):207–213
    [32] Seko M. The ion-exchange membrane, chlor-alkali process [J]. Ind. Eng. Chem. Prod. Res.Dev.,1976,15(4):286–292
    [33] Moussallem I, J rissen J, Kunz U, Pinnow S, Turek T. Chlor-alkali electrolysis withoxygen depolarized cathodes: history, present status and future prospects [J]. J. Appl.Electrochem.,2008,38(9):1177–1194
    [34] Wu Y, Mcsperritt K E, Harris G D. Corrosion inhibition and monitoring in sea gas pipelinesystems [J]. Mater. Performance,1988,27:29–34
    [35] Sj berg F, Gustafsson U, Tibbling L. Alkaline oesophageal reflux-an artifact due to oxygencorrosion of antimony pH electrodes [J]. Scand. J. Gastroenterol.,1992,27(12):1084–1088
    [36] Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low-indexsingle-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies [J]. J.Phys. Chem.,1995,99(11):3411–3415
    [37] Damjanovic A, Genshaw M A, Bockris J O M. The role of hydrogen peroxide in oxygenreduction at platinum in H2SO4solution [J]. J. Electrochem. Soc.,1967,114(5):466–472
    [38] Gloaguen F, Andolfatto F, Durand R, Ozil P. Kinetic study of electrochemical reactions atcatalyst-recast ionomer interfaces from thin active layer modeling [J]. J. Appl.Electrochem.,1994,24(9):863–869
    [39]查全性等.电极过程动力学[M].北京:科学出版社,2002
    [40] Conway B E. Theory and principles of electrode processes [M]. New York: Ronald,1965
    [41] Erdey-Gruz T. Kinetics of electrode processes [M]. New York: Wile-Interscience,1972
    [42] Gland J L. Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12(111)×(111) surfaces [J]. Surface Science,1980,93(2-3):487–514
    [43] Markovi N M, Ad i R R, Cahan B D, Yeager E B. Structural effects in electrocatalysis:oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions[J]. J. Electroanal. Chem.,1994,377(1-2):249–259
    [44]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2001
    [45] Carrette L, Andreas Friedrich K, Stimming U. Fuel cells: principles, types, fuels, andapplications [J]. ChemPhysChem,2000,1(4):162–193
    [46] Hoogers G, Thompsett D. New electrocatalysts for fuel cells from model surfaces tocommercial catalysts [J]. Cattech,2000,4(2):110–126
    [47] Markovi N M, Schmidt T J, Stamenkovi, Ross P N. Oxygen reduction reaction on Pt andPt bimetallic surfaces: A selective review [J]. Fuel Cells,2001,1(2):105–116
    [48]毛宗强等.燃料电池[M].北京:化学工业出版社,2005
    [49] Stammenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N, Rossmeisl J, GreeleyJ, N rskov J. Changing the activity of electrocatalysts for oxygen reduction by tuning thesurface electronic structure [J]. Angew. Chem.,2006,118(18):2963–2967
    [50] Hernábdez J, Solla-Gullón J, Herrero E. Gold nanoparticles synthesized in a water-in-oilmicroemulsion: electrochemical characterization and effect of the surface structure on theoxygen reduction reaction [J]. J. Electroanal. Chem.,2004,574(1):185–196
    [51] Heinzel A, Barragán. A review of the state-of-the-art of the methanol crossover in directmethanol fuel cells [J]. J. Power Sources,1999,84(1):70–74
    [52] Cruickshank J, Scott K. The degree and effect of methanol crossover in the direct methanolfuel cell [J]. J. Power Sources,1998,70(1):40–47
    [53] Antolini E, Giorgi L, Pozio A, Passalacqua E. Influence of nafion loading in the catalystlayer of gas-diffusion electrodes for PEFC [J]. J. Power Sources,1999,77(2):136–142
    [54] Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinumalloys in proton exchange membrane fuel cells [J]. J. Electroanal. Chem.,1993,357(1-2):201–224
    [55] Li W, Liang C, Zhou W, Qiu J, Zhen H, Sun G, Qin X. Preparation and characterization ofmultiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanolfuel cells [J]. J. Phys. Chem. B,2003,107(26):6292–6299
    [56] Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum inacid electrolytes [J]. J. Electrochem. Soc.,1990,137(3):845–848
