用户名: 密码: 验证码:
Co-S材料在碱性溶液中的储能性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近期研究表明,Co-非金属复合物(如Co-B、Co-Si、Co-P等)、CoO、Co_3O_4、Co(OH)_2等Co基材料在碱液中具有良好的储能性能。作为碱性二次电池负极材料,Co基材料具有较高的放电容量和较好的循环性能,但是有关非金属部分对Co电极的电化学性能的影响机理鲜有报道,而且Co基材料的电化学性能有待进一步提高。作为超级电容器材料,氧化钴、硫化钴等也受到广泛关注,但对其电化学性能的研究尚不深入。与以上Co基材料类似,Co-S复合物和CoS化合物也体现出良好的电化学性能,且制备简单、易于控制形貌。本文将以Co-S材料作为研究对象,研究其作为碱性二次电池负极材料和超级电容器电极材料的电化学性能。第一部分:Co-S材料作为碱性二次电池负极材料的性能研究
     运用简单混合法、球磨法和水热法制备了两种Co-S复合物和两种CoS化合物。作为碱性二次电池负极材料,Co-S复合物电极的放电容量高达350mAh g1,且循环性能良好,CoS化合物电极的放电容量很低,仅有40mAh g1左右。两者电化学性能差别的主要原因是所含S起的作用不同:复合物材料中的S能提高Co的分散性能,且在电化学反应过程中能够溶解,使电极内产生空隙,进一步促进了Co与电解液直接的充分接触,提高了Co的利用率,使得Co-S复合物材料表现出较好的电化学性能;而CoS化合物材料中的Co以CoS形式存在,即使经过多周反应,大部分Co仍然不能释放出来,Co的利用率较低,导致其电化学性能较差。
     运用简单水热法制备了系列Co_9S_8纳米片包覆Co颗粒的Co-S复合材料。研究发现复合材料的比表面积远远大于单质Co,Co-S材料的最高放电容量达到420.2mAh g~(-1),循环200周后仍保持在410mAh g~(-1),单质Co的最高放电容量只有214.5mAh g~(-1),且衰减严重。电化学性能显著提高的主要原因为复合物材料比表面的增大,以及Co_9S_8的包覆降低了Co(OH)_2向HCoO_2~-的转化,从而使Co的利用率提高,循环稳定性提高。
     运用水热/溶剂热法制备了系列由具有分级结构的Co颗粒组装而成的链状Co,探讨了反应时间、反应温度及溶剂对产物形貌的影响。制备的Co的最高放电容量为560mAh g~(-1),循环120周后,放电容量仍保持在480mAh g~(-1),经过与单质硫复合改性后,电化学性能得到进一步提高,Co的链状结构及表面特殊的微纳结构都对其性能的提高都起到了重要作用。第二部分:CoS材料作为超级电容器电极材料的性能研究
     采用简单的溶剂热法,分别以TAA、CS_2和S粉为硫源合成了纯度较高、结晶良好的花状CoS、花状CoS_(1.097)和空心球状的CoS_2,研究了反应温度、反应时间和溶剂对产物形貌的影响。作为超级电容器材料,在碱性电解液体系中,CoS、CoS_(1.097)和CoS_2均体现出了较好的氧化还原赝电容的特性。
     采用两步法制备Co_3S_4纳米空心球,并成功的合成出Co_3S_4/rGO复合物。研究发现,作为超级电容器材料,Co_3S_4/rGO复合物的最高放电比容量为676.1Fg~(-1),经过1000周充放电循环之后仍然维持在610.9F g~(-1),容量保持率为90%,性能远远优于Co_3S_4纳米空心球。加入石墨烯之后电化学性质显著提高的主要原因是(a) Co_3S_4纳米空心球与石墨烯之间的相互作用提高了纳米空心球之间、石墨烯网络之间的电子传导率,有利于提高材料的放电容量及倍率性能;(b)以rGO为基底制备的Co_3S_4分散性明显提高,避免了Co_3S_4纳米空心球的团聚,提高了材料的比表面积,从而提高了材料电化学性能。
Recently, it is demonstrated that Co-based materials, such as Co-nonmetalcomposites (Co-B, Co-Si, Co-P), CoO, Co_3O_4and Co(OH)_2possess excellent energystorage properties in alkaline solution. As negative electrode materials for alkalinerechargeable batteries, Co-based materials display high discharge capacity and goodcycle stability. However, the function mechanism of nonmetals on theelectrochemical performances of the Co electrode is rarely reported. Furthermore, theelectrochemical properties of Co-based materials are still needed to be improved.Cobalt oxide and cobalt sulfides are also widely investigated as the electrodematerials for supercapacitors, but the research is not enough in-depth. Similar to theabove Co-based materials, Co-S composites and CoS compound display goodelectrochemical behaviors. And it is easy to prepared the Co-S materials and controltheir morphologies. In view of the above question, Co-S materials are studies asnegative materials for alkaline rechargeable batteries and electrode materials forsupercapacitors.
