用户名: 密码: 验证码:
黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小兴安岭地区位于中亚—兴蒙巨型造山带的东段,西伯利亚板块、华北板块和太平洋板块三大板块的交汇区域,是经多次相互作用的复合造山带,其前中生代主要受古亚洲洋构造域的影响,中生代以来又受到太平洋板块活动的强烈改造与叠加增生,因此构成了此区独特的构造演化背景。
     本次工作对小兴安岭地区与成矿有关的岩浆岩进行了岩石学、地球化学、年代学的研究,获得了本区中生代侵入岩锆石U-Pb年龄的200-170Ma和120-100Ma两个范围。200-170Ma间形成大规模花岗岩类,主要沿伊春—延寿褶皱带呈近南北向展布,岩石类型总体为钙碱性—高钾钙碱性系列的I型(包括高分异I型)花岗岩,且大多数岩体属于氧化程度高的磁铁矿系列,形成与太平洋板块的俯冲有关;120-100Ma间与成矿有关的主要为火山岩和浅成侵入岩,岩石学特征和地球化学分析表明其形成于俯冲后岩石圈伸展减薄环境。集中在分布
     在野外工作和室内研究的基础上,我们对研究区内典型矿床成因类型及成矿特征进行了重新认识:小西林铅锌矿原定矽卡岩型,经项目组野外调查初步认为I号主矿体成因类型为以碳酸盐岩为容矿围岩的热水喷流沉积型铅锌矿床(银矿山型SMS),老道庙沟铅锌矿为小西林矿田内不同于主矿体的热液脉型铅锌矿;翠宏山矽卡岩型铁钼多金属矿床原定是加里东期成矿作用叠加印支期和燕山期岩浆热液活动的结果,本次研究认为它很可能与霍吉河、鹿鸣钼矿同时产出于燕山早期,是太平洋俯冲背景下岩浆侵入碳酸岩地层的产物。
     根据Westra等(1981)对斑岩型钼矿的分类,霍吉河、鹿鸣斑岩型钼矿属于钙碱性系列的深成侵入体型,钼矿化主要有两种类型:石英—辉钼矿脉(花岗岩未蚀变)和薄膜状矿化(花岗岩蚀变成绢英岩),根据成矿岩体和钼矿化特征,我们建议将此类深成侵入体型钼矿定义为细网脉型钼矿,拓宽寻找斑岩型矿床的思路,即大岩基也可以成矿。
     在对小兴安岭地区成岩成矿年龄的修正及典型矿床成因的重新认识之后,对研究区典型矿床进行了成矿系列的重新划分,可划分为2个成矿系列:与燕山早期中酸性岩浆侵入活动有关的钼铁铅锌钨铜矿床成矿系列、与燕山晚期中酸性火山岩、次火山岩有关的金、银矿床成矿系列。
     最后,本文总结了小兴安岭地区成矿的空间和时间规律:空间上,可划分为伊春—延寿MoFePbZnWSnCuAg成矿亚带和小兴安岭北西向AuAg成矿亚带。前者成矿作用既受中生代岩浆活动控制,又受特定时代地层(如寒武系西林群铅山组、奥陶系小金沟组等)控制,北东向、北北东向和北西向构造都是成矿的主要控制条件;后者受燕山晚期北西向小兴安岭盆岭边界断裂火山喷发带控制,产出低硫化型浅成低温热液型矿床。时间上可分为3个成矿期:早寒武世成矿期、早燕山成矿期、晚燕山成矿期,其中最主要的是燕山成矿期。
     在上述成矿分析的基础上,我们在吉林大学地球科学学院地质流体实验室采用Linkam THSM-600型冷热台,对各矿床进行了大量的流体包裹体测试,确定了各典型矿床(点)成矿流体的均一温度、盐度、密度、压力,并计算了成矿的深度,为小兴安岭地区的研究工作积累了大量的资料。
     鹿鸣钼矿与霍吉河斑岩型钼矿的成因类型及成矿特征基本一致,矿石类型主要以辉钼矿石英细网脉为主,包裹体均一温度表明成矿温度总体集中在180-360℃之间,辉钼矿沉淀温度集中在280-360℃之间,富液相水溶液包裹体盐度集中在3.05-6.58wt%NaCleqiv之间;含子矿物多相包裹体大多数通过子矿物的消失而均一,盐度范围为39.23-47.60 wt%NaCleqiv。各阶段包裹体特征表明,成矿流体总体演化过程可能为岩浆房最先分离出一个单一相的高温、中低盐度的流体相,当流体系统由静岩向静水压力演化过程中,由于减压导致流体局部沸腾,分离出高盐度的流体及其与之共生的气相两种流体,钼在残余流体中富集并沉淀,同时,温度的降低使钼在300-360℃间迅速沉淀。总体上,随着成矿流体不断演化,成矿物质不断沉淀,成矿系统逐步降温,盐度也随之降低。
     翠宏山铁钼多金属矽卡岩型矿床流体包裹体测试样品均来自石英硫化物期,其中,早阶段包裹体以含子矿物包裹体和富液相水溶液包裹体为主,含子矿物多相包裹体均一温度为291-330.5℃,相应的流体盐度为(NaCleq)37.29%-40.17%,富液相水溶液包裹体均一温度集中于240-315℃,盐度为6.44%-9.60%;辉钼矿化阶段和铜铅锌矿化阶段以大量发育富气相水溶液包裹体为特征,类型主要为富液相水溶液包体和富气相水溶液包体,少量含子矿物多相包体,包裹体均一温度为180-234℃和252-288℃。
     浅成低温热液型矿床中三道湾子金矿床形成温度集中在230-270℃问,结合地质特征和矿物组合特征该温度区间大致相当与硫化物一石英脉和石英—金—碲化物形成的温度;东安金矿成矿温度主要集中在220-280℃,属于中低温矿床;乌拉嘎金矿主矿区矿床形成温度主要集中在150-220℃区间内,为主矿化阶段的含金玉髓状石英-多金属硫化物形成的温度。上述三个矿床成矿流体均为低盐度低密度流体。
Lesser Hinggan Mountain is located in the eastern section of giant Central Asia-Hing Meng orogenic belt, the intersection area of Siberia plate, North China plate and the Pacific plate. It is a composite orogenic belt undergoing interactions of the three plates, mainly influenced by Paleo-Asian Ocean tectonic domain before the Mesozoic, and reconstruction and superposition activities of the Pacific plate since the Mesozoic, therefore constitutes a unique tectonic evolution background in this area.
