用户名: 密码: 验证码:
钢铝混合材料车身结构轻量化设计关键问题与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身的轻量化对于整车的轻量化起着举足轻重的作用,是提高汽车燃油经济性、降低有害排放最为有效的手段之一。相比于传统的单一钢质材料白车身,钢铝混合材料车身结构的理念能较好地兼顾各方面的要求,寻求轻量化效果、工艺性、安全性和成本等总体上的最优化,代表了今后汽车车身结构发展的最新趋势。钢铝混合车身是指在传统钢结构车身骨架中,将某些结构件用高强度钢板和铝合金等轻质材料替代,以充分发挥高强度钢板在强度和价格方面的优势,同时兼顾铝合金板材在减重及吸能方面的优势,通过材料和结构的优化设计和性能模拟的方法确定不同材料分布的部位,在提高成本不大的前提下实现车身高强度和轻量化,其核心理念是“合适的材料应用于合适的部位”。这种思想采取材料替换与结构改进相结合的方法,是车身轻量化的两种根本途径相结合的典型应用,完全符合车身轻量化的发展技术路线。
     剖析了单一材料白车身结构的开发流程与开发方法,并在此基础上提出了钢铝混合材料车身结构的开发流程。针对钢铝异种材料的匹配优化问题,提出了材料类型和板件厚度组合优化问题的理论模型,并进一步给出了基于近似模型的优化求解方法。基于钢铝混合材料单帽型薄壁梁结构的轻量化和耐撞性多目标优化这一测试案例,从拟合精度、优化预测精度两个方面对包括二次多项式、Kriging、径向基函数(RBF)等在内的近似模型解决该问题的适用性进行了探讨,结果表明:径向基函数近似模型更适合作为近似模型来解决材料类型和板厚组合优化问题。
     为解决钢铝混合车身面临的异种材料间的连接问题,以汽车车身上常用的高强度钢板SPFC590和铝合金A5052-H34为研究对象,对钢铝异种材料压力连接的可行性进行了试验研究与仿真分析,试验与仿真结果均证实了其可行性。在此基础上,以压力连接模具关键几何参数为设计变量,对连接点的颈厚值和自锁值进行了多目标优化,得到了两个目标的Pareto前沿解集,并结合实验中接头的失效模式,提出了推荐的优化方案。
     以单帽型薄壁梁碰撞吸能为算例,在同等质量相同压溃长度的条件下,比较了几种常用牌号的高强度钢和铝合金的吸能特性,得出同等质量的铝合金比高强度钢吸收能量多的结论;继而以某SUV实车结构中S型前纵梁为研究对象,通过将纵梁前后端材料分别以铝合金和高强度钢替换,研究了铝合金所占纵梁总长度比例、铝合金材料类型和厚度、先进高强度钢材料类型和厚度共5个因素对钢铝混合S型前纵梁抗撞特性的影响。结果表明,钢铝混合S型前纵梁这一特殊结构能够在减少重量的同时使其吸能增加,且碰撞峰值力降低。
     基于Euro NCAP正面40%重叠可变形壁障碰撞法规,建立了某SUV车身结构碰撞仿真模型,并通过实车碰撞实验,从车身结构变形和整车碰撞加速度两个方面对仿真结果进行对比研究,验证了仿真模型的可靠性。为减少单次计算时间,建立了车身前端结构的简化模型,分析了钢铝混合S型前纵梁结构应用于简化模型的碰撞特性,在此基础上,以简化模型中的前保险杠、吸能盒、副车架前横梁、前纵梁后端等构件为对象,采用均匀实验设计与RBF近似模型,建立了综合考虑总质量、总吸能、白车身扭转刚度、前纵梁后端峰值碰撞力等性能在内的钢铝混合材料与板厚组合多目标优化问题的数学模型。多目标优化方案应用于整车40%偏置碰撞环境下的仿真结果表明,钢铝混合材料设计能够在改善汽车碰撞安全性的同时,明显提高车身结构的轻量化水平,最终取得了使研究对象减重29.1%的轻量化效果。
The lightweight of car body plays an important role in the development of lightweight vehicles, and it is one of the most effective methods for improving vehicle fuel economy and reducing harmful emissions. Compared to the traditional car body with mono steel material, the new concept of steel-aluminum hybrid car body structures can better take into account all aspects of requirements for lightweight effect, technology, crash safety, cost, et al. It represents the latest trends of the future development of car body structures. The meaning of steel-aluminum hybrid structure car-body is that for the traditional steel car-body frame structure, some parts are replaced by new lightweight materials, such as high strength steel (HSS), aluminum alloy sheets, to realize the high-strength and lightweight requirements under the premise of controlling the cost rise in a reasonable level. This kind of car-body structure can make full use of price, high strength and stiffness advantages of HSS, as well as lightweight and energy absorption advantages of aluminum alloy sheets. Its core idea is: according to the principle that the appropriate materials are used for the appropriate parts, for each specially selected car-body part, to determine its optimal material and structural dimensions. By adopting the methods of material replacement and structural improvement, this new concept is a typical application to the combination of two basic ways of the car body lightweight, and it completely conforms to the technology roadmap of car body lightweight development.