     Part1Investigation of Co-S materials as negative materials for alkalinerechargeable batteries
     Kinds of Co-S composite and CoS compound are prepared by simple mixing, ballmilling and hydrothermal method, respectively. As negative electrode materials foralkaline rechargeable batteries, Co-S composite electrodes display high dischargecapacities of350mAh g1and good cycle stabilities. However, the CoS compoundelectrodes display quite low discharge capacity of40mAh g~(-1). The differences of theelectrochemical properties are mainly due to the function of S in the electrodes: forCo-S electrodes, sulfur powders may improve the dispersion of Co particles and theyare easy to dissolve in alkaline aqueous during cycling, further enlarge the contactarea between Co and alkaline solution, which are favorable for improving thedischarge capacities. However, for CoS compound electrodes, the utilization of Co isdecreased because CoS is stable in alkaline solution, showing low discharge capacities.
     A series of novel Co-S composites composed of metallic Co coated with Co_9S_8areprepared via a facile hydrothermal method and investigated as negative electrodes forsecondary alkaline batteries. Compared with pure Co, the BET surface areas of Co-Scomposites are greatly increased. The maximum discharge capacity of the Co-Selectrode reaches420mAh g~(-1)and remains at410mAh g~(-1)after200cycles, while thedischarge capacity of pure Co electrode is only214.5mAh g~(-1)and rapidly decreases.The increase of the BET surface area and the coating structure of the Co-S compositedo favor for improving the usage of Co in the electrode and the cycling stability.
     Chainlike Co materials assembled by hierarchical nanostructures are synthesizedvia a facile hydrothermal and solvothermal method. Effects of reaction time,temperature and solvents on the morphologies are studied. The highest dischargecapacity of the as-prepared Co is about560mAh g~(-1)and it still remains480mAh g~(-1)after120cycles. The electrochemical properties are further improved by mixing withsulphur powder. The chainlike structures and the special morphology surface texturesare favourable for the improvement of electrochemical properties.
     Part2Investigation of CoS as electrode materials for supercapacitors
     Flower-like CoS, CoS_(1.097)and CoS_2hollow spheres are prepared by a facilesolvothermal method using TAA, CS_2and S powder as sulfur sources, respectively.Effects of reaction time, temperature and solvents on the morphologies are studied.As the electrode materials for supercapacitors, the as-prepared CoS, CoS_(1.097)andCoS_2display typical pseudocapacitance performance in KOH aqueous solution.
     Co_3S_4hollow nanospheres and Co_3S_4/rGO hybrid are described by a noveltwo-step method. Electrochemical measurements reveal that the as-preparedCo_3S_4/rGO composite displays highest discharge capacitance of676.1F g~(-1)and it stillremains610.9F g~(-1)after1000cycles, with the capacitance retention rate of90%,which is better than the Co_3S_4hollow nanospheres. Several features make theCo_3S_4/rGO composite for high capacity, excellent rate capability and cycling stability.Firstly, the intimate interaction between the graphene substrates and the Co_3S_4directly anchored on them afford facile electron transport between individual hollowsphere and the conducting graphene network, which is the key to both of the high specific capacitance and the rate capability of Co_3S_4/rGO. The interaction also leadsto a good dispersion of the Co_3S_4grown on the rGO sheets to avoid aggregation,which is also helpful for the improvement of electrochemical properties.
引文
[1] Haschka F, Warthmann W, Benczúr-ürm ssy G. Alkaline batteries for hybrid and electricvehicles. J. Power Sources,1998,72(1):32-36
    [2] K hler U, Antonius C, B uerlein P. Advances in alkaline batteries. J. Power Sources,2004,127(1-2):45-52
    [3] Ohms D, Kohlhase M, Benczúr-ürm ssy G, et al. New developments on high power alkalinebatteries for industrial applications. J. Power Sources,2002,105(2):127-133
    [4] Ma R Z, Liang J, Wei B Q, et al. Study of electrochemical capacitors utilizing carbon nanotubeelectrodes. J. Power Sources,1999,84(1):126-129
    [5] Beck F, Rüetschi P. Rechargeable batteries with aqueous electrolytes. Electrochim. Acta,2000,45(15-16):2467-2482
    [6] Shukla A K, Venugopalan S, Hariprakash B. Nickel-based rechargeable batteries. J. PowerSources,2001,100(1-2):125-148
    [7] Gao X P, Yao S M, Yan T Y, et al. Alkaline rechargeable Ni/Co batteries: Cobalt hydroxides asnegative electrode materials. Energy Environ. Sci.,2009,2(5):502-505
    [8] Chakkaravarthy C, Periasamy P, Jegannathan S, et al. The nickel/iron battery. J. PowerSources,1991,35(1):21–35
    [9] Corrigan D A, Knight S L. Electrochemical and Spectroscopic Evidence on the Participationof Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction. J. Electrochem. Soc.,1989,136(3):613-619
    [10] Falk S U, Salkind A J. Alkaline Storage Batteries. Wiely, New York,1969
    [11] Sathyanarayana S. The Nickel-Iron Storage Batteries-A Status Report and Techno-EconomicSurvey for India. National Research Development Council, India,1983