     Petrology, geochemistry, chronology researches on mineralization-related magmatic rocks are carried out within Lesser Hinngan Mountain. It is suggested that ages of these intrusive rocks center on 200-170Ma and 120-100Ma. Great amounts of granitoids formed during 200-170Ma, mainly distributed nearly north-south trending along the Yichun-Yanshou fold belt, belong to calc-alkaline-high-K calc-alkaline series, I type (including the highly fractionated I-type) granites, magnetite series,with a high degree of oxidation, forming by subduction of the Pacific plate; volcanic and shallow intrusive rocks are contributed to mineralization during 120-100Ma, and formed due to lithospheric thinning after subduction.
     Based on the field work and laboratory study, we are approaching a new understanding on the genesis types and characteristics of deposits in studying area:Xiaoxilin lead-zinc skarn deposit is sedimentary exhalative lead-zinc deposits (Silver mine type SMS); Laodaomiaogou lead-zinc deposit is of hydrothermal vein type, different from the type of main ore body within Xiaoxilin ore field; Cuihongshan Fe-Mo polymetallic skarn deposit is formed during early Yanshanian, due to the Pacific subduction, instead of originally concerned as the product of the Caledonian superimposed Indosinian and Yanshanin magmatic hydrothermal activities.
     According to Westra et al (1981) on the classification of porphyry molybdenum deposit, we consider Huojihe, Luming porphyry molybdenum deposit are belong to the calc-alkaline series, pluton type. There are two types of molybdenum mineralization:quartz-molybdenite veins (Granite is not altered) and film-like mineralization (granite is altered into phyllic), according to rock and molybdenum mineralization characteristics, we propose to redefine this type as stockwork molybdenum deposit, in order to expand the idea of for porphyry deposit prospecting.
     After revising diagenetic mineralization ages and reunderstanding of ore genesis, we again reclassify the metallogenic series in the study area, two series can be divided: magmatism-related Mo-W-Cu-Pb-Zn deposit series in Early Yanshanian and volcanic-subvolcanic rocks related Au-Ag mineralization series in the late Yanshan.
