用户名: 密码: 验证码:
高强度钢板热成形技术若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热成形技术是将传统热处理技术及冷冲压技术相结合的最新制造技术,刚兴起已受到国家产业政策、工业界及学术界的高度重视,具有广阔的发展前景和长远的发展生命力。本文从热成形技术工艺、热成形理论及实验方法、热成形过程的多场耦合本构关系、热成形过程的数值模拟、热成形复合材料技术及热成形技术的工程应用等方面对热成形技术进行了系统全面的研究。本文的主要研究成果如下:
     一、在热成形工艺方面
     基于独立自主开发的拥有自主知识产权的国内第一条热成形生产线介绍了直接热成形工艺和间接热成形工艺,分析了两种热成形工艺的特点,给出了选择不同成形工艺的方法。分析了高强度钢板热成形技术的关键技术和装备,总结了连续加热炉的核心技术要求、给出了热成形模具关键制造技术及设计方法,以及对热成形专用压机需具备快速动作、保压等关键技术进行了论述。
     研究了热成形工艺参数及其优化控制方法,分析了热成形工艺的关键工艺参数,即加热温度及保温时间、高温板料传递时间、冲压成形速率及模具冷却速率控制等,并对这些工艺参数的技术要求、优化控制方法进行了说明;结合热成形实例,提出了利用传统冲压数值模拟技术与高温材料参数相结合的手段对热成形参数进行快速辅助优化控制方法。
     二、在热成形理论和实验研究方面
     对热成形材料常温下的微观组织及其基本力学性能进行相关实验研究及理论分析;对热成形材料常温下的热成形性能进行了成形极限实验研究。
     对热成形过程中影响材料成形性能的硬化能力参数进行了实验研究;通过对材料硬化性能的分析,给出了热成形材料具有较好成形性能的温度区间。分析了热成形过程中板料各向初始轧制各向异性的实验方法,提出了一种新的方便高精度的实验方案用于测试材料的高温轧制各向异性。
     在热成形钢板进行高温拉伸及淬火实验的基础上,建立了马氏体相变点Ms、马氏体转变速率θ及相变塑性系数k与应力之间关系,进而建立了硼钢热成形过程中的热、力、相变耦合模型。引入了混合定律,对多相混合组织的热容、导热系数、热膨胀系数等热物性参数、弹性模量E及屈服极限等力学性能参数进行了等效分析。对热成形应变组成及其形成机理进行了分析,引入了相变体积应力及相变塑性应力等新概念。
     三、在热成形过程的数值模拟技术方面
     在建立的高强度钢板热成形热、力、相变耦合本构方程的基础上,发展了热成形非线性大变形动力显式有限元方程;通过定义接触控制参数的概念,将材料的高温性能引入接触与摩擦模型;将热成形过程中的相变潜热引入温度场,并进行了有限元分析;在自主开发的商业化金属成形CAE软件KMAS (King-Mesh Analysis System)基础上,开发了考虑多场耦合的非线性、大变形热成形动力显式数值模拟模块。基于虚功率方程及持续平衡方程建立了热成形静力显式多场耦合有限元列式,在KMAS软件基础上,开发了热成形静力显式数值模拟模块。
     四、在热成形金属复合材料技术方面
     发现了热成形分层金属复合材料及其制造工艺;分析了这种热成形新型金属复合材料各层的硬度、强度及塑性性能的连续梯度分布规律;通过对比车门防撞梁新型金属复合材料与内部各相材料在冲击载荷作用下的冲击力、吸能等性能对比,说明了金属复合材料综合了各单相材料的优秀性能,适合用于承受冲击吸能构件的选材。
     给出了热成形连续梯度分布金属复合材料成形工艺,通过控制热成形过程中的加热温度及模具冷却管路布局,得到了材料性质呈连续梯度分布的特殊金属复合材料。通过实验及数值模拟分析,说明了这种金属复合材料特别适合于耐碰撞冲击材料的选材。
     五、在热成形技术工程应用方面
     提出了判断耐冲击零部件性能的数值模拟方法,即根据零部件在整车碰撞中的约束情况对零部件进行相应约束,然后进行准静态或者动态冲击数值模拟。基于上述方法对某车型前保险杠横梁进行了热成形材料厚度的优化设计,在性能提升的同时重量减轻40%。
     对热成形金属复合材料零部件的优化设计进行了研究。首先通过对B柱进行冲击数值模拟证明了所提出的判断耐冲击零部件性能的数值模拟方法的可行性。进而通过对车身典型零部件B柱及S型梁应用热成形复合材料工艺进行优化设计,得到了比传统结构耐冲击能力更好的热成形金属复合材料零部件,同时给出了热成形金属复合材料零部件的优化设计方法。
     对热成形零部件在车身设计中的应用方法进行了研究,提出了热成形零部件用于车身设计的“功能设计”方法,通过4种工况下整车侧面碰撞结果的对比分析,说明了热成形零部件在车身设计中的作用机理,并详细阐述了“功能设计”方法的内容。
Hot forming of ultra high strength steel is the advanced technology that integrates traditional heat treatment and cold stamping. It represents the best solution to increasing the strength-to-mass ratio of sheet components, and then it can meet the need of higher passive safety and weight reduction. The prospect of hot forming technology has attracted the attention of national industrial policy the academic and engineering community, which mainly focus on the high temperature mechanical properties of materials, numerical simulation and experiments. Hot forming technology is systematically researched on these aspects including hot forming technique, theory and experimental methods of hot forming, multi-field coupled constitutive relationships of hot forming, numerical simulation of hot forming, metal composite material in hot forming and their engineering application. The main researching results of this dissertation are in the following:
     Hot forming techtique:
     According to the different forming and quenching process, two methods can be employed in hot forming:multi-step method and one-step method. The key technology of the two methods and their die design are studied. The application methods of these two hot forming processes are given. Based on independently developed mass production line of hot forming, the key technology and equipments are proposed, which include die manufacturing with cooling system, continuous heating furnace technology and integrated manufacturing system composed of the advanced interdisciplinary technology of machining, electronic control, material and chemical engineering.
     Hot forming technique parameters and their optimization method are investigated, which include heating temperature, temperature preservation time, blank transferring time forming speed and die cooling rate. Feasibility methods including theoretical analysis, numerical simulation and experiment are used to the design of the die and its manufacturing process of vehicle HFS (hot forming steel) components. The fast aid optimization method of hot forming parameters is obtained, which integrated numerical simulation of traditional cold stamping and material properties at high temperatures.