     Based on the analysis of the development process and methodology of traditional BIW with mono steel material, this paper proposes the development process and development methodology of the steel-aluminum hybrid materials BIW. Aiming at the matching and optimization problem of steel-aluminum hybrid materials, the theoretical model of combinational optimization of material selection and structural size for steel-aluminum hybrid car body is established and the approximate model-based optimization solution method is further given. Based on the test case concerning the multi-objective optimization for the lightweight and crashworthiness of a single-hat thin-walled beam made of steel-aluminum hybrid materials, three kinds of metamodels including quadratic polynomial, Kriging and radial basis function (RBF) are considered to solve such kind of combinational optimization problem, and their feasibility and suitability are emphatically investigated. The result shows that RBF is more suitable to be used as metamodel to solve the problem concerning material types and sheet thickness.
     In order to solve the problems of the connection between dissimilar materials in the steel–aluminum hybrid car-body, the experimental research and finite element (FE) simulation analysis are carried out to study the feasibility of joining the sheets of HSS SPFC590 and aluminum alloy A5052-H34 which are both commonly used in car-body by using mechanical clinching. Based on the feasibility of experimental verification, aiming at obtaining high-quality joints with optimal properties in shear and tensile strength, the multi-objective optimization for the key geometric parameters of the clinching tool is performed by comprehensively using the methods of experimental design, statistical analysis, Meta-modeling of response surface method (RSM) and genetic algorithm (GA). The goal is to maximize both of the neck thickness and undercut value of the clinching joint. The result of solution set for Pareto front is obtained, which can provide engineers with a wide range of possible options. Taking into account the failure mode in the experiment, the relative optimum schemes are recommended.
     By taking the crashworthiness of a single-hat thin-walled beam as a numerical example, the energy-absorption characteristics of several popular brands of HSS and aluminum alloys are analyzed under the condition of same mass and crushing length. The results show that the aluminum alloys can absorb more energy than HSS with the same mass. Then the crashworthiness of the S-shaped rail extracted from the frontal frame in a car is studied. In order to reduce the peak impact force while increasing the total absorbed energy, the hybrid materials are employed in that rail, where aluminum alloy is used for its front part and advanced high strength steel (AHSS) for its back. By designing 16 experiments based on orthogonal experiment, the effects of five in?uence factors with four levels on the crash performance of the steel–aluminumhybrid S-shaped front rail are emphatically investigated. These in?uence factors include the different material types of aluminum alloy and advanced high strength steel (AHSS), the sheet thicknesses of the two parts, and length proportion for the aluminum part. The research result shows that the use of steel–aluminum hybrid materials can reduce the peak impact force and the total weight for the S-shaped front rail, while the total absorbed energy can be greatly increased, so the crashworthiness and lightweight of the S-shaped front rail are significantly improved.
     Based on the regulation of Euro NCAP 40% offset deformable barrier frontal crash test, the crash simulation model of a SUV is established. Through the real car crash test, the car-body deformation mode and the vehicle collision acceleration are compared with that of the simulation model, and the reliability of the FE model is verified. In order to reduce the computing time of single FE simulation, the simplified model of the vehicle front-end structures is established to replace the whole vehicle time-consuming FE model. The steel-aluminum hybrid front rail is used in that simplified model and its crash properties are analyzed. Based on the front rail made of steel-aluminum hybrid materials, the theoretical model of multi-objective optimization is established by choosing the steel-aluminum hybrid material types and the sheet thicknesses of the bumper, crash-box, cross-member of the subframe, and the back part of the front rail as the design variables. The mathematical model is based on the uniform experimental design and the RBF approximate model, and the considered performance include the total mass, total absorbed energy, torsional stiffness of BIW, peak impact force tested from the back part of the front rail. The simulation results are analyzed by applying the multi-objective optimization scheme in the 40% offset crash FE model, the results show that the optimized steel-aluminum hybrid materials can improve the vehicle crash safety, meanwhile the car-body lightweight level can also be significantly enhanced, and ultimately the total mass of the research objects are reduced by 29.1%.