    [12] Ojefors L. Temperature-dependence of iron and cadmium alkaline electrodes. J. Electrochem.Soc.,1976,123(8),1139-1144
    [13] Vijayamohanan K, Balasubramanian T S, Shukla A K. Rechargeable alkaline iron electrodes.J. Power Sources,1991,34(3),269-285
    [14] Micka K, Zabransky Z. Study of iron oxide electrodes in an alkaline electrolyte. J. PowerSources,1987,19(4):315-323
    [15] Balasubramanian T S, Vijayamohanan K, Shukla A K. Mechanisms of the discharge ofporous-iron electrodes in alkaline medium. J. Appl. Electrochem.,1993,23(9):947-950
    [16] Armstrong R D, Baurhoo I. Solution soluble species in the operation of the iron electrode inalkaline solution. J. Electroanal. Chem.,1972,34(1):41-46
    [17] Periasamy P, Babu B R, Iyer S V. Electrochemical behaviour of Teflon-bonded iron oxideelectrodes in alkaline solutions. J. Power Sources,1996,63(1):79-85
    [18] Cerny J., Jindra J., Micka K. Comparative study of porous iron electrodes. J. Power Sources,1993,45(3):267-279
    [19] Balasubramanian T S. Ph.D. Thesis. Indian Institute of Science, Bangalore,1994
    [20] Shukla A K, Ravikumar M K, Balasubramanian T S. Nickel/iron batteries. J. Power Sources,1994,51(1-2):29-36
    [21] Souza C A C, Carlos I A, Lopes M, et al. Self-discharge of Fe-Ni alkaline batteries. J. PowerSources,2004,132(1-2):288-190
    [22] Caldas C A, Lopes M C, Carlos I A. The role of FeS and (NH4)2CO3additives on the pressedtype Fe electrode. J. Power Sources,1998,74(1):108-112
    [23] Jayalakshmi M, Begum N B, Chidambaram V R, et al. Role of activation on the performanceof the iron negative electrode in nickel/iron cells. J. Power Sources,1992,39(1):113–119
    [24] Balasubramanian T S, Shukla A K. Effect of metal-sulfide additives on charge/dischargereactions of the alkaline iron electrode. J. Power Sources,1993,41(1-2):99-105
    [25] Hang B T, Yoon S H, Okada S, et al. Effect of metal-sulfide additives on electrochemicalproperties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes. J. Power Sources,2007,168(2):522-532
    [26] Vassie P R, Tseung A C C. High performance, rechargeable sintered iron electrodes-I: Theeffect of preparative methods and additives on the structure and performance of sintered ironelectrodes. J. Power Sources,2007,168(2):522-532
    [27] Rudnik E, Nikiel M. Hydrometallurgical recovery of cadmium and nickel from spent Ni-Cdbatteries. Hydrometallurgy,2007,89(1-2):61-71
    [28] Freitas M B J G, Rosalém S F. Electrochemical recovery of cadmium from spent Ni-Cdbatteries. J. Power Sources,2005,139(1-2):366-370
    [29] Freitas M B J G, Penha T R, Sirtoli S. Chemical and electrochemical recycling of thenegative electrodes from spent Ni–Cd batteries. J. Power Sources,2007,163(2):1114-1119
    [30] Geng M, Northwood D O. Development of advanced rechargeable Ni/MH and Ni/Znbatteries. Int. J. Hydrogen Energy,2003,28(6):633-636
    [31]黄振谦,陈湘平.镍锌电池,电池,1998,28(1):39-40
    [32]朱文化,张登君,柯家骏.碱性二次电池中新型镍电极,电池,1994,24(3):127-130
    [33]陈衍珍.锌镍电池新进展.电源技术,2000,24(2):120-123
    [34]王志林,章小鸽,杜荣归等.锌-铟合金电极在浓KOH溶液中的电化学行为.电化学,2007,13(4):407-410
    [35] Shivkumar R, Paruthimal Kalaigan G, Vasudevan T. Studies with porous zinc electrodes withadditives for secondary alkaline batteries. J. Power Sources,1998,75(1):90-100
    [36] Renuka A, Veluchamy A, Venkatakrishnan N. Improved cycle life performance ofZn/NiOOH cells using a stabilized zinc electrode. J. Appl. Electrochem.,1992,22(2):182-184
    [37] McBreen J, Gannon E. Bismuth oxide as an additive in pasted zinc electrodes. J. PowerSources,1985,15(2-3):169-177
    [38] McBreen J, Gannon E. The electrochemistry of metal oxide additives in pasted zincelectrodes. Electrochim. Acta,1981,26(10):1439-1446
    [39] Yu J X, Yang H, Ai X P, et al. A study of calcium zincate as negative electrode materials forsecondary batteries. J. Power Sources,2001,103(1):93-97
    [40] Ma M, Tu J P, Yuan Y F, et al. Electrochemical performance of ZnO nanoplates as anodematerials for Ni/Zn secondary batteries. J. Power Sources,2008,179(1):395-400
    [41] Yang J L, Yuan Y F, Wu H M, et al. Preparation and electrochemical performances of ZnOnanowires as anode materials for Ni/Zn secondary battery. Electrochim. Acta,2010,55(23):7050-7054
    [42] Havinga E E, Van Vucht J H N, Buschow K H J. Effect of high pressure on the crustalstructures of lanthanide trialumindes. Philips Res. Repts.,1970,25(1):255-256
    [43] Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride. Inorg. Chem.,1974,13(1):218-222
    [44] Justi E W, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-tianium system.Energy Convers.,1973,10:146-156
    [45] Earl M W, Dunlop J D. Electronics structure and surface oxidation of the haucke compoundsLaNi5, Proceedings of the26th Power Sources Symposium, Atlantic City, NJ,1974,24
    [46] Willems J J G. Metal hydride electrodes stability of LaNi5-related compounds. Philips J. Res.,1984,39(1):1-94
    [47]刘永峰. La-Mg-Ni-Co系贮氢电极合金的相结构及电化学性能研究:[浙江大学博士学位论文].浙江:浙江大学,2005
    [48]陈军,陶占良.镍氢二次电池.北京:化学工业出版社,2006
    [49] Ewe H H, Justi E W, Stephan K. Elektrochemische specicherung und oxidation vonwasserstoff mit der intermetallischen verbindung LaNi5. Energy Convers.,1973,13:109-113