     Theory and experimental research of hot forming:
     Microstructure and basic mechanical properties of hot forming are introduced. FLD (forming limiting diagram) experiments are carried out at room temperature.
     The hardening ability of hot forming material is investigated tensile testing at high temperature, which influences material forming ability. The best temperature range for hot forming is obtained. A new experimental method is provided to investigate the anisotropic property due to rolling process of steel.
     Thermal-mechanical-transformation coupled relations of boron steel are investigated in the hot forming (HFS, hot stamping) process by tensile and quenching experiments at high temperature. In the experiment a plate specimen of boron steel is austenitized for five minutes at 950℃, then tensile forming and quenching take place simultaneously and the force, displacement, expansion and temperature in the experimental process are measured. Based on the analysis of the above physical quantities'variation and the specimen's microstructure, thermal-mechanical-transformation coupled relations of boron steel are researched and the thermal-mechanical-transformation coupled constitutive models are developed. The multi-phase mixed relationship is introduced to analyze the effective thermo-mechanical parameters and mechanical properties of multi phases during the hot forming. The components of strain and their evolved mechanism for hot forming are investigated. By defining the concepts, the phase-transformation volume stress and phase-transformation plastic stress are expressed to explain the mechanism of thermal-mechanical-transformation coupled relations. Based on the above research, the thermal-mechanical-transformation coupled models are introduced into the constitutive equations of hot forming and the integrated and incremental constitutive equations are respectively developed.
     Numerical simulation of hot forming:
     Based on the characteristic of hot forming process, the main difference of numerical simulation between hot forming and cold forming is investigated. The key questions in numerical simulation of hot forming are analyzed.
     Based on developed thermal-mechanical-transformation coupled constitutive models of hot forming, the nonlinear large-deformation dynamic explicit finite element equations are proposed. By defining the concepts, the contact control parameter is expressed to reflect material contact and friction properties at high temperatures. The phase transformation latent heat is introduced into the analysis of temperature field during the hot forming process. Based on the independently developed commercial CAE software for sheet metal forming, named KMAS (King-Mesh Analysis System), the numerical simulation module of dynamic explicit for hot forming is developed.
     The rate-dependent constitutive equation of hot forming and the finite strain virtual power equation and continuous equilibrium equation based on updated Lagrange method, the large-deformation, multi-field coupled, static explicit finite element equations of hot forming are established. Based on KMAS software, the numerical simulation module of static explicit for hot forming is developed.
     Metal composite material of hot forming:
     The multi-layer metal composite material and its manufacturing technique are discovered. The automotive components and parts formed in this technique show that the hardness in the exterior is low and that in the interior is high. The material properties present gradient distributions in the thickness direction. Then the new type multi-layer metallic composite materials is formed. By comparing the crash force and energy absorption between the metallic composite materials and its every single phase material, it is found that the metallic composite materials have the comprehensive performance of every single phase material. So the new metallic composite material is a good alternative material in application of absorbing energy.