     Finally, the paper summarizes the regional mineralization laws in space and time:in space, it can be divided into Yichun-Yanshou Mo-Fe-Pb-Zn-W-Sn-Cu-Ag metallogenic subzone and Lesser Hinggan Mounain NW-trending Au-Ag ore subzone. Mineralization in former subzone is well controlled by Mesozoic magmatic activity, also by specific strata (such as Cambrian Qianshan group, Ordovician Xiaojingou group, etc.), and NE, NNE and NW structures; the latter is controlled by volcanic eruption zone along NW-trending Basin and Range boundary fault in the late Yanshanian, with smoe low-sulfidation epithermal deposits. Three metallogenic periods are determined:Early Cambrian, early Yanshanian and late Yanshanian metallogenic period.
     Based on mineralization analysis, A lot of fluid inclusions tests have been carried out in geological fluids Laboratory in Earth Sciences department, Jilin University, using Linkam THSM-600 hot and cold units to determine the ore-forming fluids homogenization temperature, salinity, density, pressure of each typical deposit, and calculate the depth of mineralization for the study area, provided large amount of data for further research in Lesser Hing'an area.
     Luming and Huojihe molybdenum porphyry deposits are comparable, ore types are mainly molybdenite quartz veins, homogenization temperatures of fluid inclusion are concentrated in 180-360℃, molybdenite precipitated between 280-360℃, salinity of L type is concentrated in 3.05-6.58 wt% NaCleqiv whereas S type concentrated in 39.23-47.60wt% NaCleqiv by the disappearance of daughter mineral. Inclusion characteristics of each stage showed the overall evolution of ore-forming fluid may:firstly isolated a high temperature, middle-low salinity single fluid phase from the magma chamber, then isolated a high salinity fluid and coexisting gas phase when pressure changing from lithostatic to hydrostatic due to pressure reducing and fluid boiling. Mo enriched and precipitated in the residual fluid during 300-360℃. Overall, with the evolution of ore-forming fluids, minerals precipitated, ore-forming system was gradually cool down as well as the salinity decreased.
     Majority S type fluid inclusions in early stage of Chuihongshan Mo polymetallic deposit homogeneous by final dissolution of daughter minerals, a few by disappearing bubbles, homogenization temperature is concerntrated in 291-330.5℃, corresponding fluid salinity (NaCleq) is 37.29%-40.17%, homogenization temperature of L type is concentrated in 240-315℃, salinity in 6.44%-9.60%; Inclusions types of quartz sulfide stage mainly are L and V type, a small amount of S type. Homogenization temperature can be divided into two concentration intervals 180-234℃and 252-288℃, corresponding to molybdenite stage and copper lead zinc mineralization stage.
     Sandaowanzi gold deposit mainly formed in the 230-270℃, roughly equal to sulfide-quartz veins and quartz-gold-telluride stage; Dongan gold deposit mainly formed in the 220-280℃, belonging to the low-temperature deposit; Wulaga gold deposit forming temperature mainly concentrated in the range 150-220℃, equal to the tempreture of gold-bearing chalcedony quartz-polymetallic sulfides stage. The three deposits are all low salinity low-density.
引文
[1]Batchlor R B, Bowden P. Petrogenetic interpretation of granitiod rock series using multicationic parameters[J]. Chemical Geology.1985,48:43-55
    [2]Bedard J. Enclaves from the A2 type granite of the MeganicComplex, White Mountain magma series: Clues to granite magma genesis[J].J of Geophysical,1990,95 (B11):17797-17819.
    [3]Briskey, J. A., Descriptive model of sedimentary exhalativeZn-Pb, in Cox, D. E, and Singer, D. A., eds., Mineral deposit models:U,S. Geological Survey Bulletin 1986,1693, p.211.
    [4]Burnham, C.W.,1979, Magmas and hydrothermal fluids, in Barnes, H.L.,ed., Geochemistry of Hydrothermal ore deposits,2nd ed.:New York, John Wiley, p.71-136.
    [5]Bodnar, R.J.,1993, Revised equation and table for determining the freezingpoint depression of H2O-NaCl solutions:Geochimica et CosmochimicaActa, v.57, p.683-684
    [6]Carten, R.B and Snee, L.W., Hydrothermal history and duration of oreformation at the Henderson porphyry molybdenum deposit, Colorado:GeologicalSociety of America Annual Meeting Abstracts, New Orleans,1995,p. A-281.
    [7]Collins, W. J., Beams, S. D.et.al., Nature and origin of A-type granites with particular reference to Southeastern Australia:Contributions to Mineralogy and Petrology,1982, v.80, p.189-200
    [8]Cooke D R, Simmons S F. Characteristics and genesis of epithermal gold deposits[J].Reviws in Economic Geology,2000,13:221-244.