    [57] Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C,Lin Y, Wang Y, Aksay I A, Liu J. Enhanced activity and stability of Pt catalysts onfunctionalized graphene sheets for electrocatalytic oxygen reduction [J]. Electrochem.Communm.,2009,11(5):954–957
    [58] Tang R, Wei Z, Shao Z. Research progress in durability of Pt/C catalysts for PEMFC [J].Battery Bimothly,2009,39(1):44–46
    [59] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks andrequirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J]. Appl.Catal. B: Environ.,2005,56(1-2):9–35
    [60] Forti J C, Robledo A M, Kokoh K B, Andrade A R, Vante N A. Electrooxidation ofacetaldehyde on platinum-modified Ti/Ru0.3Ti0.7O2electrode [J]. Electrochim. Acta,2006,51(14):2800–2808
    [61] Vu T N, Gestel J, Gilson J P, Collet C, Dath J P, Duchet J C. Platinum-tungstated zirconiaisomerization catalysts: Part II. Effect of platinum and tungsten loading on the mechanismof isomerization of n-hexane: a kinetic study [J]. J. Catal.2005,231(2):468–479
    [62] Mayrhofer K J J, Blizanac B B, Arenz M, Stamenkovic V R, Ross P N, Markovic N M.The impact of geometric and surface electronic properties of Pt-catalysts on the particlesize effect in electrocatalysis [J]. J. Phys. Chem. B,2005,109(30):14433–14440
    [63] Su F, Tian Z, Poh C K, Wang Z, Lim S H, Liu Z, Lin J. Pt nanoparticles supported onnitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells [J]. Chem.Mater.,2010,22(3):832–839
    [64] Bockris J O M, Abdu R. A theoretical study of the electrochemical reduction of oxygen. J.Electroanal. Chem.,1998,448(2):189–204
    [65] Stamenkovic V, Schmidt T J, Ross P N, Markovic N M. Surface composition effects inelectrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloysurface [J]. J. Phys. Chem. B,2002,106(46):11970–11979
    [66] Ralph T R, Hogarth M P. Catalysis for low temperature fuel cells [J]. Platinum MetalsRev.,2002,46(3):117–135
    [67] Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C,Lin Y, Wang Y, Aksay I A, Liu J. Enhanced activity and stability of Pt catalysts onfunctionalized graphene sheets for electrocatalytic oxygen reduction [J]. Electrochem.Commun.,2009,11(5):954–957
    [68] Toda T, Igarashi H, Uchida H, Watanabe M. Enhancement of the electroreduction ofoxygen on Pt alloys with Fe, Ni, and Co [J]. J. Electrochem. Soc.,1999,146(10):3750–3756
    [69] Wakabayashi N, Takeichi M, Uchida H, Watanabe M. Temperature dependence of oxygenreduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes [J]. J. Phys Chem B,2005,109(12):5836–5841
    [70] Shukla A K, Raman R K, Choudhury N A, Priolkar K R, Sarode P R, Emura S, KumashiroR. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst fordirect methanol fuel cells [J]. J. Electroanal. Chem.,2004,563(2):181–190
    [71] Jalan V M, Taylor E J. Importance of interatomic spacing in catalytic reduction of oxygenin phosphoric acid [J]. J. Electrochem. Soc.,1983,130(11):2299–2302
    [72] Paffett M T, Beery J G, Gotterfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8androughened platinum [J]. J. Electrochem. Soc.,1988,135(6):1431–1436
    [73] Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2reduction onPt-Fe alloys [J]. J. Electroanal. Chem.,1999,460(1-2):258–262
    [74] Sun Z, Tseung A C C. Effect of dissolved iron on oxygen reduction at a Pt/C electrode insulfuric acid [J]. Electrochem. Solid-State Lett.,2000,3(9):413–415
    [75] Jasinski R. A new fuel cell cathode catalyst [J]. Nature,1964,201(4925):1212–1213
    [76] Chen R, Li H, Chu D, Wang G. Unraveling oxygen reduction reaction mechanisms oncarbon-supported Fe-Phthalocyanine and Co-Phthalocyanine catalysts in alkaline solutions[J].2009,113(48):20689–20697
    [77] K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K. Ota, Stability and electrocatalyticactivity for oxygen reduction in WC+Ta catalyst [J]. Electrochim. Acta,2004,49(21):3479–3485
    [78] Ohgi Y, Ishihara A, Shibata Y, Mitsushima S, Ota K. Catalytic activity of partially oxidizedtransition-metal carbide-nitride for oxygen reduction reaction in sulfuric acid [J]. Chem.Lett.,2008,37(6):608–609