     A new type of metal composite material can be manufactured by controlling heating temperature and designing the layout of cooling pipes in hot forming process of ultra high strength steel. The experimental results show the mechanical properties of the new metal composite material have the characteristics of continuous distribution along the main direction of energy absorption during crash process. The top-hat thin-wall structure consisting of U-shaped metal composite material is employed to analyze the crashworthiness of the new type of metal composite material. The numerical simulation results indicate the new type of metal composite material has the comprehensive performance of every single phase material. So the metal composite is a good alternative material in application of crash resistance.
     Engineering application of hot forming:
     The numerical simulation method of impact resistance is provided:according to the constraint and load conditions of the component in the whole vehicle car, the quasi-static load or dynamic load is employed to implement numerical simulation. Based on this method, optimization design of the front bumper beam is carried out by hot forming technology. The results show not only the bumper beam of hot forming improve the impact resistance, but also its weight is reduced by 40%.
     The optimization design of HFS metal composite material is investigated. The simulation result of B pillar proves the validity of the developed method, which is employed to investigate the impact resistance of HFS metal composite material. The optimization designs of B pillar and S-shape rail are carried out respectively by metal composite material of hot forming technology. Then the hot forming components with better ability of impact resistance are obtained.
     The new design method-functional design is provided, which applies the parts by hot forming to vehicle body design. Three models are design by using hot-forming parts to compare the numerical simulation results in the vehicle side impacts. Based on the comparison, the mechanism of the improved impact resistance of the whole vehicle by using hot-forming parts is analyzed. The parts by hot-forming should be the overall skeleton layout and form the ultra high strength car-protecting cab and passenger living space. The single part by hot-forming should not be simply employed to the vehicle body design in order that it thrusts into the vehicle body when vehicle crashes. Finally the functional design methods of hot-forming parts used in the vehicle body design are summarized.
引文
[1]Joseph C, Benedy K. Light metals in automotive applications. Light Metal Age 2000; 58(10):34-35.
    [2]Zhang Y, Zhu P, Chen GL. Lightweight Design of Automotive Front Side Rail Based on Robust Optimization. Thin-walled Structures 2007; 45(7-8):670-676.
    [3]Hosseini-Tehrani Parisa, Nikahd Mossa. Two materials S-frame representation for improving crashworthiness and lightening. Thin-walled Structures 2006; 44(4): 407-414.
    [4]Tarigopula V, Langseth M, Hopperstad O S, et al. Axial crushing of thin-walled high-strength steel sections. Int J Impact Engng 2006; 32(5):847-82.
    [5]Deb A, Mahendrakumar MS, Chavan C, et al. Design of an aluminum-based vehicle platform for front impact safety. Int J Impact Engng 2004; 30(8-9):1055-1079.
    [6]Lanzerath H, Schilling R. Crash simulation of structural foam. Transactions of SAE International; 2003-01-0328:73-81.
    [7]Automotive Group of International Iron and Steel Institute[R]. ULSAB-AVC Engineering Report.2001.
    [8]ULSAB-AVC body structure materials. ULSAB-AVC Consortium. Technical Transfer Dispatch 6[R]. SAE,2001.
    [9]Senuma T. Physical Metallurgy of Modern High Strength Steel Sheets[J]. ISU International,2001,41(6):520-532.
    [10]Takita M, Ohashi H. Application of High Strength Steel Sheets for Automobiles in Japan[J]. La Revue De Metallurgies CIT,2001, (10):899-909.
    [11]Kuriyama Y, Takahashi M, Ohashi H. Trend of Car Weight Reduction Using High Strength Steel[J].自动车技术.2001,55(4):51-57.
    [12]Drewes E J, Blumel K, Lenze F J. Tube and Sheet Hydroformed Steel Components for Autobody Application[J]. La Revue De Metallurgies CIT,2001, (10):927-935.
    [13]Gustavsson A, Melander A. Fatigue of a highly prestrained dual-phase sheet steel [J]. Fatigue and Fracture of Engineering Materials & Structure,1995,18(2): 201-210.
    [14]Ghosh Prakriti Kumar, Dorn Lutz. Influence of weld thermal cycle on the properties of flash butt welded dual phase steel[J]. Schweissen and Schneided, 1991,43(1):12-13.
    [15]Srirarn S, Chintamani J S, Bhatnagar R S, et al. Application of dual-phase steels for automotive closure panels[R].2003-01-0519:21-26.