    [9]Chappell, B.W., White, A.J.R., I- and S-type granites in the Lachlan Fold Belt[J]. Trans. R. Soc. Edinb. Earth Sci.1992.83,1-26.
    [10]Chappell B.W., White, A J Two contrasting granite types.Pacif Geol.,1974(8)173-174.
    [11]Christiansen, E.H., and Keith, J.D., Trace element systematics in silicicmagmas:A metallogenic perspective, in Wyman, D.A., ed., Trace elementgeochemistry of volcanic rocks:Applications to massive sulphide exploration:Geological Association of Canada Short Course Notes, v.1996,12, p.115-151.
    [12]Cooke D R, Mcphail D C. Epithermal Au-Ag-Te mineralization,Acupan, Baguio District, Philippines: Numerical simulations of mineral deposition[J].Economic Geology,2001,96(1):109-131.
    [13]Condie KC. Mantle plume and their record in earth history[M]. London:Cambridge University Press,2001
    [14]Cook D R, Hollings P, Walshe J. Giant porphyry deposits:characterstics, distribution and tectonic controls[J]. Economic Geology,2005,100(5):801-818..
    [15]Didier, D., Barbarin, B.,1991. Enclaves and Granite Petrology,Developments in Petrology[J]. Elsevier Science Publications, Amsterdam.1-625 pp
    [16]Eby G. N., Krueger, H.W., and Creasy, J.W., Geology, geochronology, and geochemistry of the White Moutain batholith, New Hampshire, in Puffer, J.H., and Ragland, P.C., eds.,Eastern North American Mesozoic magmatism:Geological Society of America Special Paper 1992,268:379-398
    [17]Einaudi.M.T.,Meinert, L.D.and Newberry, R.J.,Skarn deposits[J].Economic Geology.75th Anniversary Volume, p.1981,317-391
    [18]Fan Weiming, Guo Feng. Wang Yuejun, et al. Late Mesozoic calc-allcaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains. northeastern China[J]. Journal of volcanology and geothermal research[J],2003,121:115-135.
    [19]Fournier, R.O.,1999, Hydrothermal processes related to movement of fluid fromplastic into brittle rock in the magmatic-epithermal environment:EconomicGeology, v.94, p.1193-1211.
    [20]Gill J B. Orogenic Andesites and Piate Tectonics[J]. Berlin:Springer-Verlag,1981.358-360.
    [21]Hedenquist, J.Q., Hydrothermal systems in volcanic arcs, origin of the exploration for epithermal gold deposits, short course notes. Geological Survey of Japan Mineral Resource Department,1996. Higashi 1-1-3, Tsukuba 305, Japan.139 pp.
    [22]Hedenquist, J., Arribas, A., and Reynolds, J., Evolution of an intrusion centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines:Economic Geology, 1998, v.93, p.373-404.
    [23]Hedenquist J W, Arribas r A, Gonzalezue. Exploration for epithermal gold deposits[J].Reviews in Economic Geology,2000,13:245-277.
    [24]Henley, R.W., Ellis, A.J., Geothermal systems ancient and modern:a geochemical review[J]. Earth Science Reviews 1983.19,1-50.
    [25]Heinrich, Driesner.et.al., Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J]. Geological Society of America.2004; v.32; no.9; p. 761-764
    [26]Heald,P.,Foley,N.K..,Hayba,D.O.,Comparative anatomy of volcanic-hosted epithermal deposits- acid-sulfate and adularia-sericite types[J]. Economic Geology 1987.82,1-26.
    [27]Hibbard.M J Textural anatomy of twelve magma-mixed granitoid systems[J]. In:Enclaves and Granite Petrology, ed by J. Didier and B Barbarin, Elsevier,Amsterdam.1991,431-444
    [28]Harris N B W, Pearce J A, Tindle A G. Geochemicalcharacteristics of coilision-zone magmatism In:Cowed M P, ReisA C, eds. Collision Tectonics.Spec.Publ.Hrol.Soc.Lond.,1986.19:67-81
    [29]Holden, P., Halliday, A.N., Stepens, W.E., Neodymium andstrontium isotope content of microdiorite enclaves points to mantle input to granitoid production[J]. Nature 1987.330,53-56.
    [30]Hofmann AW, Jochum K P, Seufert M. Nb and Pb in oceanic basalts:New constraints on mantle evolution[J]. Earth Planet Sci Lett,1986,79(1/2):33-45
    [31]Irber. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J], Geochimica et Cosmochimica Acta1999,63,489-508,
    [32]Irvine, T.N., Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences 1971.8,523-528.