    [79] Nagaiah T C, Kundu S, Bron M, Muhler M, Schuhmann W. Nitrogen-doped carbonnanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium [J]..Commun.,2010,12(3):338–341
    [80] Jafri R I, Rajalaksluni N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets ascatalyst support for oxygen reduction reaction in proton exchange membrane fuel cell [J].J. Mater. Chem.,2010,20:7114–7117
    [81] Maldonado S, Stevenson K J. Influence of nitrogen doping on oxygen reductionelectrocatalysis at carbon nanofiber electrodes [J]. J. Phys. Chem. B,2005,109(10):4707–4716
    [82] Chen Z, Higgins D, Tao H, Hsu R S, Chen Z. Highly active nitrogen-doped carbonnanotubes for oxygen reduction reaction in fuel cell applications [J]. J. Phys. Chem. C,2009,113(49):21008–21013
    [83] William H, Valdecir A, Gonzalez R. Methanol electro-oxidation on gas diffusionelectrodes prepared with PtRu/C catalysts [J]. Electrochim. Acta,2002,47(22-23):3715–3722
    [84] Fujiwara N, Yasuda K, Ioroi T, Siroma Z, Miyazaki Y. Preparation of platinum-ruthenuimonto solid polymer electrolyte membrane and the application to a DMFC anode [J].Electrochim. Acta,2002,47(25):4079–4084
    [85] Hills C W, Mack N H, Nuzzo R G. The size-dependent structural phase behaviors ofsupported bimetallic (Pt-Ru) nanoparticles [J]. J. Phys. Chem. B,2003,107(12):2626-2636
    [86] Dickinson A J, Carrette L P L, Collins J A, Friedrich K A, Stimming U. Preparation of aPtRu/C catalyst from carbonyl cpmplexes for fuel cell applications [J]. Electrochim. Acta,2002,47(22-23):3733-3739
    [87] Luna A M C, Camara G A, Paganin V A, Ticianelli E A, Gonzalez E R. Effect of thethermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuelcells [J]. Electrochem. Commun.,2000,2(4):222-225
    [88] Schmidt T J, Noeske M, Fasteiger H A, Behm R J, Britz P, Brijoux W, B nnemann H.Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2electrooxidation:Stripping voltammetry and rotating disk measurements [J]. Langmuir,1997,13(10):2591-2595
    [89] Liu Z, Lee J Y, Han M, Chen W, Gan L M. Synthesis and characterization of Pt/Ru/Ccatalysts from microemulsions and emulsions.[J] J. Mater. Chem.,2002,12:2453-2458
    [90] Zhang X, Chan K. Water-in-oil microemulsion synthesis of platinum-rutheniumnanoparticles, their characterization and electrocatalytic properties [J]. Chem. Mater.,2003,15(2):451-459
    [91] Ma J, Habrioux A, Alonso-Vante N. Enhanced HER and ORR behavior on photodepositedPt nanoparticles onto oxide-carbon composite. J. Solid-State Electrochem.,2013,DOI:10.1007/s10008-013-2046-y.
    [92] Tarasevich M R, Chalykh A E, Bogdanovskaya V A, Kuznetsova L N, Kapustina N A,Efremov B N, Ehrenburg M R, Reznikova L A. Kinetics and mechanism of oxygenreduction reaction at CoPd system synthesized on XC-72[J]. Electrochim. Acta,2006,51(21):4455–4462
    [93] Wang C, Daimon H, Sun S. Dumbbell-like Pt-Fe3O4nanoparticles and their enhancedcatalysis for oxygen reduction reaction [J]. Nano Lett.,2009,9(4):1493–1496
    [94] Gottesfeld S, Raistrick I D, Srinivasan S. Oxygen reduction kinetics on a platinum RDEcoated with a recast nafion film [J]. J. Electrochem. Soc.,1987,134(6):1455–1462
    [95] Riddiford A C. Advances in Electrochemical Sciences and Engineering.Germany:Wiley-VCH,1966
    [96] Levich V G. Physicochemical Hydrodynamics [M]. Englewood Cliffs: Prentice Hall,1962
    [97] Koutecky J, Levich V G. The use of a rotating disc electrode in the study ofelectrochemical kinetics and electrolytic processes [J]. Russian J. Phys. Chem. A,1958,32:1565–1575
    [98] Bockris J O M, Reddy A K N. Modern Electrochemistry [M]. New York: PlenumPublishing Corporation,1973
    [99] Tafel J. über die Polarisation bei kathodischer Wasserstoff-entwicklung [J]. Z. Phys.Chem.,1905,50:641–712
    [100] Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on catalystloading [J]. J. Power Sources,2004,127(1-2):162–171