    [50] Kim H S, Nishizawa M, Uchide I. Single particle electrochemistry for hydrogen storagealloys, MmNi3.55Co0.75Mn0.4Al0.3. Electrochim. Acta,1999,45(3):483-488
    [51] Leblanc P, Jordy C, Knosp B, et al. Mechanism of alloy corrosion and consequence on sealednickel-metal hydride battery performance. J. Electrochem. Soc.,1998,145(3):860-863
    [52] Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series ofhydrogen storage alloys; RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layers alternating with AB5layers. J. Alloys Compd.,1997,257(1-2):115-121
    [53]] Zhang Y H, Li B W, Ren H P, et al. Influences of the substitution of Fe for Ni on structuresand electrochemical performances of the as-cast and quenched La0.7Mg0.3Co0.45Ni2.55-xFex(x=0-0.4) electrode alloys. J. Alloys Compd.,2008,460(1-2):414-420
    [54] Pan H G, Liu Y F, Gao M X, et al. A study on the effect of annealing treatment on theelectrochemical properties of La0.67Mg0.33Ni2.5Co0.5alloy electrodes. Int. J. Hydrogen Energy,2003,28(1):113-117
    [55]刘永锋,金勤伟,高明霞等.热处理对La0.7Mg0.3Ni2.8Co0.5贮氢合金电化学性能的影响.稀有金属材料与工程,2003,32(11):942-945
    [56]朱春玲,阎汝煦,王大辉等.表面包覆镍处理La0.67Mg0.33Ni2.5Co0.5贮氢合金电极的电化学性能.稀有金属材料与工程,2006,35(4):573-576
    [57]毛丽荣.表面处理对R-Mg-Ni基贮氢合金电化学性能的影响.[燕山大学工学硕士学位论文],2006:9
    [58] Li Y, Han S H, Zhu X L, et al. The effect of Nd content on the electrochemical properties oflow-Co La–Mg–Ni-based hydrogen storage alloys. J. Alloys Compd.,2008,458(1-2):357-362
    [59] Trudeau M L, Bailey L D, Schulz R, et al. The oxidation of nanocrystalline FeTi hydrogenstorage compounds. Nanostruct. Mater.,1992,1(6):457-464
    [60] Shi J, Sakai T, Takeshita H T, et al. Influence of carbon impurity on microstructures andelectrode properties for V-based battery alloys. J. Alloys Compd.,1999,290(1-2):267-272
    [61] Choi W K, Tanaka T, Miyauchi R, et al. Electrochemical and structure characteristics ofTiV2.1Ni0.3surface modified by ball-milling with MgNi. J. Alloys Compd.,2000,299(1-2):141-147
    [62] Hatano Y, Tachikawa T, Mu D, et al. Degradation of amorphous MgNi electrode and effectof heat treatment in Ar. J. Alloys Compd.,2002,330-332:816-820
    [63] Anik M. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesizedby mechanical alloying. J. Alloys Compd.,2010,491(1-2):565-570
    [64] Becker H I, Electric double layer capacitor.[P] USP:2800616.1957207223.
    [65]王晓峰,孔祥华.新型化学储氢器件——电化学电容器.电子元器应用,2001,3(8):15-18
    [66] Ko¨tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim.Acta,2000,45(15-16):2483-2498
    [67] Sarangapani S, Forchione J, Griffith A, et al. Some recent studies with the solid-ionomerelectrochemical capacitor. J. Power Sources,1991,36(3):341-361
    [68] Conway B E. Transition from "Supercapacitor" to "Battery" Behavior in ElectrochemicalEnergy Storage. J. Electrochem. Soc.1991,138(6),1359-1348
    [69] Rudge A, Raistrick I, Gottesfeld S, et al. A study of the electrochemical properties ofconducting polymers for application in electrochemical capacitors. Electrochim. Acta,1994,39(2):273-287
    [70] Pell W G, Conway B E. Voltammetry at a de Levie brush electrode as a model forelectrochemical supercapacitor behaviour. J. Electroanal. Chem.,2001,500(1-2):121-133
    [71]南俊民,杨勇,林祖赓.电化学电容器及其研究进展.电源技术,1996,20(4):152-164
    [72]刘小军,卢永周.超级电容器综述.西安文理学院学报:自然科学版,2011,14(2):69-73
    [73]王晓峰,解晶莹,孔祥华,刘庆国.“超电容”电化学电容器研究进展.电源技术,2001,25(s1):166-170
    [74] Lewandowski A, Zajder M, Fr ckowiak E, et al. Supercapacitor based on activated carbonand polyethylene oxide–KOH–H2O polymer electrolyte. Electrochim. Acta,2001,46(18):2777-2880
    [75] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors. J. PowerSources,2006,157(1):11-27
    [76]陈英放,李媛媛,邓梅根.超级电容器的原理及应用.电子元件与材料,2008,27(4):6-9
    [77] Nishino A. Capacitors: operating principles, current market and technical trends. J. PowerSources,1996,60(2):137-147
    [78] Pell W G, Conway B E, Adams W A, et al. Electrochemical efficiency in multipledischarge/recharge cycling of supercapacitors in hybrid EV applications. J. Power Sources,1999,80(1-2):134-141
    [79] Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ionbatteries for power-assist applications in hybrid electric vehicles: I. Initial characterization. J.Power Sources,2002,112(1):236-246
    [80] Pasquier A D, Plitz I, Menocal S, et al. A comparative study of Li-ion battery, supercapacitorand nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources,2003,115(1):171-178
    [81] Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electricvehicles. J. Power Sources,1999,84(2):261-269
    [82] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev.,2009,38(9):2520-2531
    [83] Konno K, Ohba Y, Onoe K, et al. Preparation of activated carbon having the structure derivedfrom biomass by alkali activation with NaOH, and its application in electric double-layercapacitors. Carbon,2008,46(4):721-721
    [84] Ito E, Nakamura H, Inagaki M. Preparation of porous carbons from cypress usingsuper-heated steam: III. Performance in electric double layer capacitors. Carbon,2008,46(4):721-721
    [85] Iijima S. Helical microtubles of graphite carbon.Nature,1991,11(354):56-58.