    [33]Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H, Wang Y X. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos,2001.59:171-198
    [34]Klemm, Pettke, Heinrich. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA[J]. Miner Deposita.2008,43:533-552
    [35]Li J Y. Permian geodynamic setting of northeast China and adjacent regions:closure of the Paleo-Asian ocean and subduction of the Paleo-pacific plate[J]. J Asian Earth Sci,2006,26(3-4): 207-224
    [36]Nitoi E, Munteanu M and Marince S.et.al. Magma enelave interaetions in the East Carpathian Subvolcanic Zone, Romania:petrogenetic implications[J].J.Volcanology and Geothermal Research. 2002,118(1-2):229-259
    [37]Mutschler, F.E., Wright, E.G.et.al., Granite molybdenite systems[J].ECONOMIC GEOLOGY,1981, v. 76, p.874-897.
    [38]Pearce J A, Haltis H B W, Tindele A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984.25:956-981
    [39]Perugini D.Poll Get.al. Magma mixing in the Sithonia Plutonic Complex, Greece:evidence from mafic microgranular enclaves[J]. Mineralogy and Petrology,78(3-4):173-200
    [40]Picher W S. Granite type and tectonic environment[A].Mountain Building Processes[M]. London: Academic Press,1983:19-40.
    [41]Pals and Spry. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji[J]. Mineralogy and Petrology (2003)79:285-307.
    [42]Richwood Peter C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos,1989,22:247-263
    [43]Rusk, B.G., Cathodoluminescent quartz textures and fluid inclusions inveins of the porphyry copper-molybdenum deposit in Butte, Montana:Constraints on the physical and chemical evolution of the hydrothermalsystem, Unpublished Ph.D. dissertation, Eugene, Oregon, University of Oregon, 2003,285
    [44]Rusk, B.G., and Reed, M.H., Scanning electron microscope-cathodoluminescenceof quartz reveals complex growth histories in veins from theButte porphyry copper deposit, Montana[J]. Geology,2002, v.30, p.727-730.
    [45]Rusk, Reed, Dilles. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper- Molybdenum Deposit at Butte, Montana. Economic Geology,2008Vol.103, pp. 307-334
    [46]Shao Ji'an,Mu Baoeli, He Guoq,i et al., Geoolgcia leffects nitectonci superpostioin of Paelo -Pacfici domani and Paelo- Asain domani in northern part of north Chnia[J]. Sceince ni Chnia (Sereis D),1997:40(6):634-640.
    [47]Scottam, Watanabe y."Extreme boiling"model for variablesalinity of the Hokko low-sulfidation epithermal Au prospect, southwestern Hokkaido, Japan[J]. Mineralium Deposita,1998,33(6): 568-578.
    [48]Sillitoe,R.H., and Hedenquist, J.W., Linkages between volcanotectonicsettings, ore-fluid compositions and epithermal precious metal deposits, inSimmons, S.F., and Graham, I., eds., Volcanic, geothermal and oreformingfluids; rulers and witnesses of processes within the Earth[J]. Societyof Economic Geologists Special Publication 2003,10, p.315-343.
    [49]Spycher N F, Reed M H. Evolution of a Broadlands-Type epithermal ore fluid along alternative P-T paths:implications for the transport and deposition of base, precious, and volatile metals[J]. Econ Geol,1989,84:328-359.
    [50]Sun, S.S., McDonough, W.F., Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J.(Eds.), Magmatism in the Ocean Basins:Special Publication,42. Geological Society,London,1989. pp.313-345
    [51]Shinohara, H., Kazahaya, K., and Lowenstern, J., Volatile transport inconvecting magma column: Implications for porphyry Mo mineralization[J].Geology, v.23, p.1995,1091-1094.
    [52]Vernon, R.H., Etheridge, M..E., Wall, V.J., Shape and microstructureof microgranitoid enclaves: indicators of magma minglingand flow[J]. Lithos.1988.22,1-11
    [53]Villeneuve and Whalen, The Endako Batholith:Episodic Plutonism Culminating in Formation of the Endako Porphyry Molybdenite Deposit, North-Central British Columbia[J], Economic Geology Vol. 96,2001, pp.171-196
    [54]Weaver BL, Tarney J. The Scourie dyke suite:Petrogenesis and geochemical nature of the Proterozoic sub-continental mantle[J]. Contrib Mineral Petrol,1981,78:175-188
    [55]Westra G and Keith S B. Classification and genesis of stockwork molybdenum deposits[J]. Econ. Geol.,1981.76:844-873
    [56]Wu FY, Jahn BM, Wilde SA and DY. Phanerozoic crustal growth:U-Pb and Sr-Nd isotoic evidence from the granites in northeastern China[J]. Tectonophysics,2000.328:89-113
    [57]Wu FY, Sun DY, Li HM, Jahn BM and Simon A. Wilde. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology,2002.187:143-173
    [58]Wu FY, Jahn BM et al., Highly fractionated I-typegranites in NE China(I):Geoehronology and Petrogenesis[J].Lithos,2003.66:241-273
    [59]Wu F Y, Richard isotopic constraints Chemical Geology, on Walker, Ren X W, Sun D Y, Zhou X H. Osmiumthe age of lithospheric mantle beneath northeastern China[J].2003.196:107-129.