    [101] Wang J X, Markovic N M, Adzic R R. Kinetic analysis of oxygen reduction on Pt(111) inacid solutions: Intrinsic kinetic parameters and anion adsorption effects [J]. J. Phys. Chem.B,2004,108(13):4127–4133
    [102] Liu Z, Wainright J S, Litt M H, Savinell R F. Study of the oxygen reduction reaction(ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevatedtemperature and low relative humidity [J]. Electrochim. Acta,2006,51(9):3914–3923
    [103] Paulus U A, Schmidt T J, Gasteiger H A, Behm R J. Oxygen reduction on a high-surfacearea Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study [J]. J.Electroanal. Chem.,2001,495(2):134–145
    [104] Markovic N M, Gasteiger H A, Grgur B N, Ross P N. Oxygen reduction reaction on Pt(111): effects of bromide [J]. J. Electroanal. Chem.,1999,467(1-2):157–163
    [105] Higuchi E, Uchida H, Watanabe M. Effect of loading level in platinum-dispersed carbonblack electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode [J].J. Electroanal. Chem.,2005,583(1):69–76
    [106] Coloma F, Sepulveda A, Fierro J, Rodriguez-Reinoso F. Croyonaldehyde hydrogenationover bimetallic PtSn catalysts supported on pregraphitized carbon black. Effect of thepreparation method [J]. Appl. Catal., A,1996,148(1),63–80
    [107] Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalyticcathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt andcarbon support, and activity enhancement of Pt/C catalyst [J]. J. Power Sources,2007,172(1),133–144.
    [108] Escard J J, Leclerc C, Contour J P. The state of supported irdium in a hydrazinedecomposition catalyst [J]. J. Catalysis,1973,29(1):31–39
    [109] Matter P H, Wang E, Arias M, Biddinger E J, Ozkan U S. Oxygen reduction reactionactivity and surface properties of nanostructured nitrogen-containing carbon [J]. J. Mol.Catal. A: Chem.,2007,264(1-2):73–81
    [110] Jha N, Leela Mohana Reddy A, Shaijumon M M, Rajalakshmi N, Ramaprabhu S.Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell [J].Int. J. Hydrogen Energy,2008,33(1):427–433
    [111] Antolini E, Passos R R, Ticianelli E A. Effects of the carbon powder characteristics in thecathode gas diffusion layer on the performance of polymer electrolyte fuel cells [J]. J.Power Sources,2002,109(2):477–482
    [112] Liu Z, Gan L M, Hong L, Chen W, Lee J Y. Carbon-supported Pt nanoparticles as catalystsfor proton exchange membrane fuel cells [J]. J Power Sources,2005,139(1-2):73–78
    [113] Dicks A L. The role of carbon in fuel cells [J]. J. Power Sources,2006,156(2):128–141
    [114] Yang M, Ma J, Ding S J, Meng Z K, Liu J G, Mao L Q, Shi Y, Jin X, Lu Y F, Yang Z Z.Phenolic resin and derived carbon hollow spheres [J]. Macromol. Chem. Phys.2006;207:1633–1639
    [115] Yan Z X, Hua Z F, Chen C, Meng H, Shen P K, Ji H B, Meng Y Z. Hollow carbonhemispheres supported palladium electrocatalyst at improved performance for alcoholoxidation [J]. J. Power Sources,2010,195(21):7146–7151
    [116] Yang R Z, Qiu X P, Zhang H R, Li J Q, Zhu W T, Wang Z X, Huang X J, Chen L Q.Monodispersed hard carbon spherules as a catalyst support for the elctrooxidation ofmethanol [J]. Carbon,2005,43(1):11–16
    [117] Fang B, Kim J H, Lee C, Yu J S. Hollow macroporous core/mesoporous shell carbon witha tailored structure as a cathode electrocatalyst support for proton exchange membrane fuelcells [J]. J. Phys. Chem. C,2008,112(2):639–645
    [118] Wen Z, Wang Q, Zhang Q, Li J. Hollow carbon spheres with wide size distribution asanode catalyst support for direct methanol fuel cells [J]. Electrochem. Commun.,2007,9(8):1867–1872
    [119] Baughman R H, Zakhidov A A, Heer W A. Carbon nanotubes-the route towardapplications [J]. Science,2002,297(5582):787–792
    [120] Journet C, Maser W K, Bernier P, Loiseau A, Chapelle M L, Lefrant S, Deniard P, Lee R,Fischer J E. Large-scale production of single-walled carbon nanotubes by the electric-arctechnique [J]. Nature,1997,388:756–758