    [86] Niu C, Sichel E K, Hoch R et al. High power electrochemical capacitors based on carbonnanotube electrodes. Appl. Phys. Lett.,1997,70(11):1480-1482
    [87] Zhang H, Cao G, Yang Y, et al. Comparison Between Electrochemical Properties of AlignedCarbon Nanotube Array and Entangled Carbon Nanotube Electrodes. J. Electrochem. Soc.,2008,155(2): K19-K22
    [88] Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packedsingle-walled carbon nanotubes and their application as super-capacitor electrodes. Nat.Mater.,2006,5(12):987-994.
    [89] Xu B, Wu F, Chen S, et al. Activated carbon fiber cloths as electrodes for high performanceelectric double layer capacitors. Electrochim. Acta,2007,52(13):4595-4598
    [90] Kanematsu Y, Koyama A, Kuwabara Y, et al. Control of the porous structure and the surfaceproperty of resorcinol–Acetaldehyde carbon cryogels, Carbon,2008,46(4):721-722
    [91] Zhu Y, Murali S, Cai W, et al. Graphene and Graphene Oxide: Synthesis, Properties, andApplications. Adv. Mater.2010,22(35):3906-3924.
    [92] Tang L, Wang Y, Li Y, et al. Preparation, Structure, and Electrochemical Properties ofReduced Graphene Sheet Films. Adv. Funct. Mater.2009,19(17):2782-2789.
    [93] Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chem. Soc. Rev.,2010,39(8):3157-3180
    [94] Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci.,2011,4(3):668–674
    [95] Aboutalebi S H, Chidembo A T, Salari M, et al. Comparison of GO, GO/MWCNTscomposite and MWCNTs as potential electrode materials for supercapacitors. EnergyEnviron. Sci.,2011,4(5):1855–1865
    [96] Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes. J.Mater. Chem.,2010,20(29):5983–5992
    [97] Wang Y, Shi Z, Huang Y, et al. Supercapacitor Devices Based on Graphene Materials. J.Phys. Chem. C,2009,113(30):13103–13107
    [98] Zhang J, Jiang J, Zhao X S. Synthesis and Capacitive Properties of Manganese OxideNanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C,2011,115(14):6448-6454
    [99] Shi W, Zhu J, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/reducedgraphene oxide nanocomposites. J. Mater. Chem.,2011,21(10):3422-3427
    [100] Chen S, Zhu J, Wu X. Graphene Oxide-MnO2Nanocomposites for Supercapacitors. AcsNano,2010,4(5):2822-2830
    [101] Yan J, Wei T, Shao B, et al. Preparation of a graphene nanosheet/polyaniline compositewith high specific capacitance. Carbon,2010,48(2):487-493
    [102] Trasatti S, Buzzanca G. Ruthenium dioxide: a new interesting electrode material. Solid statestructure and electrochemical behaviour. J. Electroanal. Chem.,1971,29(2): A1-A5
    [103] Zheng J P, Cygan P J, Jow T R. Hydrous Ruthenium Oxide as an Electrode Material forElectrochemical Capacitors. J. Electrochem. Soc.,1995,142(8):2699-2703
    [104] Chang K H, Hu C C, Chou C Y. Textural and pseudocapacitive characteristics of sol–gelderived RuO2·xH2O: Hydrothermal annealing vs. annealing in air. Electrochim. Acta,2009,54(3):978-983
    [105] Zheng J P, Jow T R. A New Charge Storage Mechanism for Electrochemical Capacitors. J.Electrochem. Soc.,1995,142(1): L6-L8
    [106] Park B O, Lokhande C D, Park H S, et al. Performance of supercapacitor withelectrodeposited ruthenium oxide film electrodes—effect of film thickness. J. Power Sources,2004,134(1):148–152
    [107] Hu C C, Chen W C, Chang K H. How to Achieve Maximum Utilization of HydrousRuthenium Oxide for Supercapacitors. J. Electrochem. Soc.,2004,151(2): A281-A290
    [108] Pang S C, Anderson M A, Chapman T W. Novel Electrode Materials for Thin-FilmUltracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived andElectrodeposited Manganese Dioxide. J. Electrochem. Soc.,2000,147(2):444-450
    [109] Feng Z P, Li G R, Zhong J H, et al. MnO2multilayer nanosheet clusters evolved frommonolayer nanosheets and their predominant electrochemical properties. Electrochem.Commun.,2009,11(3):706-710
    [110] Athouel L, Moser F, Dugas R, et al. Variation of the MnO2Birnessite Structure uponCharge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4Electrolyte. J. Phys. Chem. C,2008,112(18):7270-7277
    [111] Patel M N, Wang X, Slanac D A, et al. High pseudocapacitance of MnO2nanoparticles ingraphitic disordered mesoporous carbon at high scan rates. J. Mater. Chem.,2012,22(7):3160-3169
