用户名: 密码: 验证码:
海拉尔—塔木察格盆地构造特征与演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海拉尔-塔木察格盆地为海西褶皱基底上发育的中-新生代断-坳陷盆地,控盆的边界断裂主要为北东向和北北东向,盆地形成于早白垩世,后期经历了多期变形。
     断陷盆地研究的最大难题之一是地层对比,海拉尔-塔木察格盆地内各凹陷之间所追踪的地震反射层位不统一的主要原因是缺乏区域地震地层的对比标准,区域地震地层的对比标准的建立一直是困绕海拉尔-塔木察格盆地油气勘探发现的一个瓶颈。地震反射终止类型是识别地震剖面上的各反射界面以及不整合界面的重要标志,包括上超、下超、顶超和削截四种类型;本次从地震层序的成因出发,划分出构造(T5、T4、T31、T3和T04地震反射层)和沉积(T22、T21和T2地震反射层)两类层序界面,建立了区域构造-地层格架的地震地层的对比标准;大磨拐河组二段沉积时海拉尔-塔木察格盆地广泛发育前积体,为了搞清海拉尔-塔木察格盆地大磨拐河组二段前积体的成因,通过构造演化史和重矿物分析、地震剖面和测井曲线解释,对前积体的成因进行了研究,认为大型三角洲是特定构造背景下的产物,在大磨拐河组二段沉积时断裂活动趋于静止,海拉尔-塔木察格盆地发生了整体上的翘倾-东北的翘起和西南的沉降,形成了区域性的北北东-南南西向水系,由于物源供给充足,形成了明显的前积结构;断陷盆地的构造和沉积层序界面具有方向性,沿形成构造层序界面的主应力方向的地震剖面“下削上超”特征最明显,同样对沉积层序界面来说,沿水系方向的地震剖面前积结构特征最明显。前积结构规模较大且顶超、底超现象明显,可作为大磨拐河组二段地震地层的对比标准。伊敏组沉积末期的强烈改造作用肢解了大磨拐河组二段形成的长轴向大型三角洲,造成识别上的困难。本文所提出的宏观上沿河流方向追踪大型三角洲的方法有效地解决了三角洲前积体在地震剖面上的识别难题。在盆地构造格架搭建上,采用成因地震地层对比法,从根本上解决了构造和沉积层序界面难以把握的难题;通过对不整合面类型、性质的研究,进行了构造层序界面的识别与划分,识别出4个重要的构造不整合面,并依此将海拉尔-塔木察格盆地的盖层由上至下划分出:萎缩构造层(新生界)、坳陷构造层(青元岗组)、断坳构造层(南屯组、大磨拐河组、伊敏组)、断陷构造层(塔木兰沟组、铜钵庙组)等4个构造层。在结合煤田露头的基础上,通过地震剖面的解释和分析,建立了地震构造解释模式;采用了变速成图方法,在编制出海拉尔-塔木察格盆地的高精度构造图的基础上,认为海拉尔-塔木察格盆地具有东西分带、南北成块的构造特征。
     乌尔逊凹陷既受先存基底断裂的控制,同时又经历了多期不同区域构造应力场的改造。通过对乌尔逊凹陷基底、断陷构造层和断凹构造层结构特征进行分析对比,揭示了不同构造层之间构造格局的差异及各构造时期应力方向的变化,并按构造层划分了古今构造单元。
     对乌尔逊凹陷断裂类型、断裂的展布特征和断层活动特征进行了分析研究,对各时期控陷断层同沉积断裂进行识别,发现早期的乌西控陷断层是由近南北向展布的断裂带形成的,断裂带是由多条北东向呈雁列展布的断层组成。而在晚期,即伊敏组二三段沉积时,控陷断层向东迁移为一条南北向的断层。
     为了分析乌尔逊凹陷的构造演化,在研究区选择了10条具有代表性的剖面进行构造发育史研究,揭示了乌尔逊凹陷不同构造的形成过程和变形序列。
     利用岩石的声波时差、孔隙度随压实程度(埋深)的不同而变化,恢复凹陷内31口井的剥蚀厚度。建立了剥蚀前盆地原型结构和剥蚀时盆地的变形模式,以地震地层趋势法恢复剥蚀量,从而恢复铜钵庙组沉积末期和伊敏组沉积末期的原型盆地。在恢复了剥蚀量的原始沉积厚度图基础上编制出各个界面在不同沉积时期古构造图,并进行了古构造单元划分。
     结合古地貌和古构造结构特征,利用已有的沉积相图,对铜一段、铜二段和南屯组进行构造岩相划分,认为乌尔逊凹陷构造对沉积具有控制作用。
     综合大量地震、钻井和地表地质资料,通过对海拉尔-塔木察格盆地地震剖面的解释、构造几何特征的解剖和盆地演化过程的分析,认为海拉尔-塔木察格盆地的构造反转发生在青元岗组沉积末期,海拉尔-塔木察格盆地反转强度较弱,对先存的构造格局只具调整作用。
     从盆地的改造和建造角度出发,将海拉尔-塔木察格盆地划分出3个改造期和4个形成期,3个改造期为:张扭变形期(铜钵庙组末期)、张扭变形期(伊敏组末期)、反转变形期(青元岗组末期);4个形成期为:断陷期、断坳期、坳陷期和萎缩期。研究认为,海拉尔-塔木察格盆地的发育具有建造与改造交互作用的特点并贯穿于盆地的演化的全过程。
     通过铜钵庙组和南屯组细分层建造和改造特征分析,弄清每个时期的改造特征及其演化规律,揭示了与构造相关的油气藏类型。研究认为乌尔逊凹陷油气运移与聚集是古、今构造活动共同作用的结果;铜钵庙组沉积末期的构造变形奠定了铜钵庙组油层组的构造格架,铜钵庙组油层组油气受该期所形成的古构造的控制;按断层的活动期次将乌尔逊凹陷反向断层分为六种类型,大磨拐河组、南屯组和铜钵庙组油藏受反向断层的控制。古构造型油气藏和反向断层型油气藏是下一步重点勘探目标。
     从野外露头观察、地震资料解释和典型剖面构造组合规律分析出发,根据构造发育的位置、时间、延伸方向、断裂与褶皱的展布形态、成因及关系,在盆地内共识别出三种构造带:变换构造带、滑脱构造带和断层相关褶皱构造带,它们与油气密切相关;三种类型的构造带上圈闭发育,构造带所发育的断层起到了油气运移通道的作用,同时又邻近烃源岩,因此,三种类型的构造带为油气勘探的有利区带。