引文
[1] http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm,汽车产业调整和振兴规划
    [2]可持续发展与汽车产业面临的机遇与挑战[N],中国工业报,2011年5月27日第A02版
    [3]国务院发展研究中心产业经济研究部.中国汽车产业发展报告[M].北京:社会科学文献出版社,2010:1-252
    [4] http://www.caam.org.cn/newslist/a35-1.html,中国汽车工业协会
    [5] http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20110228_402705692.htm,2010年国民经济和社会发展统计公报
    [6] Martin Goede, Marc Stehlin, Lukas Rafflenbeul, et al. Super Light Car—lightweight construction thanks to a multi-material design and function integration [J]. European Transport Research Review, 2009,1:5-10
    [7]龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008,44(6):27-35
    [8] Waurzyniak, Patrick. Advanced materials in automotive: Newer steels, aluminum, magnesium, and other materials lead to more lightweight, economical vehicles [J]. Manufacturing Engineering, 2009, 143(3)
    [9]朱平,孟瑾,喻明,等.轿车铝合金发动机罩板的轻量化设计与可制造性分析[J].中国公路学报,2011,24(3):113-120
    [10] Hong Seok Lim, Yong Woo Kim, Man Hoi Koo, et al. Two-stage design process of a frame-panel land vehicle structure employing topology and cross section optimization [J]. Journal of Mechanical Science and Technology, 2010, 24 (10): 963~1967
    [11]郑再象,陈靖芯,沈辉,等.采用NSGA-II算法的管件液压成形加载路径优化[J].汽车工程,2011,33(4):365-368
    [12]吴伯清.世界钢铁企业集团的ULSAB计划[J].金属世界,1998,5:1-2
    [13] Ratzek U, Greis P. The ULSAB project - new ways of constructing lightweight cars with steel [J]. STAHL UND EISEN, 1998, 118(8):45-48
    [14] Porsche Engineering Services. ULSAB-AVC Technical Transfer Dispatch #1-6[R]. 2001
    [15]康明,褚东宁,敖炳秋.北美汽车材料的研究及应用动态[J].汽车工程,2003,25(4):315-321
    [16] Sven Fa?bender, Georgi Chakmakov, Markus Franzen. Optimised aluminium vehicle front section[R].http://www.eaa.net/files/eaa/documentslive/73/646_Optimised%20aluminium%20vehicle%20front%20section%20-%20public%20version.pdf
    [17]马鸣图.汽车轻量化材料应用研究的成功范例[J].新材料产业,2006,11:19-22
    [18]彭海涛.铝合金在商业运输中的应用[J].中国金属通报,2010,29:18-19
    [19]史文方,王怀国,周昆.镁合金材料研发进展概况[J].新材料产业,2011,2:27-33
    [20] Anish Kelkar, Richard Roth, Joel Clark. Automobile Bodies: Can Aluminum Be an Economical Alternative to Steel? [J].JOM, 2001, 53(8):28-32
    [21] Hyung-Ju Kim, Gregory A.Keoleian, Steven J. Skerlos. Economic Assessment of Greenhouse Gas Emissions Reduction by Vehicle Lightweighting Using Aluminum and High-Strength Steel [J]. Journal of Industrial Ecology, 2011, 15(1):64-80
    [22]赵淮北,蔡成征,舒洁,等.激光拼焊技术在汽车上的应用研究[C].2009中国汽车工程学会年会论文集(SAE-C2009M145)
    [23]钟阳. SUV侧面碰撞仿真分析及B柱优化设计研究[D].广州:华南理工大学,2009
    [24] R.J.Pallett, R.J.Lark. The use of tailored blanks in te manufacture of construction components [J].Journal of Materials Processing Technology, 2001, 117(8):249-254
    [25]中国汽车工程学会.世界汽车技术发展跟踪研究[M].北京:北京理工大学出版社,2006:1-234
    [26] Jambor A., Beyer M. New cars—new materials [J]. Materials and Design, 1997, 18(4-6):203-209
    [27] Daniel Carle, Gordon Blount. The suitability of aluminium as an alternative material for car bodies [J]. Materials and Design, 1999, 267-272
    [28]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津:天津大学,2007
    [29] Gundolf Kopp, Elmar Beeh. New Multi-Material Design Concepts and High Integration Light Metal Applications for Lightweight Body Structures [J]. Materials Science Forum, 2010, Volumes 638-642, P437-442
    [30]常素云.影响未来汽车的十项高新技术[J].轻型汽车技术,2007,9:29-32
    [31] Crosse, Jesse. Leading [J]. Automotive Engineer (London), 1999, 24(10):63-64
    [32] M.Pfestorf. Manufacturing of high strength steel and aluminum for a mixed material body in white [J]. Advanced Materials Research, 2005, 6: 109-124
    [33] Markus Pfestorf, Duane Copeland. The Mixed Material Concept of the New BMW X5 [OL]. http://members.steel.org/AM/Template.cfm?Section=Home&CONTENTID=28272&TEMPLATE=/CM/ContentDisplay.cfm
    [34] Markus Pfestorf. Multimaterial light weight design for the body in white of the new BMW 7 series[C]. International Conference: Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany, 2009: 219-230