    [60]Wu FY, Lin JQ, Wilde SA, Sun DY and Yang JH. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth Planet. Sci. Lett.,2005a.233:103-119
    [61]Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chem Geol,2005,221:127-156
    [62]Wu F Y, Yang. J H, Lo C H. The Jiamusi Massif:A Jurassic accretionaryterrane along the western Pacific margin of NE China[J]. Island Arc,2007b,16:156-172
    [63]Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:implications for 'ITG genesis[J]. Chemical Geology.2005,218:339-359
    [64]Zaraisky G P.1991. Experimental modeling of bimetasomatic caleareousskarn zoning[A]. Skarns_their genesis and metallogeny[C].Athens:Theophrastus Publications S. A.467-495
    [65]Zhang Y B, Wu F Y, Wilde S A, et al. Zircon U-Pb ages and tectonic implications of'Early Paleozoic' granitoids at Yanbian, JilinProvince, northeast China[J]. Island Arc,2004,13:484-505
    [66]Zhang Zhao chong, Jingwen Mao.et.al.Geochemistry and geochronology of the volcanic rocks associated with the Dong'an adularia-sericite epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China:Constraints on the metal logenesis[J]. Ore Geology Reviews. 2010,37:158-174
    [67]Zhao Jun-Hong, Zhou Mei-Fu. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J]. Precamb Res,2007,152(1/2):27-47
    [68]Zorpi, M.J., Coulon, C.et.al.. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons[J]. Tectonophysics 1989.157, pp.315-329
    [69]表尚虎,李仰春,何晓华等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质1999,18(1):28-33
    [70]Boyle R W金与金矿床地球化学[M].马万钧等译.北京:地质出版社,1984.26—3
    [711陈美勇,刘俊来等.大兴安岭北段三道湾子碲化物型金矿床的发现及意义[J].地质通报,2008,27(4):584-587.
    [72]程裕淇,陈毓川,赵一鸣等.初论矿床的成矿系列问题[J].中国地质科学院院报,1979,1(1):32-57。
    [73]程裕淇,陈毓川,赵一鸣等.再论矿床的成矿系列问题[J].中国地质科学院院报,1983,5(6):1-64
    [74]程三友中国东北地区区域构造特征与中、新生代盆地演化[M].中国地质大学(北京).2006
    [75]迟效国,王成文,金巍,等.区域构造演化对中、新生代盆地形成演化的制约[R].吉林大学地球科学学院,2007
    [76]迟效国,等.东北地区火山岩与油气关系研究(中石化项目报告),2010.
    [77]曹熹.佳木斯复合地体[M].长春:吉林科学技术出版社,1992:37-45.
    [78]代军治,毛景文,杨富全等.华北地台北缘燕辽铝(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,025(5):598-315.
    [79]邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造大陆动力学的钥匙[M].北京:地质出版社,1996
    [80]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004
    [81]段吉业,安素兰.黑龙江伊春早寒武世西伯利亚型动物群[J].古生物学报,2001,40(3):362-370
    [82]葛文春,林强等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):396-407
    [83]葛文春,李献华等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183
    [84]葛文春,吴福元,周长勇,Abdel Rahman AA.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005b,50(12):1239—1247
    [85]葛文春等,兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(2)2407-2417
    [86]葛小月,李献华,周汉文.琼南晚白垩世基性岩墙群的年代学、元素地球化学和Sr-Nd同位素研究[J].地球化学,2003,32(1):11-20
    [87]方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992
    [88]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993
    [89]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江入民出版社,2004:5-40.
    [90]胡受奚,林潜龙,陈泽铭,等.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1988:442-489.