    [121] Li W Z, Zhou Z H, Zhou W J, Li H Q, Zhao X S, Wang G X, Sun G Q, Xin Q.直接甲醇燃料电池阴极Pt/C催化剂的制备与表征制备及处理方法的影响[J]. Chin. J. Catal.,2003,24(6),465–470
    [122] Saha M S, Li R, Sun X. High loading and monodispersed Pt nanoparticles on multiwalledcarbon nanotubes for high performance proton exchange membrane fuel cells [J]. J. PowerSources,2008,177(2):314–322
    [123] Oh S D, So B K, Choi S H, Gopalan A, Lee K P, Yoon K R, Choi Z S. Dispersing of Ag,Pd, and Pt-Ru alloy nanoparticles on single-walled carbon nanotubes by γ–irradiation [J].Mater. Lett.,2005,59(10):1121–1124
    [124] Maiyalagan T, Viswanathan B, Varadaraju U V. Nitrogen containing carbon nanotubes assupports for Pt-alternate anodes for fuel cell applications [J]. Electrochem. Commun.,2005,7(9):905–912
    [125] Wu G, Xu B Q. Carbon nanotube supported Pt electrodes for methanol oxidation: Acomparison between multi-and single-walled carbon nanotubes [J]. J. Power Sources,2007,174(1):148–158
    [126] Park S, Shao Y, Kou R, Viswanathan V V, Towne S A, Rieke P C. Polarization losses underaccelerated stress test using multiwalled carbon nanotubes supported Pt catalyst in PEMfuel cells [J]. J. Electrochem. Soc.,2011,158(3): B297–B302
    [127] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronicproperties of graphene [J]. Rev. Mod. Phys.,2009,81:109–162
    [128] Soin N, Roy S S, Lim T H, McLaughlin J A D. Microstructural and electrochemicalproperties of vertically aligned few layered graphene (FLG) nanoflakes and theirapplication in methanol oxidation [J]. Mater. Chem. Phys.,2011,129(3):1051–1057
    [129] Jafri R I, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets ascatalyst support for oxygen reduction reaction in proton exchange membrane fuel cell [J].J. Mater. Chem.,2010,20(34):7114–7117
    [130] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation [J]. J. Phys. Chem. B,1999,103(37):7743–7746
    [131] Liu B, Creager S. Silica-sol-templated mesoporous carbon as catalyst support for polymerelectrolyte membrane fuel cell applications [J]. Electrochim. Acta,2010,55(8):2721–2726
    [132] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons [J]. Adv. Mater.,2001,13(9):677–681
    [133] Vinu A, Srinivasu P, Takahashi M, Mori T, Balasubramanian V V, Ariga K. Controlling thetextural parameters of mesoporous carbon materials [J]. Microporous Mesoporous Mater.,2007,100(1-3):20–26
    [134] Song S, Liang Y, Li Z, Wang Y, Fu R, Wu D. Effect of pore morphology of mesoporouscarbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions [J]. Appl.Catal., B,2010,98(3-4):132–137
    [135] Su F B, Zeng J H, Bao X Y, Yu Y S, Lee J Y, Zhao X S. Preparation and characterization ofhighly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanolfuel cells [J]. Chem. Mater.,2005,17(15):3960–3967
    [136] Ding J, Chang K, Ren J, Xiao F. Platinum and platinum-ruthenium nanoparticles supportedon ordered mesoporous carbon and their electrocatalytic performance for fuel cellreactions [J].2005,50(15):3131–3141
    [137] Calvillo L, Lazaro M J, Garcy′a-Bordeje E, Moliner R, Cabot P L, Esparbe I, Pastor E,Quintana J J. Platinum supported on functionalized ordered mesoporous carbon aselectrocatalyst for direct methanol fuel cells [J]. J. Power Sources,2007,169(1):59–64
    [138] Salgado J R C, Alcaide F, álvarez G, Calvillo L, Lázaro M J, Pastor E. Pt-Ruelectrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell [J].J. Power Sources,2010,195(13):4022–4029
    [139] Beard B C, Ross P N. The structure and activity of Pt-Co alloys as oxygen reductionelectrocatalysts [J]. J. Electrochem. Soc.,1990,137(11):3368–3374
    [140] Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P. Activity and stability ofordered and disordered Co-Pt alloys for phosphoric acid fuel cells [J]. J. Electrochem.Soc.,1994,141(10):2659–2668
    [141] Colon-Mercado H R, Kim H, Popov B N. Durability study of Pt3Ni1catalysts as cathode inPEM fuel cells [J]. Electrochem. Commun.,2004,6(8):795–799