    [35]马鸣图,路洪洲,李志刚.论轿车白车身轻量化的表征参量和评价方法[J].汽车工程,2009,31(5):403-406,+439
    [36] Ashley, Steven. Aluminum vehicle breaks new ground [J]. Mechanical Engineering, 1994, 116(2): 50-51
    [37]漓沙.欧洲新车零部件配套目录续(二)[J].汽车与配件,2005,27:1
    [38] Martin Goede. Super LIGHT-Car project– An integrated research approach for lightweight car body innovations[C]. International Conference: Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany, 2009: 25-38
    [39] Christian Sahr. Concept tools and simulation for lightweight body design[C]. International Conference: Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany, 2009: 41-50
    [40] http://www.energy.gov/news/9908.htm
    [41]姚成.全铝车身在纯电动公交客车车身上的应用研究[J].海峡科学,2010,12:91-93
    [42]杨辉煌.轻量化客车车身铝合金真空压铸杆件开发研究[D].厦门:厦门大学,2009
    [43]黄松,徐满年,周忠胜.东风“猛士”高机动性越野汽车的技术创新[J].汽车科技(增刊),2008,Z1:1-6
    [44]孙凌玉,朱壮瑞,陈南,等.汽车车身钣金件点焊连接界面特性与建模[J].汽车工程,2000,22(1):70-72
    [45]林忠钦,胡敏,米新民,等.轿车白车身点焊装配过程有限元分析[J].焊接学报,2001,22(1):36-40
    [46]张涛,李光耀,陈涛.基于耐撞性的前纵梁焊点模拟及其优化设计[J].汽车工程,2010,32(6):524-529
    [47]孙成智,曹广军.基于等效结构应力的电阻点焊疲劳寿命预测[J].焊接学报,2011,32(1):105-108
    [48] Oikawa H, Ohmiya S, Yoshimura T. Resistance spot welding of steel and aluminum sheet using insert metal sheet [J]. Science and Technology of Welding and Joining, 1999, 4(2):80-88
    [49] Ranfeng Qiu, Hongxin Shi, Keke Zhang, et al. Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding[J]. Materials Characterization, 2010, 61(7):684-688
    [50]邱然锋,石红信,张柯柯,等.汽车车身用铝合金与钢的异种材料电阻点焊技术研究现状[J].电焊机,2010,40(5):150-154
    [51]杨阳,石岩.铝和钢异种金属焊接发展现状[J].长春大学学报,2011,21(2):21-25
    [52]秦信武,赵凤云.钢铝混合车身防腐性设计的关键技术[J].汽车科技,2006,2:43-47
    [53] J. Wloka, H. Laukant, U. Glatzel, et al. Corrosion properties of laser beam joints of aluminium with zinc-coated steel [J]. Corrosion Science, 2007, 49(11): 4243-4258
    [54] T.A.Barnes, I.R.Pashby. Joining techniques for aluminium spaceframes used in automobiles (Part I—solid and liquid phase welding) [J]. Journal of Materials Processing Technology, 2000, 99(s1-3):62-71
    [55] T.A.Barnes, I.R.Pashby. Joining techniques for aluminium spaceframes used in automobiles (Part II—adhesive bonding and mechanical fasteners) [J]. Journal of Materials Processing Technology, 2000, 99(s1-3):72-79
    [56] Torsten Draht. Key technologies for mechanical joining[C]. International Conference: Innovative Developments for Lightweight Vehicle Structures, Wolfsburg, Germany, 2009: 275-290
    [57]李红,栗卓新.超轻钢汽车材料高效复合连接技术研究进展[J].汽车技术,2008,2:1-6
    [58] Gerhard Liedl, Robert Bielak, Julia Ivanova, et al. Joining of Aluminum and Steel in Car Body Manufacturing [J]. Physics Procedia, 2011, 12(Part I): 150-156
    [59] Xin Sun, Elizabeth V. Stephens, Moe A. Khaleel. Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals [J]. International Journal of Fatigue, 2007, 29: 370–386
    [60] R.NEUGEBAUER, M.TODTERMUSCHKE, R.MAUERMANN, et al. Overview on the state of development and the application potential of dieless mechanical joining processes [J]. ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2008, 8(4):51-60
    [61] Stephan Busse, Marion Merklein, Karl Roll, et al. Development of a mechanical joining process for automotive body-in-white production[J].2010, 3(1): 1059-1062
    [62]奥尔温特·哈恩,乌韦·克勒门斯.机械变形连接[M].杜菲娜,谭义明,译.中国:化学工业出版社,2008
    [63] Nanjiang Chen, Richard Ducloux, Christel Pecquet, et al. Numerical and experimental studies of the riveting process [J]. International Journal of Material Forming, 2011, 4:45-54
    [64]雷振,秦国梁,林尚扬.铝与钢异种金属焊接的研究与发展概况[J].焊接,2006(4):16-20
    [65] T. DebRoy, H. K. D. H. Bhadeshia. Friction stir welding of dissimilar alloys– a perspective [J]. Science and Technology of Welding and Joining, 2010, 15(4):266-270
    [66] Micha Lesemann, Markus Br?ckerhoff, Peter Urban. The Prospects of Multi-Material Design [J]. ATZ autotechnology, 2008, 8:16-20
    [67] Lucas F M da Silva, Alessandro Pirondi, Andreas ?chsner. Hybrid Adhesive Joints [M]. Advanced Structured Materials, Springer Press, 2010, Volume 6
    [68]万淑敏.半空心铆钉自冲铆接技术的研究[D].天津:天津大学,2007