    [91]黄映聪.佳木斯地块古生代变质作用与构造演化[D].吉林大学博士学位论文.2009
    [92]侯增谦.大陆碰撞成矿论[J].地质学报,2010,84(1):30-58
    [93]韩振哲,赵海玲,李娟娟等.黑龙江铁力兴安一带斑岩型钼矿资源潜力预测[J].地质与勘探,2009,45(3):252-258
    [94]刘静兰,郝正平,孙绍洲.东风山前寒武纪含铁建造金矿床.中华人民共和国地质矿产部,地质专报四:矿床与矿产,第17号.北京:地质出版社,1991
    [95]刘宝山,吕军.黑河市三道湾子金矿床地质、地球化学和成因探讨[J].大地构造与成矿学,2006,30(4):481-485.
    [96]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:3-290
    [97]武子玉,王洪波等,黑龙江黑河三道湾子金矿床地质地球化学研究[J].地质论评,2005.51(3)264--267.
    [98]刘殿秘.松辽盆地及其周围典型盆地部分地球物理特征[D].吉林大学博士学位论文,2008
    [99]吕军,王建民,岳帮江等,三道湾子金矿床流体包裹体及稳定同位素地球化学特征[J].地质与勘探,2005.41(3):33-37
    [100]李锦轶.中国大陆构造格架与形成过程.振兴东北老工业区东北亚矿产资源响应学术研讨会.2006.
    [101]李旭平,焦丽香,郑庆道等.黑龙江桦南地区黑龙江杂岩锆石U-Pb定年[J].岩石学报,2009,025(08):1909-1916
    [102]刘永江等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951
    [103]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    [104]林强,葛文春,孙德有等.中国东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33:]29-139
    [105]林强,葛文春,孙德有等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报,2000,30(4):322-328
    [106]林强,葛文春,曹林等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(3):208-222
    [107]林强,葛文春,吴福元等.大兴安岭中生代花岗岩类的地球化学[J].岩石学报.2004,20(3):403-412
    [108]刘志宏 黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].吉林大学硕士学位论文,2009
    [109]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].吉林大学硕士学位论文,2006,26-27
    [110]刘建峰,迟效国,张兴洲等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报,2009,83(3):365-376.
    [111]李林山,何财等.黑龙江省伊春市霍吉河钼矿床地质特征及成因探讨[J].吉林地质,2010,29(2):53-55
    [112]毛景文,谢桂青,张作衡等.中国北方中生代大规模成矿作用的期次及其地球动力学背景究[J].岩石学报,2005,21(1):169-188
    [113]毛景文,张作衡,余金杰等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学(D辑),2003,33(4):289-299
    [114]孟恩,许文良,杨德彬等.佳木斯地块东缘及东南缘二叠纪火山作用:锆石U-Pb年代学、地球化学及其构造意义[J].科学通报,2008,48(22):2315-2323
    [115]彭玉鲸,纪春华等中俄朝毗邻地区古吉黑造山带岩石及年代记录[J].地质与资源,2002,11(2):65-75
    [116]祁进平,陈衍景.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59
    [117]邵济安,唐克东.吉林省延边开山屯地区蛇绿混杂岩[J].岩石学报,1995,11:212-220
    [118]邵洁连.金矿找矿矿物学[M].武汉:中国地质大学出版社,1988,38-45
    [119]邵济安,牟保磊,张履桥.华北东部中生代构造格局转换过程中的深部作用与浅部响应[J].地质论评,2000,46(1):32-40
    [120]孙德有,吴福元,林强等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001,17(2):227-235
    [121]孙德有.张广才岭中生代花岗岩成因及其地球动力学意义[D].吉林大学博士学位论文,2001
    [122]孙德有,吴福元,高山等.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报.2004.25(2):213-218.
    [123]孙德有,吴福元,高山等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275
    [124]宋彪,牛宝贵,李锦轶,等.牡丹江-鸡西花岗岩类地质同位素年代学研究[J].岩石矿物学杂志,1994,13(2):204-213
    [125]谭成印等.黑龙江右岸北西向有色、贵金属构造-成矿带的确立及其地质意义[J].地质与资源,2009,18(4):256-265
    [126]涂光炽初论碲的成矿问题[J].矿物岩石地球化学通报,2000,19(4):212-215
    [127]T.Robinson P,白吉文,杨经绥,等.内蒙古贺根山蛇绿岩岩石成因和地壳增生的地球化学制约[J].岩石学报,1995,11:112-12
    [128]王长水,孙福生等.黑龙江省前寒武纪基底及金矿成矿系列研究[J].黄金,2007,3(28):15-21
    [129]王成文,张松梅.哲斯腕足动物群[M].北京:地质出版社,2003
    [130]王成文,金巍等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008.32(2):119-136
    [131]王荃,刘雪压,李锦轶.中国内蒙古中部的古板块构造[M].中国地质科学院院报,1991,22:1-15
    [132]王玉净,樊志勇.内蒙古西拉木伦河北部绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,31(1):58-65
    [133]王友勤,苏养正,刘尔义.东北区区域地层[M].北京:中国地质大学出版社,1997,13-106
    [134]王永祥,吴国学,白士俊等.乌拉嘎金矿床地质地球化学特征研究[J].世界地质,2005,24(4):16-19.