    [112] Yu G, Hu L, Vosgueritchian M, et al. Solution-Processed Graphene/MnO2NanostructuredTextiles for High-Performance Electrochemical Capacitors. Nano Lett.,2011,11(7):2905–2911
    [113] Mao L, Zhang K, Chan H S O, et al. Nanostructured MnO2/graphene composites forsupercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater.Chem.,2012,22(5),1845–1851
    [114] Chen S, Zhu J, Wu X, et al. Graphene Oxide-MnO2Nanocomposites for Supercapacitors.Acs Nano,2010,4(5):2822-2830
    [115] Xiong S, Yuan C, Zhang X, et al. Mesoporous NiO with various hierarchical nanostructuresby quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation andapplication in supercapacitors. CrystEngComm,2011,13(2):626-632
    [116] Jiang H, Zhao T, Li C, et al. Hierarchical self-assembly of ultrathin nickel hydroxidenanoflakes for high-performance supercapacitors. J. Mater. Chem.,2011,21(11),3818–3823
    [117] Yu Y, Ji G, Cao J, et al. Facile synthesis, characterization and electrochemical properties ofcuspate deltoid CoO crystallites. J. Alloys Compd.,2009,471(1-2):268-271
    [118] Hou L, Yuan C, Yang L, et al. Biomolecule-assisted hydrothermal approach towardssynthesis of ultra-thin nanoporous α-Co(OH)2mesocrystal nanosheets for electrochemicalcapacitors. CrystEngComm,2011,13(20):6130-6135
    [119] Ahn H J, Kim W B, Seong T Y. Co(OH)2-combined carbon-nanotube array electrodes forhigh-performance micro-electrochemical capacitors. Electrochem. Commun,2008,10(9):1284-1287
    [120] Yuan C, Zhang X, Hou L, et al. Lysine-assisted hydrothermal synthesis of urchin-likeordered arrays of mesoporous Co(OH)2nanowires and their application in electrochemicalcapacitors. J. Mater. Chem.,2010,20(48):10809-10816
    [121] Chung S R, Wang K W, Perng T P. Electrochemical hydrogenation of crystalline Copowder. J. Electrochem. Soc.,2006,153(6): A1128-A1131
    [122] Chung S R, Wang K W, Teng M H. Electrochemical hydrogenation of nanocrystallineface-centered cubic Co powder. Int. J. Hydrogen Energy,2009,34(3):1383-1388
    [123] Zhao X Y, Ma L Q, Yao Y, Yang M, Ding Y, Shen X D. Electrochemical energy storage ofCo powders in alkaline electrolyte. Electrochim. Acta,2010,55(3):1169–1174
    [124] Mitov M, Popov A, Dragieva I. Nanoparticles produced by borohydride reduction asprecursors for metal hydride electrodes. J. Appl. Electrochem.,1999,29:59-64
    [125] Mitov M, Popov A, Dragieva I. Possibilities for battery application of CoxByHzcolloidparticles. Colloids Surf., A,1999,149(1-3):413-419
    [126] Wang Y D, Ai X P, Yang H X, Electrochemical hydrogen storage behaviors of ultrafineamorphous Co-B alloy particles. Chem. Mater.,2004,16(24):5194-5197
    [127] Song D, Wang Y, Wang Y, et al. Preparation and characterization of novel structure Co–Bhydrogen storage alloy. Electrochem. Commun,2008,10(10):1486-1489
    [128] Lu D S, Li W S, Jiang X, Tan C L, Zeng R H. Magnetic field assisted chemical reductionpreparation of Co–B alloys as anode materials for alkaline secondary battery. J. AlloysCompd.,2009,485(1-2):621-626
    [129] Liu Y, Wang Y J, Xiao L L, et al. Structure and electrochemical hydrogen storage behaviorsof alloy Co2B. Electrochem. Commun,2007,9(5):925-929
    [130] Liu Y, Wang Y J, Xiao L L, et al. Structure and electrochemical behaviors of a series ofCo-B alloys. Electrochim. Acta,2008,53(5):2265-2271
    [131] Wang Y, Li L, Wang Y, et al. Crystalline CoB: Solid state reaction synthesis andelectrochemical properties. J. Power Sources,2011,196(13):5731-5736
    [133] Guang He, Lifang Jiao, HuatangYuan, et al. Effect of synthesis method on the structure andelectrochemical behaviour of Co–Si particles. Int. J. Hydrogen Energy,2007,32(15):3416–3419
    [134] Yanhui Zhang, Lifang Jiao, Huatang Yuan, et al. Effect of Si on electrochemical hydrogenstorage properties of crystalline Co. Int. J. Hydrogen Energy,2008,33(4):1317-1322
    [135] Wang Y, Lee J M, Wang X. An investigation of the origin of the electrochemical hydrogenstorage capacities of the ball-milled Co-Si composites. Int. J. Hydrogen Energy,2010,35(4):1669-1673
    [136] Cao Y, Zhou W, Li X, et al. Electrochemical hydrogen storage behaviors of ultrafine Co–Pparticles prepared by direct ball-milling method. Electrochim. Acta,2006,51(20):4285-4290