    [69]何玉林,杨连发,吴丛强,等.自穿孔铆接技术的研究现状及发展趋势[J].装备制造技术,2007,12:87-88
    [70] Eleonora Atzeni, Rosolino Ippolito, Luca Settineri. FEM modeling of self-piercing riveted joint [J]. Key Engineering Materials, 2007, 344: 655-662
    [71] Xiaocong He, Ian Pearson, Ken Young. Self-pierce riveting for sheet materials: State of the art[J].Journal of Materials Processing Technology, 2008, 199: 27–36
    [72] Maofeng Fu, P.K. Mallick. Effect of Process Variables on the Static and Fatigue Properties of Self-Piercing Riveted Joints in Aluminum Alloy 5754[R].SAE paper 2001-01-0825
    [73]刘秀全,张连洪,李双义,等.自冲铆接工艺过程的有限元数值模拟[J].汽车技术,2006,12:42-45
    [74]李永利.板料自冲铆接试验研究及数值模拟[D].呼和浩特:内蒙古工业大学,2009
    [75]万淑敏,胡仕新,张连洪,等.模具工艺参数对自冲铆接工艺过程及铆接质量的影响[J].机械设计,2008,25(4):62-65
    [76] R. Porcaro, A.G. Hanssen, M. Langseth, et al. The behaviour of a self-piercing riveted connection under quasi-static loading conditions [J]. International Journal of Solids and Structures, 2006, 43: 5110–5131
    [77] Dezhi Li, Li Han, Martin Thornton. An Evaluation of Quality and Performance of Self-Piercing Riveted High Strength Aluminium Alloy AA6008 for Automotive Applications[R].SAE paper 2010-01-0223
    [78] Jacek Mucha. A Study of Quality Parameters and Behaviour of Self-Piercing Riveted Aluminium Sheets with Different Joining Conditions [J]. Journal of Mechanical Engineering, 2011, 57(4):323-333
    [79] Xin Sun, Mohammad A. Khaleel. Performance Optimization of Self-Piercing Rivets Through Analytical Rivet Strength Estimation [J]. Journal of Manufacturing Processes, 2005, 7(1):83-93
    [80] Y. Abe, T. Kato, K. Mori. Joinability of aluminium alloy and mild steel sheets by self piercing rivet [J]. Journal of Materials Processing Technology, 2006, 177:417–421
    [81] P.O. Bouchard, T. Laurent, L. Tollier. Numerical modeling of self-pierce riveting—from riveting process modeling down to structural analysis [J]. Journal of materials processing technology, 2008, 202:290–300
    [82] K. Mori, T. Kato, Y. Abe, et al. lastic Joining of Ultra High Strength Steel and Aluminium Alloy Sheets by Self Piercing Rivet[J]. CIRP Annals - Manufacturing Technology, 2006, 55(1): 283-286
    [83] Alan Luo, Theresa Lee, Jon Carter. Self-Pierce Riveting of Magnesium to Aluminum Alloys[R].SAE paper 2011-01-0074
    [84] Livan Fratini, Vincenzo Fortunato Ruisi. Self-piercing riveting for aluminium alloys-composites hybrid joints [J]. International Journal of Advanced Manufacturing Technology, 2009, 43:61–66
    [85] G. Di Franco, L. Fratini, A. Pasta, et al. On the self-piercing riveting of aluminium blanks and carbon fibre composite panels [J]. International Journal of Material Forming, 2010, 3(1):1035-1038
    [86] L. Settineri, E. Atzeni, R. Ippolito. Self-piercing riveting for metal-polymer joints [J]. International Journal of Material Forming, 2010, 3(1):995-998
    [87] C.G. Pickin, K. Young, I. Tuersley. Joining of lightweight sandwich sheets to aluminium using self-pierce riveting[J].Materials and Design, 2007, 28: 2361–2365
    [88]黄舒彦.铝钢异种金属自冲铆接工艺与质量评价研究[D].上海:上海交通大学,2011
    [89]岁波.轻量化车身制造自冲铆过程建模与工艺优化[D].北京:清华大学,2005
    [90] Zeguer T, The Development of the new XJ Jaguar in Advanced Aluminium; Opportunities and Challenges[C]. 4th European LS-DYNA Users Conference
    [91] Johannes G?rdstam. Simulation of mechanical joining for automotive applications[R]. Royal Institute of Technology Department of Mechanics, Stockholm, Sweden, 2006
    [92] Juha Varis. Economics of clinched joint compared to riveted joint and example of applying calculations to a volume product [J]. Journal of Materials Processing Technology, 2006, 172 :130–138
    [93] S SABERI,H CERJAK,J HINTERDORFER,et al. Numisheet 2008:Experimental and NumericalInvestigations of the Mechanical Behavior of TOX Clinched Joints for CPP Coated thin Steel Sheets for Automotive Industry,September 1-5,2008[C]. Switzerland:Interlaken,2008:709-714