    [142] Wei Z, Guo H, Tang Z. Heat treatment of carbon-based powders carrying platinum alloycatalysts for oxygen reduction: influence on corrosion resistance and particle size [J]. J.Power Sources,1996,62(2):233–236
    [143] Salgado J R C, Antolini E, Gonzalez E R. Structure and activity of carbon-supported Pt-Coelectrocatalysts for oxygen reduction [J]. J. Phys. Chem. B,2004,108(46):17767–17774
    [144] Xiong L, Manthiram A. Effect of atomic ordering on the catalytic activity of carbonsupported PtM (M=Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs [J]. J.Electrochem. Soc.,2005,152(4): A697–A703
    [145] Thompsett D, Vielstich W, Gasteiger H, Lamm H. Handbook of fuel cells—fundamentals,technology and applications [M]. UK: Wiley,Chichester,2003.
    [146] Ralph T R, Keating J E, Collis N J, Hyde T I. Oxygen reduction electrocatalysts in solidpolymer fuel cell membrane electrode assemblies [R]. ETSU Contract Report F/02/00038,1997.
    [147] Ignaszak A, Teo C, Ye S, Gyenge E. Pt-SnO2-Pd/C electrocatalyst with enhanced activityand durability for the oxygen reduction reaction at low Pt loading: the effect of carbonsupport type and activation [J]. J. Phys. Chem. C,2010,114(39):16488–16504
    [148] Kinumoto T, Nagano K, Tsumura T, Toyoda M. A novel durable electrode catalyst ofPt/Ketjen black decorated with SnO2nanoparticles for polymer electrolyte fuel cells [J].Electrochem.,2011,79(5):334–336
    [149] Masao A, Noda S, Takasaki F, Ito K, Sasaki K. Carbon-free Pt Electrocatalysts supportedon SnO2for polymer electrolyte fuel cells [J]. Electrochem. Solid-State Lett.,2009,12(9):B119–B122
    [150] Gatewood D S, Ramaker D E, Sasaki K, Swider-Lyons K E. Support effect on wateractivation and oxygen reduction over Au-SnOx electrocatalysts observed with X-rayabsorption spectroscopy [J]. J Electrochem Soc,2008,115(8): B834–B842
    [151] Nie M, Shen P K, Wu M, Wei Z, Meng H. A study of oxygen reduction on improvedPt-WC/C electrocatalysts [J]. J. Power Sources,2006,162(1):173–176
    [152] Liu Y, Mustain W E. Structural and electrochemical studies of Pt clusters supported onhigh-surface-area tungsten carbide for oxygen reduction [J]. ACS Catalysis,2011,1(3):212–220
    [153] Xu J, Gao P, Zhao T S. Non-precious Co3O4nano-rod electrocatalyst for oxygen reductionreaction in anion-exchange membrane fuel cells [J]. Energy Environ. Sci.,2012,5:5333–5339
    [154] Kundu S, Nagaiah T C, Xia W, Wang Y, Van Dommele S, Bitter J H, Santa M, GrundmeierG, Bron M, Schuhmann W, Muhler M. Electrocatalytic activity and stability ofnitrogen-containing carbon nanotubes in the oxygen reduction reaction [J]. J. Phys. Chem.C,2009,113(32):14302–14310
    [155] Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y.Nitrogen-doped graphene and its electrochemical applications [J]. J. Mater. Chem.,2010,20(35):7491–7496
    [156] Kurak K A, Anderson A B. Nitrogen-treated graphite and oxygen electroreduction onpyridinic edge sites [J]. J. Phys. Chem. C,2009,113(16):6730–6734
    [157] Zhang L, Xia Z. Mechanism of oxygen reduction reaction on nitrogen-doped graphene forfuel cells [J]. J. Phys. Chem. C,2011,115(22):11170–11176
    [158] Qu L, Liu Y, Baek J, Dai L. Nitrogen-doped graphene as efficient metal-freeelectrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano,2010,4(3):1321–1326
    [159] Biddinger E J, Deak D, Ozkan U S. Nitrogen-containing carbon nanostructures asoxygen-reduction catalysts [J]. Top. Catal.,2009,52(11):1566–1574
    [160] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier Y, Dai H. Co3O4nanocrystals on grapheneas a synergistic catalyst for oxygen reduction reaction [J]. Nature Mater.,2011,10(10):780–786
    [161] Chen C, Shih Z, Yang Z, Chang H. Carbon nanotube/cobalt sulfide composites as potentialhigh-rate and high-efficiency supercapacitors [J]. J. Power Sources,2012,215:43–47