The Hailar-Tamtsag Basin was a LateMesozoic-Paleogene basin, with the basement being Hercynides. The boundary faults to control the basin developing of NE- and NNE-strikings created in EarlyCretaceous, and overprinted by later deformations.
     The correlation of the strata is the most difficult problem to the researching downfaulted basin. The main reason that the seismic reflection horizons traced in different delves in the Hailar-Tamtsag basin are inconsistent is the lack of the comparison standard of regional seismic strata. The seismic stratigraphic contrast standard is a bottleneck that plagued the oil and gas exploration in Wuerxun depression. Seismic reflection termination type is an important sign to identify the seismic reflector and the unconformity interface on the seismic reflection profile. It includes onlap、downlap、toplap and truncation. In the light of contributing factor of the seismic sequence, the tectonic horizon sequence boundary (T02, T04, T3, T 31,T4 and T5 seismic reflection horizon) and depositional horizon sequence boundary (T2、T21 and T22 seismic reflection horizon)can be recognized, and the seismic strata comparison standard of areal structure-strata framework can be built.
     In order to clarify the origin of foreset body in MemberⅡof Upper Zuun- bayan Formation of Hailaer-Tamtsag Basin, the analysis on structural evolution hist- ory and heavy mineral and the interpretation of seismic profile and logging trace were implemented. It is considered that the huge delta is generated under particular structu- ral setting, the faulting activities tend to be rest during sedimentary period of MemberⅡof Damoguaihe Formation, overall tilt and subsidence occur in Hailaer-Tamtsag Basin-tilting in northeast and subsiding in southwest, which formed local NNE-SSW trending drainage system, and the sediment source is rich which formed obvious for- eset configuration. The foreset configuration has relatively large scale extension, with obvious toplap and baselap, and can be used as the marker of seismic stratigraphic correlation in MemberⅡof Damoguaihe Formation. The strong reconstruction at the end of Yimin Formation sedimentation disrupts the long-axis huge delta formed duri- ng the MemberⅡof Damoguaihe Formation, which brings difficulties for identificati- on. Since the foreset feature of delta has directivity in seismic profile, the method of macroscopically tracing huge delta along river trend effectively solved the knotty problem of identifying delta foreset body in seismic profile.