    [94] Y. Abe, M. Kishimoto, T. Kato, et al. JOINING OF HOT-DIP COATED STEEL SHEETS BY MECHANICAL CLINCHING [J]. International Journal of Material Forming, 2009, 2(1): 291–294
    [95] TOX:连接现代汽车板件的先进技术[J].锻造与冲压,2008,9:46-50
    [96] Johnny K. Larsson, Lutz Hanicke. Multi-material Approach with Integrated Joining Technologies in the New Volvo S80[R]. SAE paper 1999-01-3147
    [97] Service Training, Self-Study Programme 383_Audi TT Coupé′07 - Body [M]. http://www.volkspage.net/technik/ssp/ssp/SSP_383.pdf
    [98] A.A. de, M.T.P.Aguilar, A.E.M.Pertence, et al. Finite element simulations of the clinch joining of metallic sheets [J]. Journal of Materials Processing Technology, 2007, 182:352-357
    [99] J.P. Varis, J.Lepist?. A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters [J]. Thin-Walled Structures, 2003, 41:691-709
    [100] M.Oudjene, L.Ben-Ayed. On the parametrical study of clinch joining of metallic sheets using the Taguchi method [J]. Engineering Structures, 2008, 30:1782-1788
    [101] M.Oudjene, L.Ben-Ayed, A.Delamézière, et al. Shape optimization of clinching tools using the response surface methodology with Moving Least-Square approximation [J]. Journal of Materials Processing Technology, 2009, 209:289-296
    [102] Chan-Joo Lee, Jae-Young Kim, Sang-Kon Lee, et al. Design of mechanical clinching tools for joining of aluminium alloy sheets [J]. Materials and Design, 2010, 31: 1854–1861
    [103] Jacek Mucha. The analysis of lock forming mechanism in the clinching joint [J]. Materials and Design, 2011, 32:4943–4954
    [104] Y. Abe, T. Kato, K. Mori. Joining of Aluminium Alloy and Mild Steel Sheets Using Mechanical Clinching [J]. Materials Science Forum, 2007, Vols (561-565): 1043-1046
    [105] T. Kato, Y. Abe, K Mori. Plastic joining of dissimilar material of high tensile strength steel and aluminium alloy sheets [J]. Welding International, 2008, 22(9): 575–581
    [106] Y.Abe, A.Matsuda, T.Kato, et al. Plastic joining of aluminium alloy and high strength steel sheets by mechanical clinching [J]. STEEL RESEARCH INTERNATIONAL (Metal forming), 2008, 79: 649-656
    [107] Chan-Joo Lee, Jae-Young Kim, Sang-Kon Lee, et al. Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets [J]. Journal of Mechanical Science and Technology, 2010, 24:123-126
    [108]杨晓军,王宇飞.结构胶连接与现代汽车车身连接技术[J].汽车与配件,2010,37:24-25
    [109]王光建.单面自冲铆-粘连接工艺的试验研究及数值模拟[D].天津:天津大学,2008
    [110] F. Moroni, A. Pirondi, F. Kleiner. Experimental analysis and comparison of the strength of simple and hybrid structural joints [J]. International Journal of Adhesion & Adhesives, 2010, 30: 367–379
    [111] A. Pirondi, F. Moroni. Clinch-Bonded and Rivet-Bonded Hybrid Joints: Application of Damage Models for Simulation of Forming and Failure [J]. Journal of Adhesion Science and Technology, 2009, 23:1547–1574
    [112]叶辉,胡平,申国哲,等.基于灵敏度和碰撞仿真的汽车车身轻量化优化设计[J].农业机械学报,2010,41(10):18-22
    [113]兰凤崇,钟阳,庄良飘,等.基于自适应响应面法的车身前部吸能部件优化[J].汽车工程,2010,32(5):404-408
    [114] Xingtao Liao, Qing Li, Xujing Yang, et al. Multiobjective optimization for crash safety design ofvehicles using stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35:561–569
    [115]施颐,朱平,张宇,等.面向车身前部结构轻量化的试验设计方法研究[J].汽车技术,2010,2:46-50
    [116]潘锋,朱平.面向约束优化的改进响应面法在车身轻量化设计中的应用[J].机械工程学报,2011,47(10):82-87
    [117]刘迪辉,汪晨,李光耀.车身钣件材料对正面偏置碰撞安全性的影响[J].汽车工程,2010,32(1):2-6
    [118]周云郊,兰凤崇,韦兴民,等.正面碰撞下车身前端结构高强度钢板匹配规律研究[J].汽车工程,2009,31(10):990-994
    [119]朱平,张宇,葛龙,等.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211
    [120]张勇,李光耀.基于序列响应面方法的汽车板选材优化设计[J].上海交通大学学报,2010,44(1):62-67
    [121] Xintao Cui, Shuxin Wang, S. Jack Hu. A method for optimal design of automotive body assembly using multi-material construction [J]. Materials and Design, 2008, 29:381–387
    [122] Xintao Cui, Hongwei Zhang, Shuxin Wang, et al. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration[J]. Materials and Design, 2011, 32: 815–821
    [123]施颐,朱平,张宇,等.基于刚度与耐撞性要求的车身结构轻量化研究[J].汽车工程,2010,32(9):757-762