    [135]武子玉,王洪波.黑龙江黑河三道湾子金矿床地质地球化学研究[J].地质论评,2005,51(3):264-267.
    [136]武广,孙丰月等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288
    [137]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2)181-189
    [138]吴福元,孙德有等.论燕山运动的深部地球动力学本质[J].高校地质学报,2000,6(3):379-388.
    [139]吴福元,李献华等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238
    [140]吴河勇,杨建国,黄清华,等.漠河盆地中生代地层层序及时代[J].地层学杂志,2003,27(3):193-198
    [141]肖庆辉,邓晋福等.花岗岩研究思维与方法[M].北京:地质出版社,2002:10-18.
    [142]谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000:6-10.
    [143]颉颃强,张福勤,苗来成等.东北牡丹江地区“黑龙江群”中斜长角闪岩与花岗岩的锆石SHRIMPU-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250
    [144]肖庆辉,卢欣祥,王菲,等.柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J].中国科学(D辑),2003,33(12):1194-1200.
    [145]杨铁铮等.小兴安岭地区东安金矿区火山岩及其与金矿关系研究[D].北京地质大学硕士论文,2008,46
    [146]杨学明,杨晓勇,陈双喜译.岩石地球化学[M].合肥.中国科学技术大学山版社,2000,1-275
    [147]张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22(增刊):94-101
    [148]张兴洲,中国兴蒙—吉黑地区岩石圈结构基本特征[J].中国地质.2006,33(4)816-824
    [149]张志华.黑龙江三道湾子金矿矿床地质特征及成矿模式研究[D].吉林大学硕士学位论文,2009:54-55
    [150]张德会流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997.12(6):546—542.
    [151]张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.燕山中晚期的“中国东部高原”:埃达克岩的启示[J]..地质科学,2001,36:248-255
    [152]张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景[J].地学前缘,2003,10(4):385-400
    [153]张旗,李承东,王焰等.中国东部中生代高Sr低Yb和低Sr高Yb型花岗岩:对比及其地质意义[J].岩石学报,2005,21(6):1527-1537
    [154]张旗,王焰,李承东等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006.22:2249-2269
    [155]张旗,潘国强,李承东.花岗岩构造环境问题一关于花岗岩研究的思考之三[J].岩石学报,2007c.23:2683-2698
    [156]张旗,潘国强,李承东等.花岗岩研究的误区—关于花岗岩研究的思考之五[J].岩石学报,2008b.24(10):2212-2218
    [157]张炯飞,权恒等.东北地区中生代火山岩形成的构造环境[J].贵金属地质,2000.,9(1):33-38
    [158]张炯飞,王显忠,权恒等.得尔布干成矿区(北片)成矿条件初步研究[J].地质与资源,2001,10(4):220-225.
    [159]张苏江黑龙江省铁力地区钼(铜)矿产成矿地质条件及找矿潜力分析[D].吉林大学硕士学位论文,2009
    [160]张艳斌,东北显生宙花岗岩年龄研究[D].吉林大学博士论文,2003.
    [161]赵—鸣,毕承思,邹晓秋等.黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-饿同位素年龄[J].地球学报,1997,18(1):61-67
    [162]赵寒冬,刘勇,邓晋福等.小兴安岭伊春地区环斑花岗岩组合特征及其地质意义[J].中国地质,2009,26(3):658-668
    [163]赵志丹,莫宣学,张双全等.西藏中部乌郁盆地碰撞后岩浆作用—特提斯洋壳俯冲再循环的证据[J].中国科学(D辑),2001,31(增刊):20-26.
    [164]赵春荆,彭玉鲸,党增欣等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996.
    [165]赵海玲;邓晋福;陈发景等.东北地区新生代火山作用、深部作用与大陆裂谷型盆地.地球科学-中国地质大学学报,1996,21(6):615-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700