    [16]Graessel 0, Krueger L. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development, properties, application [J]. International Journal of Plasticity,2000,16:1394-1409.
    [17]Georg Frommeyer, Udo Brvx, Peter Neumann. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ International,2003,3(43):438-446.
    [18]Frommeyer G, Grassel 0. High strength TRIP/TWIP and supper plastic steels: development, properties, application[C]. La Revue De Metallurgie CIT, October 1998,1299-1310.
    [19]Udo Brux, Georg Frommeyer, Oliver Grassel, et al. Development and characterization of high strength impact resistant Fe-Mn-(Al, Si) TRIP/TWIP Steels[J]. Materials Technology,Steel Research,2002,6:294-298.
    [20]Horvat h C D, Fekete J R. Opportunities and challenges for increased usage of Advanced high strength steels in automobile applications[A]. Baker M A eds. Proceedings of International Conference on Advanced High Strength Sheet Steels for Automotive Applications[C]. AIST Golden CO, USA:2004,1-7.
    [21]江海涛,唐荻,米振莉.汽车用先进高强度钢的开发及应用进展[J],钢铁研究学报,2007,19(8):1-6.
    [22]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].钢铁,2006,41(9):128.
    [23]唐荻,江海涛,米振莉,赵爱民.国内冷轧汽车用钢的研发历史、现状及发展趋势[J].鞍钢技术,2010,1-6.
    [24]王利,陆匠心.宝钢高等级汽车板的生产技术及发展[C]//2004年全国炼钢、轧钢生产技术会议论文集.无锡:中国金属学会,2004:57-63.
    [25]Akerstrom, P. Modeling and simulation of hot stamping[D]. Doctoral Theses, Lulea University of Technology, Sweden,2006.
    [26]Berglund, G. The history of hardening of boron steel in northern sweden.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,175-177.
    [27]Aspacher, J. Forming hardening concepts.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,77-81.
    [28]Patent GB1490535. Manufacturing a hardened steel article, Norrbottens Jaernverk AB,1977.
    [29]马宁,胡平,翟述基,郭威,高强度钢板热成形技术及其工程实现,汽车工艺与材料,2009(12):28-30.
    [30]ARCELORMITTAL. Usibor 1500 and Hot-Stamping[C]//AP&T Press Hardening Seminar, AP&T Press Hardening proceedings, October 2,2008, Dearborn MI, USA. Dearborn: AP&T,2008:1-41.
    [31]Naderi, M., Durrenberger, L., Molinari, A., Bleck, W. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Materials Science and Engineering, A 2008,478:130-139.
    [32]Garcia Aranda, L., Chastel, Y., Fernandez Pascual, J., Dal Negro, T.,2002. Experiments and simulation of hot stamping of quenchable steels. Advanced Technology of Plasticity,2002,2:1135-1140.
    [33]Borsetto, F., Ghiotti, A., Bruschi, S. Investigation of the high strength Steel Al-Si coating during hot stamping operations. Key Engineering Materials, Vols. 2009,410-411,289-296.
    [34]Goedicke, S., Sepeur, S., Frenzer, G., Breyer, Ch. Wet chemical coating materials for hot sheet forming-anti scaling and corrosion protection.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,37-44.
    [35]Paar, U., Becker, H. H., Alsmann, M. Press-hardened components from kassel chances and challenges.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,153-163.
    [36]Mori, K., Ito, D.,2009. Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil. CIRP Annals-Manufacturing Technology, 2009,58(1):267-270.
    [37]徐伟力,管曙荣,艾健等.钢板热冲压新技术关键装备和核心技术,世界钢铁,2009,2:30-33.
    [38]Ma Ning, Hu Ping, Guo Wei, et al. Feasible methods applied to the design and manufacturing process of hot forming. IDDRG2009 conference, Golden, CO USA,2009, 835-843.
    [39]Olle, P., Behrens, B. A., Weilandt, K., Lange, F.,2008. Numerical modeling of phase transformation in hot stamping and deep drawing. The 9st International Conference on Technology of Plasticity, CIRP,1937-1942.
    [40]Oldenburg, M., Akerstrom, P., Bergman, G. Simulation of the microstructure evolution in a press hardened component.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,3-13.
    [41]Casas, B., Latre, D., Rodriguez, N., Valls, I. Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,23-35.
    [42]Faderl, J., Manzenreiter, T., Radlmayr, M. Press hardening of hot-dip galvanized 22MnB5:A stable and reproducible process.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 2008,199-205.
    [43]Bergman G, Oldenburg M. A finite element model for thermomechanical analysis of sheet metal forming. International Journal for Numerical Methods in Engineering,2004,59:1167-1186.