     During the course of putting up the basin tectonic framework, the use of Contributing Factor Seismic Strata Comparison Standard resolved the difficulty which the tectonic and deposition sequence boundary can not do with thoroughly.
     Established the seismic stratigraphic contrast standard of regional tectonic stratigraphic framework through the difference analysis of reflecting structure of seismic profiles.Identified four important unconformity surfaces we divide Hailaer-Tamtsag Basin to four structural layer: the fault depression structural layer (Tamulangou and Tongbomiao formation), the fault sag structural layer(Nantun, Damoguaihe and Yimin formation), the sag structural layer(Qingyuangang formation) and the atrophy structural layer(Cenozoic).
     Through the investigating of coal field outcrop and the interpret and analysis of seismic cross section, we built up the seismic structure elucidation mode, and recognized folding relatedt fault, decollement and alternation, three types of structural belt. Using change-velocity mapping method, the high precision structure map of Hailar-Tamtsag basin have been completed, and based on the above work, the structural feature in the basin are known as belt structure along north to south, and block structure along west to east.
     Wuerxun depression as control acceping keeping the base earlier to crack , at the same time udergo much stages distinct area structures once more to respond the field of force reconstruction . Pass through to the sunken base composition feature of Wu Erxun and snaps the trap snap that the trap constitutes the straturm architectural feature with snaps the hollow structure straturm,The feature is analysed the comparison, Promulgating the difference constitutes between the straturm structure setup divergence and every the structure particular period stress orientation alternation . According to the structure straturm divides ancient and modern times constitutes the cell .
     By the analysis study of Wuerxun depression fault patterns, fault state character and fault activity character, through different periods’fault which contral the depression and the synsedimentary faulting identification, we find out that the earlier in Tongbomiao group sediment period west Wuerxun controling fault is formed from north to south directed fault zones, fault zones is formed with many north-east en echelon faults. But in later period, the means Nantun group and Yimin group section 2-3 sediment period, controling fault move to east to be a south-north fault.
     By the ten structural history sections in Wuerxun depression, revealed different structures’forming process and distortion sequence.
     Utilizes the rock acoustic wave time difference and the porosity to adapt to is getting near the real degree(depth ) difference but alternation, nner place resumeing in the depression thirty-one wells thickness corrode .Found to denude the preceding basin prototype structure with when denuding The deformation pattern in basin .
     Use seimic stractigraphy trend method to restore denuding, then restore Tongbomiao group sediment later period and Yimin group sediment later period’s origin basin. With the basement of restoring denuded origin sediment thickness map ,we make each surfaces’ancient structure map in different periods , and then set off ancient structure unit.
     Combining paleogeomorphology and palaeotectonics structural features and take advantage of sedimentary facies, Tongbomiao group and Nantun group tectonic facies can be recognized. Based on analyses of data including coal field outcrop,drilling,seismic,stratigraphy,structural features and and the interpret and analysis of seismic cross section,it is believed that the last stage of Qingyuangang in the Hailar-Tamtsag Basin is the reverse deformation stage. The reverse deformation at the last stage of Qingyuangang makes the reservoir regulated. The tectonic deformation at the last stage not only provides the transport channel for the oil-gas migration, but also creates the trap for the oil-gas accumulation.
     Based on the seismic profile analysis and the research of tectonic subsidence ce- nter migration, four structural sequence interfaces and four structural layers were ide- ntified in Harlaer-Tamtsag Basin, which was divided into four generation stages and three reconstruction stages from the perspective of construction and reconstruction of basin. The four generation stages include fault depression stage, fault sag stage,sag stage and atrophy stage. The three reconstruction stages include the twisting and deforming stage during the late of Tongbomiao Formation, the twisting and deform- ing stage during the late of Yimin Formation and the reversing and deforming stage during Qingyuangang Formation. The research indicates that Hailaer-Tamtsag Basin has the characteristic of intersection of construction and reconstruction, and this char- acteristic is presented through the whole evolution process.