    [137] Peng W, Jiao L, Huan Q, et al. Co2P: A facile solid state synthesis and its applications inalkaline rechargeable batteries. J. Alloys Compd.,2012,511(1):198–201
    [138]董桂霞,杜军,朱磊等,CoO作为电极材料的可能性,电源技术,2006,30(9):713-715
    [139] Li L, Wang Y, Wang Y, et al. Mesoporous nano-Co3O4: A potential negative electrodematerial for alkaline secondary battery. J. Power Sources,2011,196(24):10758-10761
    [140] Song D, Wang Q, Wang Y, et al. Liquid phase chemical synthesis of Co–S microsphereswith novel structure and their electrochemical properties. J. Power Sources,2010,195(21):7462-7465
    [141] Du H, Jiao L, Wang Q, et al. Selenium: Another metalloid beneficial for the electrochemicalperformance of Co electrode in alkaline rechargeable batteries. J. Power Sources,2011,196(24):10748-10752
    [142] Du H, Jiao L, Wang Q, et al. Structure and electrochemical properties of ball-milledCo-carbon nanotube composites as negative electrode material of alkaline rechargeablebatteries. J. Power Sources,2011,196(13):5751-5755
    [143] Lu Z W, Yao S M, Li G R, et al. Microstructure and electrochemical properties of theCo–BN composites. Electrochim. Acta,2008,53(5):2369-2375
    [144] Yao S M, Xi K, Li G R, et al. Preparation and electrochemical properties of Co–Si3N4nanocomposites. J. Power Sources,2008,184(2):657-662
    [145] Song D, Wang Y, Wang Q, et al. Effect and function mechanism of amorphous sulfur on theelectrochemical properties of cobalt hydroxide electrode. J. Power Sources,2010,195(20):7115-7119
    [146] Lin C, Ritter J A, Popov B N. Characterization of Sol-Gel-Derived Cobalt Oxide Xerogelsas Electrochemical Capacitors. J. Electrochem. Soc.,1998,145(12):4097-4103
    [147] Li Y, Huang K, Yao Z, et al. Co3O4thin film prepared by a chemical bath deposition forelectrochemical capacitors. Electrochim. Acta,2011,56(5):2140–2144
    [148] Xu J, Gao L, Cao J, et al. Preparation and electrochemical capacitance of cobalt oxide(Co3O4) nanotubes as supercapacitor material. Electrochim. Acta,2010,56(2):732–736
    [149] Lang J, Yan X, Xue Q. Facile preparation and electrochemical characterization of cobaltoxide/multi-walled carbon nanotube composites for supercapacitors. J. Power Sources,2011,196(18):7481-7486
    [150] Yuan C, Hou L, Shen L, et al. A novel method to synthesize whisker-like Co(OH)2and itselectrochemical properties as an electrochemical capacitor electrode. Electrochim. Acta,2010,56(1):115-121
    [151] Chen C H, Tsai D S, Chung W H, et al. Electrochemical capacitors of miniature size withpatterned carbon nanotubes and cobalt hydroxide. J. Power Sources,2012,205:510-515
    [152] Tao F, Zhao Y Q, Zhang G Q, et al. Electrochemical characterization on cobalt sulfide forelectrochemical supercapacitors. Electrochem. Commun,2007,9(6):1282-1287
    [153] Yuan C, Gao B, Su L, et al. Electrochemically Induced Phase Transformation andCharge-Storage Mechanism of Amorphous CoSxNanoparticles Prepared byInterface-Hydrothermal Method. J. Electrochem. Soc.,2009,156(3): A199-A203
    [154] Justin P, Rao G R. CoS spheres for high-rate electrochemical capacitive energy storageapplication. Int. J. Hydrogen Energy,2010,35(18):9709-9715
    [155] Yang Z, Chen C Y, Chang H T. Supercapacitors incorporating hollow cobalt sulfidehexagonal nanosheets. J. Power Sources,2011,196(18):7874-7877
    [156] Dong W, Wang X, Li B, et al. Hydrothermal synthesis and structure evolution ofhierarchical cobalt sulfide nanostructures. Dalton Trans.,2011,40(1):243-248
    [157] Izumi F, Ikeda I. A Rietveld-Analysis Programm RIETAN-98and its Applications toZeolites. Mater. Sci. Forum,2000,321-324:198-205
    [158] Wu C, Bai Y, Wang X, et al. Comparisons of Co-B alloys synthesized via different methodsfor secondary alkaline batteries. Solid State Ionics,2008,179(21-26):924-927
    [159] Lu D, Li W, Tan C, et al. Investigation of Co-B-S system as anode material for secondaryalkaline battery. Electrochim. Acta,2009,55(1):171-177
    [160] Zhu L P, Zhang W D, Xiao H M, et al. Facile Synthesis of Metallic Co HierarchicalNanostructured Microspheres by a Simple Solvothermal Process. J. Phys. Chem. C,2008,112(27):10073-10078
    [161] Zhu L P, Xiao H M, Fu S Y. Surfactant-Assisted Synthesis and Characterization of NovelChain-Like CoNi Alloy Assemblies. Eur. J. Inorg. Chem.,2007,2007(25):3947-3951