    [44]Eriksson M, Oldenburg M, Somani MC, Karjalainen LP. Testing and evaluation of material data for analysis of forming and hardening of boron steel components. Modelling Simul. Mater. Sci. Eng,2002,10:277-294.
    [45]Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Materials Science and Engineering A,2008,478:130-139.
    [46]Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchenable ultra high strength steels with respect to a FE-based process design. SAE World Congress:Innovations in Steel and Applications of Advanced High Strength Steels for Automotive Structures, Paper No.2008-0853.
    [47]Mori, K., Maki, S., Tanaka, Y.,2009. Warm and hot stamping of ultra tensile strength steel sheets using resistance heating. CIRP Annals-Manufacturing Technology,54 (2009) 1,209-212.
    [48]Yanagida, A., Azushima, A.,2009. Evaluation of coefficients of friction in hot stamping by hot flat drawing test. CIRP Annals-Manufacturing Technology, 58,247-250.
    [49]MyungKi Park, HyunSung Son, TaiHo Kim, et al. Formability, flow and heat transfer simulation of hot press forming b-pillar part and tools[J], AIP Conference Proceedings, NUMIFORM2010 (2010),344-347.
    [50]Oh Suk Seoa, Suk Jin Yoonb, Chang Hee Suhc, et al. Numerical modeling of hot press forming process of boron steel tube[J]. AIP Conference Proceedings, NUMIFORM2010,2010,1216-1222.
    [51]Altan T. Hot-stamping boron-alloyed steels for automotive parts. Stamping Journal, December 2006,40-41.
    [52]邢忠文,包军,杨玉英等.可淬火硼钢板热冲压成形实验研究[J].材料科学与工艺,2008,16(2):172-175.
    [53]林建平,王立影,田浩彬等.超高强度钢热流变行为[J].塑性工程学报,2009,16(2):180-183.
    [54]王立影,林建平,朱巧红等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计,2008,25(4):15-17.
    [55]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J],汽车与配件,2009(45):28-30.
    [56]马宁,胡平,郭威,翟述基.温热成形在线快速检测控制方法及装置,申请号:200810051500.2, 公开号:CN 101623721A.
    [57]胡平,郭威,马宁,翟述基.温热成形用高温智能机器人,申请号:200810051498.9,公开号:CN 101623870A.
    [58]郭威,胡平,翟述基,马宁.温热成形用高效节能环形炉底的转底加热炉,申请号:200810051499.3,公开号:CN 101625197A.
    [59]马宁,胡平,闫康康,郭威,孟祥兵,翟述基.高强度硼钢热成形技术研究及其应用,机械工程学报,2010,46(14),177-181.
    [60]Ma Ning, Hu Ping, Shen Guozhe, et al. Model and numerical simulation of hot forming[C]//International Symposium on Automotive Steel, ISAS conference proceedings, September,2009, Dalian, China. Beijing:Metallurgical Industry Press,2009:362-367.
    [61]马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系研究,材料热处理学报,2010,12(5):33-40.
    [62]马宁,武文华,申国哲,胡平.高强度钢板热成形研究数值模拟-静力显式,计算力学学报,2011, in press.
    [63]马宁,申国哲,武文华,胡平.高强度钢板热成形研究数值模拟-动力显式,固体力学学报,已录用,2011.
    [64]马宁,张宗华,胡平,郭威,刘书田,中国哲.热成形金属复合材料的微观结构及力学行为研究,材料工程,2010(12):47-53.
    [65]Ma Ning, Zhang Zonghua, Hu Ping,Research on a new type of metal composite material in hot forming and its application, Advance Materials Research,2011, 156:582-591.
    [66]马宁,胡平,申国哲,武文华,郭威.温热成形模型及其数值模拟,2009年汽车用钢生产及应用技术国际研讨会,2009:289-293.
    [67]马宁,申国哲,张宗华等,高强度钢板热冲压材料性能研究及在车身设计中的应用,机械工程学报,2011,网络版已发行.
    [68]Sun Hongtu, Hu Ping, Ma Ning, Shen Guozhe, Liu bo, Zhou Dinglu. Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact [J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2010,23:345-350.
    [69]马宁,胡平,武文华,申国哲. 高强度钢板热成形本构理论与实验分析,力学学报,2011,2:348-356.
    [70]Neubauer, I., Hubner,K.,Wicke,T.Thermo-mechanically coupled analysis:The next Step in shect metal forming simulation.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008, 275-283.
    [71]Kusumi, K., Yamamoro, S., Takeshita, T., Abe, M. The effect of martensitic transformation on the spring-back behavior of the hot stamping.2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Lulea, Sweden,2009,97-104.