    [124] J.Sobieszczanski-Sobieski, S.Kodiyalam, R.Y.Yang. Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash [J]. Structural and Multidisciplinary Optimization, 2001, 22: 295–306
    [125]胡朝辉,成艾国,陈少伟,等.多材料一多零件规格组合结构多目标优化的应用[J].机械工程学报,2010,46(22):111-116
    [126] A. Jahan, M.Y. Ismail, S.M. Sapuan, et al. Material screening and choosing methods– A review [J]. Materials and Design, 2010, 31: 696–705
    [127]张勇.基于近似模型的汽车轻量化优化设计方法[D].长沙:湖南大学,2009
    [128]葛龙.基于耐撞性仿真的轿车车身轻量化研究[D].上海:上海交通大学,2003
    [129]黄天泽,黄金陵主编.汽车车身结构与设计[M].北京:机械工业出版社,1997.10:1-295
    [130]黄金陵主编.汽车车身设计[M].北京:机械工业出版社,2007.9:1-376
    [131]羊拯民主编.汽车车身设计[M].北京:机械工业出版社,2008.10:1-325
    [132]成艾国,沈阳,姚佐平.汽车车身先进设计方法与流程[M].北京:机械工业出版社,2011.05:1-240
    [133]龙江启.混合材料白车身结构开发理论及轻量化方法研究[D].广州:华南理工大学,2009
    [134]庄蔚敏,陈东平.概念设计阶段轿车参数化分析模型及控制参数优化研究[J].汽车技术,2003,5:5-8
    [135]兰凤崇,陈吉清,林建国.轿车参数化分析模型的构造及应用研究[J].计算机集成制造系统,2005,11(2):183-188
    [136] Ranny S. Sidhu, Johanna E. Burgue?o, Ron C. Averill, et al. Improved vehicle crashworthiness via shape optimization[C]. Washington,D.C: ASME International Mechanical Engineering Congress & Exposition, IMECE2003-43439, 2003
    [137]徐涛,左文杰,徐天爽,等.概念车身框架结构的多变量截面参数优化[J].汽车工程,2010,32(5):394-398
    [138]肖杰,雷雨成,张健,等.车身主断面几何特性对白车身刚度影响的研究[J].汽车技术,2007,2:15-18
    [139]王海亮,林忠钦、金先龙.基于响应面模型的薄壁构件耐撞性优化设计[J].应用力学学报,2003,20(3):61-65
    [140]谢然,兰凤崇,陈吉清,等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报,2011,47(4):117-124
    [141] Kaushik Sinha, Ramanathan Krishnan, D. Raghavendra. Multi-objective robust optimisation for crashworthiness during side impact [J]. International Journal of Vehicle Design, 2007, 43(1~4):116-135
    [142]王国春,成艾国,胡朝辉,等.基于Kriging模型的汽车前部结构的耐撞性优化[J].汽车工程,2011,33(3):208-212
    [143] H.-M. GUTMANN. A Radial Basis Function Method for Global Optimization [J]. Journal of Global Optimization, 2001, 19: 201–227
    [144]彭磊,刘莉,龙腾.基于动态径向基函数代理模型的优化策略[J].机械工程学报,2011,47(7):164-170
    [145] H. Fang,M. Rais-Rohani,Z. Liu,et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization [J]. Computers and Structures,2005,83:2121-2136
    [146] R. Jin, W. Chen, T.W. Simpson. Comparative studies of metamodelling techniques under multiple modelling criteria [J]. Struct Multidisc Optim, 2001, 23:1-13
    [147] G. Gary Wang, S. Shan. Review of Metamodeling Techniques in Support of Engineering Design Optimization [J]. Journal of Mechanical Design, 2007, 129:370-380
    [148] Franke R. Scattered data interpolation: tests of some methods [J]. Mathematics of Computation,1982,38:181-200
    [149] E. Acar,M.A. Guler,B. Gerceker,et al. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations [J]. Thin-Walled Structures, 2011, 49:94-105
    [150] A A DE PAULA,M T PAGUILAR,A E M PERTENCE, et al. Finite element simulations of the clinch joining of metallic sheets [J]. Journal of Materials Processing Technology,2007,182(1-3):352-357
    [151] G.R.Liu, S.S.Quek.有限元法实用教程[M].龙述尧,侯淑娟,钱长照译.长沙:湖南大学出版社, 2004:227-233
    [152]李裕春,时党勇,赵远. ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社, 2007:416-433
    [153] Livermore Software. LS-DYNA Keyword User’s Manual (Volume 1), Version971, Livermore Software Technology Corporation, 2007
    [154] M.D.White, N.Jones,“Experimental quasi-static axial crushing of top-hat and double-hat thin-walled sections”, International Journal of Mechanics Sciences, 1999, 41:179-208
    [155] M.D.White, N.Jones, W.Abramowicz,“A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections”, International Journal of Mechanics Sciences, 1999, 41:209-233
    [156]陈吉清,周鑫美,饶建强,等.汽车前纵梁薄壁结构碰撞吸能特性及其优化的研究[J].汽车工程,2010,32(6):486-492
    [157] Ohkami Y, et al. Collapse of thin-walled curved beam with closed-hat section—Part 1: Study on collapse characteristics. SAE Paper 900460, 1990
    [158] Abe K, Nishigaki H, Ishivama S, Ohta M, Takagi M, Matsukawa F, et al. Collapse of thin-walled curved beam with closed-hat section—Part 2: simulation by plane plastic hinge model. SAE paper 900461,1990
    [159] Kim HS, Wierzbicki T. Effect of the cross-sectional shape of hat-type cross-sections on crash resistance of a‘‘S’’-frame [J]. Thin-walled Structures, 2001, 39: 535–554