    [162] Yang Z, Chen C, Chang H. Supercapacitors incorporating hollow cobalt sulfide hexagonalnanosheets [J]. J. Power Sources,2011,196(18):7874–7877
    [163] Yang Z, Chen C, Chang H. Preparation of higly electroactive cobalt sulfide core-shellnanosheets as counter electrodes for CdZnSSe nanostructure-sensitized solar cells [J]. Sol.Energy Mater. Sol. Cells,2011,95:2867–2873
    [164] Klug H P, Alexander L E. X-ray diffraction procedures: For polycrystalline and amorphousmaterials [M]. Germany: Wiley-VCH,1974.
    [165] Patterson A L. The Scherrer formula for X-ray particle size determination [J]. Phys. Rev.,1939,56:978–982
    [166] Barbarossa V, Galluzzi F, Tomaciello R, Zanobi A. Raman spectra of microcrystallinegraphite and a C:H films excited at1064nm [J]. Chem. Phys. Lett.,1991,185(1-2):53–55
    [167] Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. Comparison of high surfacePt/C catalysts by cyclic voltammetry [J]. J. Power Sources,2002,105(1):13–19
    [168] Antolini E, Giorgi L, Pozio A, Passalacqua E. Influence of nafion loading in the catalystlayer of gas-diffusion electrodes for PEFC [J]. J. Power Sources,1999,77(2):136–142
    [169] Fournier J, Faubert G, Tilquin J Y, Cote R, Guay D, Dodelet J P. High-performance, low Ptcontent catalysts for the electroreduction of oxygen in polymer-electrolyte fuel cells [J]. J.Electrochem.Soc.,1997,144(1):145–154
    [170] Gloaguen F, Andolfatto F, Durand R, Ozil P. Kinetic study of electrochemical reactions atcatalyst-recast ionomer interfaces from thin active layer modeling [J]. J. Appl.Electrochem.,1994,24(9):863–869
    [171] Laitinen H A, Kolthoff I M. A study of diffusion processes by electrolysis withmicroelectrodes [J]. J. Am. Chem. Soc,.1939,61(12):3344–3349
    [172] Chen L, Lasia A. Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloyelectrodes [J]. J. Electrochem. Soc.,1991,138(11):3321–3328
    [173] Ze evi S K, Wainright J S, Litt M, Gojlovi S L, Savinell R F. Kinetics of O2reduction ona Pt electrode covered with a thin film of solid polymer electrolyte [J]. J. electrochem.Soc.,1997,144(9):2973–2982
    [174] Mello R M Q, Ticianelli E.A. Kinetics study of the hydrogen oxidation reaction onplatinum and nafion covered platinum electrodes [J]. Electrochim. Acta,1997,42(6):1031–1039
    [175] Chen W, Kim J, Sun S, Chen S. Electrocatalytic reduction of oxygen by FePt alloynanoparticles [J]. J. Phys. Chem. C,2008,112(10):3891–3898
    [176] Geniès L, Faure R, Durand R. Electrochemical reduction of oxygen on platinumnanoparticles in alkaline media [J]. Electrochim. Acta,1998,44(8-9):1317–1327
    [177] Tammeveski K, Tenno T, Claret J, Ferrater C. Electrochemical reduction of oxygen onthin-film Pt electrodes in0.1M KOH [J]. Electrochim. Acta,1997,42(5):893–897
    [178] Jeon M K, Zhang Y, McGinn P J. A comparative study of PtCo, PtCr, and PtCoCr catalystsfor oxygen electron-reduction reaction [J]. Electrochim. Acta,2010,55(19):5318–5325
    [179] Synthesis, characterization and electrocatalytic behavior of non-alloyed PtCr methanoltolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR)[J]. Electrochim.Acta,2005,50(20):4117–4127
    [180] Li W, Zhou W, Li H, Zhou Z, Zhou B, Sun G, Xin Q. Nano-structured Pt-Fe/C as cathodecatalyst in direct methanol fuel cell [J]. Electrochim. Acta,2004,49:1045–1055
    [181] Chen W, Zhang H, Huang Y, Wang W. A fish scale based hierarchical lamellar porouscarbon material obtained using a natural template for high performance electrochemicalcapacitors [J]. J. Mater. Chem.,2010,20:4773–4775
    [182] Huang W, Zhang H, Huang Y, Wang W, Wei S. Hierarchical porous carbon obtained fromanimal bone and evaluation in electric double-layer capacitors [J]. Carbon,2011,49(3):838–843
    [183] Wang X, Li W, Chen Z, Waje M, Yan Y. Durability investigation of carbon nanotube ascatalyst support for proton exchange membrane fuel cell [J]. J. Power Sources,2006,158:154–159
    [184] Adzic, R. Electrocatalysis [M]. Germany: Wiley-VCH: Weinheim,1998.