    [72]Lechler, J., Merklein, M. Geiger, M. Determination of Thermal and Mechanical Material Properties of Ultra-high Strength Steels for Hot Stamping. Steel Research International,2009,79(2):98-104.
    [73]T. Belytschko and C.-S. Tsay, A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. J. Num. Meth. Engng.1983,19: 405-419
    [74]Flanagan, D. P. and Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Num. Meth. Engng. 1981,17:679-706.
    [75]T. J. R. Hughes, Recent developments in computer methods for structural analysis. Nucl. Eng. Des.1980,57 (2):427-439.
    [76]Bassani J L, Yield characterization of metals with transversely isotropic plastic properties, Int. J. Mech. Sci.,1977(19):651.
    [77]Gotoh M, A theory of plastic anisotropy based on a yield function of fourth order (plane stress state), Int. J. Mech. Sci.,1977(19):505.
    [78]Wang N M and Tang S C, Analysis of bending effects in sheet forming operations, Proc. NUMIFORM'86 Conf.,1986:71-76.
    [79]Nakamachi E, A finite element simulation of the sheet metal forming process, Int. J. Num. Meth. Engng.,1988(25):282-292.
    [80]Nakamachi E, Computer aided simulation of sheet metal forming processes by thin shell finite element analysis, Proc.3rd ICTP,1990:1745.
    [81]Bathe K J, Finite element procedures in engineering analysis, Prentice Hull Inc., Englewood Cliffs, New Jersey,1982.
    [82]Bathe, K. J., ADINA—A finite element program for automatic dynamics incremental nonlinear analysis, Acoustics and Vibration Lab., Mech. Engng., Dept., MIT,1975.
    [83]胡平,大型覆盖件冲压成形CAE软件系统,《走向21世纪的中国力学》,中国科协第九次“青年科学家论坛”报告文集,清华大学出版社,1996:126-134.
    [84]P. Hu, J. Lian, Y. Q. Liu and Y. X. Li, A Quasi-flow corner theory of elastic plastic finite deformation, Int J. Solids & Struct., Vol.35, No.15,1998, 1827-1845.
    [85]D. Y. Li, P. Hu, Y. Cao and Y. X. Li, Section analysis of industrial sheet-metal stamping processes, J. Mater. Proc. Tech., Vol.120,2002:37-44.
    [86]G Z SHEN, P HU, X K ZHANG, X B CHEN and X D LI, Spring-back simulation and tool surface compensation algorithm for sheet metal forming, Proceedings of NUMISHEET2005, Detroit,2005,57-65.
    [87]蒋浩民.锻造工程三维数值模拟系统H-FORGE3D的开发与应用.哈尔滨工业大学博士论文.1998.
    [88]林忠钦,汽车覆盖件冲压成形仿真[M].北京,机械工业出版社,2004.
    [89]Barlat, F. and Lian, J., Plastic behavior and stretch ability of sheet metals. Part I:A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity,1989,5:123-130.
    [90]Barlat, F. and Lian, J., Plastic behavior and stretchability of sheet metals Part II:Effect of yield surface shape on sheet forming limit, Int. J. Plasticity,1989,5:131-147.
    [91]柳玉起,胡平,刘军华,陈塑寰,板材冲压成形变形局部化与动边界摩擦约束[J].固体力学学报,1997,18-25.
    [92]董怀湘,郑莹等.金属塑性成形计算机模拟的若干进展[J],金属成形工艺,2000(1),1-4.
    [93]J.C.Choi.A Compact and Practical CAD/CAM System for the Blanking or Piercing of Irregular Shaped-sheet Metal Products for Progressive Working. Journal of Materials Processing Technology,2001,110(1):36-46.
    [94]S. B. Park, Y. Choi, B. M. Kim, J. C.Choi,A Study of a Computer-aided Process Design for Axisymmetric Deep-drawing Products, Journal of Materials Processing Technology,1998,75:17-26.
    [95]那景新,焦键,闫亚坤,胡平,改进型逆有限元法在弯曲成形模拟中的应用,机械工程学报,2004,40(11):113-116.
    [96]鲍益东,那景新,胡平,汽车覆盖件成形模面快速等矩算法,机械工程学报,2004年,40卷,8期:166-169.
    [97]Okamoto, I., Takahashi, A., etc, Computer aided design and evaluation system for stamping dies in Toyota, SAE paper No.880527.
    [98]Bergman, G., Oldenburg, M. A finite element model for thermo-mechanical analysis of sheet-metal forming. International Journal for Numerical Methods in Engineering,2004 59,1167-1186.
    [99]Merklein, M., Lechler, J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design. SAE World Congress:Innovations in Steel and Applications of Advanced High Strength Steels for Automobile Structures,2008, Paper No.2008-0853.