     Through the subdivision of reservoir construction and reform feature analysis in Nantun group and Tongbomiao group, raveled the reform characters and evolution rules,reveals the reservoir’s style related with structure.It is the result of joint action of palaeotectonics and current tectonic activities to oil and gas migration and accumulation in Wuerxun depression;the tectonic deformation in late Tongbomiao group settled the structural framework of reservoir in Nantun group and Tongbomiao group,and the reservoir in Nantun group and Tongbomiao group be controlled by palaeotectonics that formed this period; palaeotectonics type andantithetic fault type reservoir is the next key exploration target.
     From the analysis of the structural evolution and synthetical geology, we recognized that the most favourable area for petroleum accumulation are the overlay area of three structural belt and the position valid hydrocarbon, the burial hill of base rock, the palaeostructure formed in late Tongbomiao and the angle disconformity formed in late Tamulangou and Tongbomiao.
引文
[1]Dahlstrom CD A.Balanced cross sections[J].Canadian Journal ofEarth Sciences,1969,6:743~757
    [2]Hosack,J R,1979,The use of balance cross sections in The calculation of orogenicconstraction:a review[J].Journal of Geological society of London,136,705-711
    [3]许浚远等.汤原断陷早第三纪中期基义顶界的三维古构造重建[J].吉林地质,1997;12(1):63-69
    [4]Patton T Let al. Tectonic evolution and structural setting of the Suez rift[J].In:London SMetaleds Interior RiftBasins,AAPG special Publication,1992:9-55
    [5]任建业等.确定断陷盆地伸展量的分数维法地质科技情报[J],1997,16(3):102-106
    [6]Marrett R,Allmendings R W. Amount of extension on“small”faults:an example from thevinking Graben[J].AAPG Bulletin,1992;20:47-50
    [7]刘立,付荣,辽河盆地东部凹陷北段复式断陷层序地层与油气[J],古地理学报,2001,3(1):71-77
    [8]茹克.裂陷盆地半地堑分析[J].中国海上油气(地质),1990,4(6):1-10
    [9]BosworthW.Geometryofpropagatingcontinentalrifts[J].Nature,1985,316:625-627
    [10]BosworthW.Off-axisvolcanismintheGregoryrift,EastAfrica:implicationsformodelsofcontinentalrifting[J].Geology,1987,15:397-400
    [11]FauldsJE,GeissmanJW,MawerCK.StructuraldevelopmentofamajorextensionalaccomodationzoneintheBasinandRangeProvince,NorthwesternArizonaandSouthernNavada:implicationsforkinematicmodelsofcontinentalextension[A].In:WemickeBPed BasinandRangeExtensionalTectonicsNeartheLatitudeofLasVegas,Navada[C].Geological SocietyofAmericaMemoirl76,1990, 37-76
    [12]FauldsJE,VargaRJ. Theroleofaccommodationzonesandtransferzonesintheregionalsegmentationofextendedterranes[A].In:FauldsJE,StewartJHeds AccommodationZonesandTransferZones:TheRegionalSegmentationoftheBasinandRangeProvince[C]GeologicalSocietyofAmericaSpecialPaper323,1998.1-45