    [185] Qu D, Shi H. Studies of activated carbons used in double-layer capacitors [J]. J. PowerSources,1998,74(1):99–107
    [186] Song H K, Hwang H Y, Lee K H, Dao L H. The effect of pore size distribution on thefrequency dispersion of porous electrodes [J]. Electrochim. Acta,2000,45(14):2241–2257
    [187] Wang D, Li F, Liu M, Lu G Q, Cheng H.3D aperiodic hierarchical porous graphitic carbonmaterial for high-rate electrochemical capacitive energy storage [J]. Angew. Chem. Int.Ed.,2008,47:373–376
    [188] Xiao X, Roberts M E, Wheeler D R, Washburn C M, Edwards T L, Brozik S M, MontanoG A, Bunker B C, Burckel D B, Polsky R. Increased mass transport at lithographicallydefined3-D porous carbon electrodes [J]. ACS Appl. Mater. Interfaces,2010,2(11):3179–3184
    [189] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y, Xia Y. Pd-Pt bimetallicnanodendrites with high activity for oxygen reduction [J]. Science,2009,324(5932):1302–1305
    [190] Hernández-Fernández P, Rojas S, Ocón P, Gómez J L, Fabián J S, Sanza J, Pe a M A,García F J, Terreros P, Fierro J L G. Influence of the preparation route of bimetallic Pt-Aunanoparticle electrocatalysts for the oxygen reduction reaction [J]. J. Phys. Chem. C,2007,111(7):2913–2923
    [191] Wang J X, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W, Adzic R R. Oxygen reduction onwell-defined core-shell nanocatalysts: particle size, facet, and Pt Shell thickness effects [J].J. Am. Chem. Soc.,2009,131(47):17298–17302
    [192] Chen S, Sheng W, Yabuuchi N, Ferreira P J, Allard L F, Shao-Horn Y. Origin of oxygenreduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemicalcompositions and structures [J]. J. Phys. Chem. C,2009,133(3):1109–1125
    [193] Huang S, Ganesan P, Popov B N. Electrocatalytic activity and stability of titania-supportedplatinum-palladium electrocatalysts for polyer electrolyte membrane fuel cell [J]. ACSCatal.,2012,2(5):825–831
    [194] Liu Y, Shrestha S, Mustain W E. Synthesis of nanosize tungsten oxide and its evaluation asan electrocatalyst support for oxygen reduction in acid media [J]. ACS Catal.,2012,2(3):456–463
    [195] Zhang L, Hu J, Voevodin A A, Fong H. Synthesis of continuous TiC nanofibers and/ornanoribbons through electrospining followed by carbothermal reduction [J]. Nanoscale,2010,2:1670–1673
    [196] Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H. Covalent hybrid of spinelmanganese-cobalt oxide and graphene as advanced oxygen reduction reactionelectrocatalysts [J]. J. Am. Chem. Soc.,2012,134(7):3517–3523
    [197] Feng Y, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2nanoparticles in an acid medium [J]. Electrochim. Acta,2009,54:5252–5256
    [198] Wang F, Arai S, Endo M. The preparation of multi-walled carbon nanotubes with a Ni-Pcoating by an electroless deposition process [J]. Carbon,2005,43(8):1716–1721

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700