    [100]Neubauer, I., Hubner, K., Wicke, T. Thermo-mechanical ly coupled analysis: The next step in sheet metal forming simulation.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008, 275-283.
    [101]E.L.Wilson., Automation of the finite element method, A personal historical view, Finite Element Analysis Design.1993, Vol.13, p91-104.
    [102]C. A. Hall, Transfinite interpolation and applications to engineering problems, Theory of approximation,1976, Academic Press,p308-331.
    [103]Iwata N, Matsui M and Gotoh M, An elastic plastic analysis of square cup drawing process:finite element simulation of deformation and breakage in sheet metal forming-2, J. JSTP,1992,33 (381):1202-1207.
    [104]Ning Ma, Ping Hu, Research on formability and application of hot forming technology, ISIJ, Advanced Manufacturing Technology,2010(9),26-32.
    [105]吴伯清,世界钢铁企业集团的ULSAB计划,金属世界,1998年05期,10-11.
    [106]Kleiner M, Geiger M, Klaus A. Manufacturing of Lightweight Components by Metal Forming. CIRP Annals-Manufacturing Technology,2003,52/2:521-542.
    [1]马宁,胡平,翟述基,郭威. 高强度钢板热成形技术及其工程实现,汽车工艺与材料,2009(12):28-30.
    [2]Yadav, A.;& Altan, T. "Hot Stamping Boron-Alloyed Steels for Automotive Parts" Part I[J]. Stamping Journal,2006,12:40-43.
    [3]Fan, D. W.; Kim, Han S.; Birosca, S.; De Cooman, B.C. Critical review of hot stamping technology for automotive steels[C]. AIST Steel Properties and Applications Conference Proceedings, Combined with Ms and T'07, Materials Science and Technology 2007,99-110.
    [4]H. Karbasian, A. E. Tekkaya. A Review on Hot Stamping[J]. Journal of Materials Processing Technology,2010,7:165-207.
    [5]Aspacher, J,2008. Forming hardening concepts.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,77-81.
    [6]Ma Ning, Hu Ping. Hot forming technique and its equipments for ultra high strength steel[C]//Proceedings of MSEC2010, ASME,2010:362-367.
    [7]马宁,胡平,闫康康,郭威,孟祥兵,翟述基. 高强度硼钢热成形技术研究及其应用,机械工程学报,2010,46(14),177-181.
    [8]Berglund, G.,2008. The history of hardening of boron steel in northern sweden. 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,175-177.
    [9]Erhardt, R., Boke, J.,2008. Industrial application of hot forming press simulation.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,83-88.
    [10]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J],汽车与配件,2009(45):28-30.
    [11]马宁,胡平,申国哲,武文华,郭威,温热成形模型及其数值模拟,2009年汽车用钢生产及应用技术国际研讨会,2009:289-293.
    [12]马宁,申国哲,武文华,胡平,高强度钢板热成形研究数值模拟-动力显式,固体力学学报,已录用,2011.
    [13]马宁,胡平,郭威,翟述基. 温热成形在线快速检测控制方法及装置,申请号:200810051500.2, 公开号:CN 101623721A.
    [14]胡平,郭威,马宁,翟述基. 温热成形用高温智能机器人,申请号:200810051498.9,公开号:CN 101623870A.
    [15]郭威,胡平,翟述基,马宁. 温热成形用高效节能环形炉底的转底加热炉,申请号:200810051499.3,公开号:CN 101625197A.
    [16]Ma N., Hu P., Guo W. et al., Coupled constitutive relation and numerical simulation of hot forming. Steel Research International,2010,81:937-943.
    [17]Ning Ma, Ping Hu, Research on formability and application of hot forming technology, ISIJ, Advanced Manufacturing Technology,2010(9),26-32.
    [18]Ma N., Hu P., Guo W., et al. Feasible methods applied to the design and manufacturing process of hot forming. IDDRG2009 conference, Golden, CO USA,2009, p.835~843.
    [19]徐伟力,艾健,罗爱辉等.钢板热冲压新技术介绍[J].塑性工程学报,2009,16(4):39-43.
    [20]ARCELORMITTAL. Usibor 1500 and Hot-Stamping[C]//AP&T Press Hardening Seminar, AP&T Press Hardening proceedings, October 2,2008, Dearborn MI, USA. Dearborn: AP&T,2008:1-41.
    [21]马宁,胡平,郭威,热成形硼钢热、力及相变耦合关系研究,材料热处理学报,2010,12(5):33-40.
    [22]Naderi, M.,2007. Hot stamping of ultra high strength steels. Doctoral Theses, RWTH Aachen.