    [13]GibbsAD. Structuralevolutionofextensionalbasinmargins[J].GeologicalSocietyofLondonJourna 1,1984,141:609-620
    [14]MorleyCK,NelsonRA,PattonTL. TransferzonesintheEastAfricanRiftsystemandtheirrelevancetohydrocarbonexplorationinrifts[J].AAPG,l990,74:1234-1253
    [15]MoustafaAR. InternalstructureanddeformationofanaccommodationzoneinthenorthernpartoftheSuezrift[J].JoumalofgtructuralGeology,1996,18:83-108
    [16]RosendahlBR. ArchitectureofcontinentalriftswithspecialreferencetoEastAfrica[J].AnnualReviewofEarthandPlanetaryScienceLetters,1987,15:445-504
    [17]StewartJH RegionaltiltpattemoflateCenozoicBasin—Rangefaultblocks,WesternUnitedStates[J]GeologlcalS0cletyofAmericaBulletin,1980,91:460-464
    [18]陈发景伸展盆地分析[M].武汉:中国地质大学出版社,1992.34-37
    [19]胡望水.裂谷盆地转换构造及其石油地质意义[J].国外油气勘探,1994,6(3):145-154
    [20]宗国洪,李常宝,孙红蕾.断裂体系中的调节带一以济阳坳陷为例[J].复式油气田,1995,6(3):7-10
    [21]刘德来,王伟,马莉.伸展盆地转换构造分析一以松辽盆地北部为例[J].地质科技情报,1994,13(2):5-9
    [22]Glennie K W, Boeger P L. Solepit inversion tectonics[J].Petroleum Geology of theContinental SheR ofNorthwestEurope,1981,110-120
    [23]Harding T P Structural inversion at Rambuton oil field,south Sumatra basin[J].AAPGBulletin,1983,63(8):1001-1021
    [24]Harding T P. Seismic characteristics and identification of negative flower structures,positiveflower structures and positive structural inversion[J].AAPG Bul-letin,1985,69(4):582-600
    [25]Bally A W. Tectogenese at seismique reflexion[J].Bulletin Society Geologique France,1983,7:279-285
    [26]冯建辉,吕延仓,谭试典中国石油构造样式[M].北京:石油工业出版社,2000.142-162
    [27]Williams G D,Powell C M,Cooper M A. Geometry and kine matics of inversion tectonics[A]inversion tectonics[C].In:Cooper M A,Williams G D. Lon—don:Geological Society SpecialPublication,1989,44:3-15
    [28]胡望水.正反转构造成因类型[J]江汉石油学院学报,1993,15(4):19-25
    [29]胡望水松辽盆地北部正反转构造与油气聚集[J].天然气工业,1996,16(5):20-24
    [30]胡望水.正反转构造类型及其研究方法[J].大庆石油地质与开发,1997,16(2):6-9
    [31]胡望水,刘学锋,吕新华,等论正反转构造的分类[J].新疆石油地质,2000,21(1):5-8
    [32]Mitra S.Geometry and kinematic evolution of inversion structures[J].AAPG Bulletion,1993,77(7):1159—1191
    [33]王燮培,严俊君,林军.反转构造及其石油地质意义[J].地球科学-中国地质大学学报1989,14(1):101—108
    [34]王燮培,费琪,张家骅.石油勘探构造分析[M].武汉:中国地质大学出版社,1990 255—268
    [35]Cooper M A,Williams G D. inversion tectonics[C].London:Geological Society Special Publication,1989,44
    [36]陈守田等,2002海拉尔盆地含油气系统[J].吉林大学学报(地球科学版),32(2):151—154
    [37]青海等,2002海拉尔盆地油气勘探开发前景[J].中国石油勘探,7(3):16-20
    [38]张吉光等,2002.乌尔逊-贝尔断陷油气藏类型与勘探方法探讨[J].石油勘探与开发,29(3):48-50