    [160] Zhang C, Saigal A. Crash behavior of a 3DS-shape space frame structure [J]. Journal of Materials Processing Technology, 2007, 191:256–259
    [161] Tai YS, Huang MY, Hu HT. Axial compression and energy absorption characteristics of high-strength thin-walled cylinders under impact load [J]. Theoretical and Applied Fracture Mechanics, 2010, 53:1–8
    [162] X.M.Chen, D. A. Witmer, M. Kamura, et al. Metal Forming Characterization and Simulation of Advanced High Strength Steels[R], SAE paper, 2004-01-1048
    [163]张卿卿,李大永,彭颖红,等. TRIP780高强度钢板动态力学特性的研究[J].塑性工程学报,2009,16(6):6-10
    [164] Maggi S, Federici. The use of High Stength Steels/Ultra High Stength Steels in the automotive industry[C]. Proceedings of the International Conference on New Developments on Metallurgy and Applications of High Stre,2008,1:61-68
    [165]葛树文,王国强,李红建,等.高强度钢对车体侧面抗撞性影响的研究[J].汽车工程,2008,30(1):17-21
    [166]马鸣图.先进汽车用钢[M].北京:化学工业出版社,2007:1-301
    [167] Porsche Engineering Services. ULSAB-AVC Technical Transfer Dispatch #6 (ULSAB-AVC Body Structure Materials), 2001
    [168]马鸣图,毕祥玉,游江海,等.铝合金汽车板性能及其应用的研究进展[J].机械工程材料,2010,34(6):1-5
    [169]丁向群,何国求,陈成澍,等. 6000系汽车车用铝合金的研究应用进展[J].材料科学与工程学报,2005,23(2):302-305
    [170] F Andreatta . LOCAL ELECTROCHEMICAL BEHAVIOUR OF 7XXX ALUMINIUM ALLOYS [D]. Netherlands:the Netherlands Institute for Metals Research (NIMR),2004
    [171]刘海江,张夏,肖丽芳.基于LS-DYNA的7075铝合金汽车保险杠碰撞仿真分析[J].机械设计,2011,28:(2):18-22
    [172]曾毅.两种动态加载条件对7075铝合金中剪切带自组织与损伤的影响[D].长沙:中南大学,2008
    [173]马鸣图,游江海,路洪洲,等.铝合金汽车板性能及其应用[J].中国工程科学,2010,12(9):4-20
    [174]武晋,毕大森,张建,等. B180H1钢板成形性能研究[J].锻压技术,2007,32(16):64-67
    [175] R.Smerd, S.Winkler, C.Salisbur, et al. High strain rate tensile testing of automotive aluminum alloy sheet [J]. International Journal of Impact Engineering, 2005, 32:541-560
    [176] ZhangX, ChenGD, ZhangH. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures [J]. Thin-walled Structures, 2006, 44: 1185-1191
    [177] Agarwal S, Briant CL, Hector LG Jr, et al. Friction stir processed AA5182-O and AA6111-T4 aluminum alloys. Part 1: electron backscattered diffraction analysis [J]. Journal of Materials Engineering and Performance, 2007, 16:391-403
    [178] Moreira PMGP, et al. Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison [J]. Theoretical and Applied Fracture Mechanics, 2008, 50: 81-91
    [179] Eren I, G¨ur Y, Aksoy Z. Finite element analysis of collapse of front side rails with new types ofcrush initiators [J]. International Journal of Automotive Technology, 2009, 10(4): 451-457
    [180] Saha N K, Calso S M, Asjad M U. Simulation of frontal offset impacts and comparison of intru-sions and decelerations [J].SAE Transaction,SAE950647: 1204-1220
    [181] Park Brian T, Partyka Susan C, et al. Comparison of Vehicle Structure Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests [R]. SAE Paper 2000-01-0879
    [182]朱西产.汽车正面碰撞试验法规及其发展趋势的分析[J].汽车工程,2002,24(1):1-5
    [183]王占强.详解Euro NCAP的五大新变化[J].世界汽车,2009,6:22-25
    [184]王志涛,门永新,汤志鸿,等.汽车偏置碰撞中的前横梁改进[J].汽车技术,2010,7:51-54
    [185]腾科.汽车正面偏置碰撞计算机仿真分析[D].沈阳:东北大学,2008
    [186]赵海鸥. LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [187] Proche Engineering Services. ULSAB-AVC Technical Transfer Dispatch # 2 (Description of ULSAB-AVC CAE Analysis for Crashworthiness), 1999
    [188] EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) _FRONTAL IMPACT TESTING PROTOCOL[S], 2011, Version 5.1
    [189] S. B. KIM, H. HUH, G. H. LEE, et al. Design of the cross section shape of an aluminum crash box for crashworthiness enhancement of a car [J]. International Journal of Modern Physics B, 2008, 22 (31-32): 5578–5583
    [190]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001:1-152
    [191]高晖,李光耀,李铁柱.基于遗传算法和可靠性分析的乘员约束系统优化[J].汽车工程,2008,30(12):1052-1055
    [192]余同希,卢国兴.材料与结构的能量吸收(耐撞性、包装、安全防护)[M].北京:化学工业出版社,2006:1-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700