    [162] Yang L X, Zhu Y J, Li L, et al. A Facile Hydrothermal Route to Flower-Like CobaltHydroxide and Oxide. Eur. J. Inorg. Chem.,2006,2006(23):4787-4792
    [163] Zhou Y X, Yao H B, Zhang Q, et al. Hierarchical FeWO4Microcrystals: SolvothermalSynthesis and Their Photocatalytic and Magnetic Properties. Inorg. Chem.,2009,48(3):1082-1090
    [164] Wu C, Yu S H, Chen S, et al. Large scale synthesis of uniform CuS nanotubes in ethyleneglycol by a sacrificial templating method under mild conditions. J. Mater. Chem.,2006,16(32):3326-3331
    [165] Li B, Xie Y, Huang J, et al. Sonochemical Synthesis of Nanocrystalline Copper TelluridesCu7Te4and Cu4Te3at RoomTemperature. Chem. Mater.,2000,12(9):2614-2616
    [166] Nagarathinam M, Chen J, Vittal J J. From Self-Assembled Cu(II) Coordination Polymer toShape-Controlled CuS Nanocrystals. Cryst. Growth Des.,2009,9(5):2457-2463
    [167] Lang J W, Kong L B, Wu W J, et al. Facile approach to prepare loose-packed NiOnano-flakes materials for supercapacitors. Chem. Commun.,2008,44(35):4213-4215
    [168] Zhang A, Ma Q, Lu M, et al. Copper-Indium Sulfide Hollow Nanospheres Synthesized by aFacile Solution-Chemical Method. Cryst. Growth Des.,2008,8(7):2402-2405
    [169] Zhai Q, Jiang T, Hu W, et al. Preparation, characterization, and luminescence of host (Yzeolite)-guest (FeS, CoS, NiS) nanocomposite materials. Mater. Res. Bull.,2002,37(11):1837-1842
    [170] Z. L. Wang. Transmission Electron Microscopy of Shape-Controlled Nanocrystals andTheir Assemblies. J. Phys. Chem. B,2000,104(6):1153-1175
    [171] Kim Y, Goodenough J B. Lithium Insertion into Transition-Metal Monosulfides: Tuning thePosition of the Metal4s Band. J. Phys. Chem. C2008,112(38):15060-15064
    [172] Prabakar S, Bumby C W, Tilley R D. Liquid-Phase Synthesis of Flower-like and Flake-likeTitanium Disulfide Nanostructures. Chem. Mater.,2009,21(8):1725-1730
    [173] Zhu L, Zhang W, Xiao H, et al. Facile Synthesis of Metallic Co Hierarchical NanostructuredMicrospheres by a Simple Solvothermal Process. J. Phys. Chem. C,2008,112(27):10073-10078
    [174] Cheng Y, Wang Y, Zheng Y, et al. Two-Step Self-Assembly of Nanodisks into Plate-BuiltCylinders through Oriented Aggregation. J. Phys. Chem. B,2005,109(23):11548-11551
    [175] Hu Y, Chen J, Chen W, et al. Synthesis of Nickel Sulfide Submicrometer-Sezed HollowSpheres Using a γ-Irradiation Route. Adv. Funct. Mater,2004,14(4):383-386
    [176] Cao F, Hu W, Zhou L, et al.3D Fe3S4flower-like microspheres: high-yield synthesis via abiomolecule-assisted solution approach, their electrical, magnetic and electrochemicalhydrogen storage properties. Dalton Trans.,2009,38(42):9246-9252
    [177] Wang X, Xi G, Liu Y, et al. Controllable Synthesis of PbSe Nanostructures and GrowthMechanisms. J. Cryst. Growth,2008,8(4):1406-1411
    [178] Wang D, Zheng W, Hao C, et al. General synthesis of I-III-VI2ternary semiconductornanocrystals. Chem. Commun.,2008,44(22):2556-2558
    [179] Li F, Bi W, Kong T, et al. Optical, photocatalytic properties of novel CuS nanoplate-basedarchitectures synthesised by a solvothermal route. Cryst. Res. Technol.,2009,44(7):729-735
    [180] Zheng Y, Cheng Y, Wang Y, et al. Metastable γ-MnS Hierarchical Architectures: Synthesis,Characterization, and Growth Mechanism. J. Phys. Chem. B,2006,110(116):8284-8288
    [181] Ge L, Jing X, Wang J, et al. Ionic Liquid-Assisted Synthesis of CuS Nestlike HollowSpheres Assembled by Microflakes Using an Oil-Water Interface Route. Cryst. Growth Des.,2010,10(4):1688-1692
    [182] Zhou X, Wang F, Zhu Y, et al. Graphene modified LiFePO4cathode materials for highpower lithium ion batteries. J. Mater. Chem.,2011,21(10):3353-3358
    [183] Yin Y, Erdonmez C K, Cabot A, et al. Colloidal Synthesis of Hollow Cobalt SulfideNanocrystals. Adv. Funct. Mater.,2006,16(11):1389-1399
    [184] Chen W, Yan L, Bangal P R. Chemical Reduction of Graphene Oxide to Graphene bySulfur-Containing Compounds. J. Phys. Chem. C,2010,114(47):19885-19890
    [185] Zhang J, Jiang J, Zhao X S. Synthesis and Capacitive Properties of Manganese OxideNanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C,2011,115(14):6448-6454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700