    [39]侯启军等,2004.海拉尔盆地乌尔逊凹陷石油运移模式与成藏期[J].地球科学,29(4):397-403
    [40]张晓东等,1994.海拉尔盆地的构造特征及其演化[J].石油实验地质,16(2):119-127
    [41]陈守fit等,2005海拉尔盆地构造样式分析[J].吉林大学学报(地球科学版),35(1):39-42
    [42]云金表等,1994.乌尔逊断陷构造样式及其对圈闭类型的控制[J].大庆石油学院学报,18(3):14-17
    [43]罗群等,2003.断陷盆地群的含油气系统特征-以海拉尔盆地乌尔逊-贝尔凹陷为例[J]新疆石油地质,24(1):27—30
    [44]杨懋新等,2003.乌尔逊凹陷滑脱型构造样式与油气成藏[J].浙江大学学院(理学版),30(5):597-600
    [45]沈华等,2005.伸展断陷盆地的演化特征以海拉尔盆地贝尔凹陷为例[J].现代地质,19(2):287-294
    [46]何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社,1994.437
    [47]张臣,吴泰然.内蒙古温都尔庙群变质基性火山岩Sm—Nd、Rb—Sr同位素年代研究[J].地质科学,1998,33(1):25—30
    [48]李江海,穆剑.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约[J].地质科学,1999,34(3):259—272
    [49]邵济安,唐克东,等.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995.185
    [50]Seng,rAMC,NatalinBA,BurtmanV S.Evolution oftheAltaidtectonic collage andPaleozoic crustal growth in Eurasia[J].Nature,1993,364:299—307
    [51]Seng,rAMC. Turkic—type orogeny in the Altaids:Implicationsforthe evolution of continentalcrust and methodology ofregional tectonic analysis[J].Transactions of the Leicester Literaryand Philosophical Society,1993,84(3):535—597
    [52]Seng)r A M C,Okurogullari A. The role of accretionary wedges in the growthcontinents:Asiatic examples from Argand to plate tectonics[J].EclogaeGeol Helv,1991,84(3):535—597
    [53]Coleman R G.Continental growth ofNorthwest China[J].Tec—tonics,1989,8:621-635
    [54]谢鸣谦拼贴板块构造及其驱动机理一中国东北及邻区的大地构造演化[M].北京:科学出版社.2000.256
    [55]Wu G Y.Early Paleozoic accretion and amalgamation in a Gondwana—originated China[J].ActaUniversitatis Carolinae-Geologica,1998,42(3—4):501—507
    [56]邵济安,唐克东蛇绿岩与古蒙古洋的演化[A].见:张旗主编蛇绿岩与地球动力学研究[c]北京:地质出版社,1996.117—120
    [57]唐克东,王莹,何国琦,等中国东北及邻区大陆边缘构造[J].地质学报,1995,69(1):16-30
    [58]吴根耀2006白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质,33(1):64—77
    [59]刘震,赵阳,杜金虎,肖伟,金博,许晓明,梁全胜,郝琦2006.陆相断陷盆地岩性油气藏形成与分布的“多元控油一主元成藏”特征[J].地质科学,41(4):612-635
    [60]李晓清等.蒙古弧形褶皱带上叠沉积盆地油气远景[J].地学前缘.2006(6).『61]吴根耀,冯志强,杨建国,汪在君,张立国,郭庆霞2006.中国东北漠河盆地的构造背景和地质演化[J].石油与天然气地质,27(4):528—535
    [62]Wu Genyao 2005. The Yanshanian orogeny and two kinds ofYanshanides in central—easternChina[J].Acta Geologica Sinica(English Ed),79(4):507—51 8
    [63]吴根耀.2002.燕山运动和中国大陆晚中生代的活化[J]地质科学,37(4):453-461
    [64]张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.2001燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,36(2):248—255
    [65]刘如琦,戴立军,商木元,王铁军,汪振斌,崔武军,关康2006.辽东的主要剪切带及其金矿化特征[J].地质科学,41(2):181-194
    [66]刘如琦,戴立军.2005一个S-C构造控制金矿化的实例[J].地质科学,40(1):105—113
    [67]张克鑫,漆家福,林会喜2006济阳地区埕岛一垦东构造带中生代的逆冲断层及其与郯庐断裂带的关系l Jl地质科学,41(2):270—277
    [68]胡望水,吕炳全,张文军,毛治国,冷军,官大勇.2005松辽盆地构造演化及成盆动力学探讨[J].地质科学,40(1):16-31
    [69]叶德燎.2005.松辽盆地东南隆起区下白垩统层序地层格架及油气成藏规律[J].地质科学,40(2):227-236
    [70]葛文春,李献华,林强,孙德有,吴福元,尹成孝.2001.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]地质科学,36(2):176—183
    [71]黄有泉,渠永宏.海拉尔盆地贝尔凹陷南屯组兴安岭群油组划分原则.大庆石油地质与开发[J].2006,25(5):21-25
    [72]邓宏文,郭建宇,王瑞菊,谢小军。陆相断陷盆地的构造层序地层分析[J],地学前缘,2008年3月,第15卷第2期
    [73]范立国,侯启军,陈均亮.松辽盆地中浅层构造层序界面的划分及其对含油气系统形成的意义[J].大庆石油学院学报2003,27(2):13-1 8
    [74]马杏垣.论伸展构造[J].地球科学[J].1982,7(3):15—21
    [75]马杏垣等.中国东部中、新生代裂陷作用和伸展构造地质学报[J].1983,57(1):22-32
    [76]刘和甫.中国沉积盆地演化与旋回动力学环境地球科学[J].1996,21(4):348—350
    [77]张吉光海拉尔盆地不整合的形成及其油气地质意义[J].大庆石油地质与开发.2002,21(5) 8—10
    [78]蒋鸿亮,陈均亮,李红英.海拉尔一塔木察格断陷盆地大型三角洲形成机制分析[J].大庆石油地质与开发2009,21(5):8—-10
    [79]郭了萍等.我国层序地层学研究的发展趋势[J].河南石油[J].2005,19(6):1-6
    [80]陈均亮,蒋鸿亮,李宏伟等海拉尔盆地乌尔逊凹陷中的三角形断块:演化及对油气的控制作用[J].地质科学,2009,44(2):657-668
    [81]曹瑞成,朱德丰,陈均亮,刘赫,王志国,王江.海拉尔一塔木察格盆地构造演化特征[J]大庆石油地质与开发2009,21(5):8—10
    [82]刘树根等内蒙古海拉尔盆地演化研究[J].成都地质学院学报1993(4):80一87
    [83]刘志宏等,2006.海拉尔盆地乌尔逊贝尔凹陷的地质特征及油气成藏规律[J].吉林大学学报(地球科学版),36(4):215—220
    [84]刘志宏等,2007.海拉尔盆地乌尔逊-贝尔凹陷的构造特征及其对油气成藏的影响[J].大地构造与成矿学,31(2):151—156
    [85]张晓东,刘光鼎,王家林.海拉尔盆地的构造特征及其演化[J].石油实验地质,1994,16(2):119-127
    [86]沈华,李春柏,陈发景,尹微,张宇.伸展断陷盆地的演化特征一以海拉尔盆地贝尔凹陷为例[J]现代地质,2005,19f2):287-294
    [87]陈均亮,吴河勇,朱德丰,于德顺,林春华.海拉尔盆地构造演化及油气勘探前景[J].地质科学,2007,42(1):147—159
    [88]陈均亮,蔡希源,林春华,雷茂盛,王红艳.松辽盆地北部断陷盆地构造特征与幕式演化[J]石油学报,1999,20(4):14—18
    [89]陈均亮,李忠权,应丹琳.松辽盆地北部白垩纪末反转变形的三维构造物理模拟[J].地质科学,2009,44(1):63—73
    [90]陈骁,李忠权,陈均亮,李洪奎,张彤.松辽盆地北反转期的界定[J].地质通报2010,29(2—3):305-311
    [91]张进,张庆龙,任文军,等.断层相关褶皱一鄂尔多斯盆地中的新构造样式[J].石油实验地质1999,21(1):61—63
    [92]解国爱,肖文霞,张庆龙.鄂尔多斯盆地西南缘断层相关褶皱与油气圈闭构造[J].高校地质学报2001,7(3):273—378
    [93]胡健民,宋子新,郭力宇.湖北武当地块北缘伸展滑脱构造特征[J].中国区域地质1999,18(1):39—45
    [94]刘剑平,汪新文,周章保等.伸展地区变换构造研究进展[J].地质科技情报.2000,19(3):27—32
    [95]周章保,汪新文,陶国强等.临清坳陷东部新生代盆地变换构造分析及与油气关系[J].2002,22(4):90-98
    [96]杨懋新,杨树锋,陈汉林等.乌尔逊凹陷滑脱型构造样式与油气成藏[J].浙江大学学报(理学版)2003,30(5):598-600
    [97]杨勉,付广,张云峰等.构造变换带沉积充填特征与油气分布规律[J].大庆石油地质与开发2008,27(3):15—19
    [98]伍英,陈均亮,张莹海拉尔一塔木察格盆地构造带与油气关系[J].大庆石油学院学报2009,33(3):31-35
    [99]sUPPE J.Priclples of structural Geology[M]. Engle—wood Cliffs,N .J:PrIntlce—Hall,Inc.1985:341—367
    [100]谯汉生,牛嘉玉,王明明.中国东部深部层系反向断层遮挡聚油原理与勘探实践[J].石油勘探与开发,1999,26(6):10一13
    [101]王鹏,王伟锋,黄龙威,等.胡庆油田反向正断层形成机理与油气聚集关系[J].断块油气田,2004,11(3):7-9
    [102]张忠涛,施和生,秦成岗,等番禺低隆起白云凹陷北坡断层封闭性研究[J].断块油气田,2010,17(1):24—27
    [103]李家康.渤海油气成藏特点及与断层关系[J].石油学报,2001,22(2):26-31『104]邹丙方,吴兴录,陈鸿雁笔.架岭构造带反向正断层与油气聚集关系研究[J].断块油气田,1999,6(5):14-16
    [105]沈华,刘俊,刘建党.贝尔凹陷褶皱构造样式及成因分析[J].中国矿业,2005,14 (3):79—82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700