    [23]Taylan Altan. Hot stamping boron alloyed steels for automotive parts Part Ⅲ Tool design and process simulation[J]. Stamping Journal,2007,2:13-15.
    [24]MALEK N, VITOON U, ULRICH P, et al. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels[J]. Steel Research International,2008,79(2):77-84.
    [25]ERIKSSON M, OLDENBURG M, SOMANI M C, et al. Testing and evaluation of material data for analysis of forming and hardening of boron steel components[J]. Modelling Simul. Mater. Sci. Eng.,2002,10:277-294.
    [26]邢忠文,包军,杨玉英等.可淬火硼钢板热冲压成形实验研究[J].材料科学与工艺,2008,16(2):172-175.
    [27]王立影,林建平,朱巧红,等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计,2008,25(4):15-17.
    [28]Naderi, M., Durrenberger, L., Molinari, A., Bleck, W.,2008. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures. Materials Science and Engineering, A 478,130-139.
    [29]HOFFMANN H, SO H, STEINBEISS H. Design of hot stamping tools with cooling system[J]. CIRP Annals-Manufacturing Technology,2007,56(1):269-272.
    [30]PETIPIERRE A B I. CFD simulations of pressure loss in pipes with different geometries[D]. Lulea:Lulea University of Technology,1999.
    [31]MERKLEIN M, LECHLER J, GEIGER M. Characterisation of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5[J]. CIRP, Annals-Manufacturing Technology,2006,55(1):229-232.
    [1]马宁,胡平,翟述基,郭威.高强度钢板热成形技术及其工程实现,汽车工艺与材料,2009(12):28-30
    [2]马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系研究,材料热处理学报,2010,12(5):33-40.
    [3]Frank J, Mark E, Raj Mohan, et al. Evolution of Phases, Microstructure, and Surface Roughness during Heat Treatment of Aluminized Low Carbon Steel, Metallurgical and Materials Transactions A,2009,6:1554-1563.
    [4]Fan DW, Kim MS, Physical Metallurgy of Hot Press Forming Ultra High Strength Steel, Materials Science & Technology,2008,1710-1721.
    [5]Lorenz, D., Roll, K. Simulation of Hot Stamping and Quenching of Boron Alloyed Steel. 7thlnt. ESAFORM Conf. on Mat. Forming, April 28-30 2004, Trondheim, Norway, pp. 659-662
    [6]B. M. Kapadia, R. M. Brown, W. J. Murphy, The influence of nitrogen, titanium, and zirconium on the boron hardenability effect in constructional alloy steels. Transactions of the Metallurgical Society of AIME,1968,242(8):1689-1694.
    [7]K. Grange, J. Kiefer. The transformation of austenite by continuous cooling, Trans ASM,1941,29-32.
    [8]刘庄,吴肇基,吴景之等.热处理过程的数值模拟[M],北京:科学出版社,1996.
    [9]Garcia Aranda, L., Chastel, Y., Fernandez Pascual, J., Dal Negro, T.,2002. Experiments and simulation of hot stamping of quenchable steels. Advanced Technology of Plasticity, Vol.2,1135-1140.
    [10]Naderi, M.,2007. Hot stamping of ultra high strength steels. Doctoral Theses, RWTH Aachen.
    [11]马鸣图,汽车轻量化和高强度钢的先进的加工成形技术,2008国际汽车车身用钢技术研讨会会议文集,2008,28-45.
    [12]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].钢铁,2006,41(9):1-8.
    [13]徐伟力,管曙荣,艾健等.钢板热冲压新技术关键装备和核心技术[J].世界钢铁,2009,2:30-33.
    [14]Keeler Stuart P. Circular grid system-a valuable aid for evaluating sheet metal formability. SAE Trans,1968, No.680092:371-379
    [15]Goodwin Gorton M. Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans,1968, No.680093:380-387.
    [16]Eriksson M, Oldenburg M, Somani MC, Karjalainen LP. Testing and evaluation of material data for analysis of forming and hardening of boron steel components. Modelling Simul. Mater. Sci. Eng,2002,10:277-294.
    [17]Ma N., Hu P., Shen G. Z., et al. Modeling, testing and numerical simulation on hot forming. AIP Conference Proceedings, Plenary lecture of NUMIFORM2010 (2010),18-27.
    [18]Karbasian H., Brosius A., Tekkaya A. E., et al. Numerical Process Design of Hot Stamping Processes Based on Verified thermo-mechanical characteristics, Materials Science and Technology,2008,1733-1743.
    [19]M. Merklein, J. Lechler, M. Geiger:Characterization of the flow properties of thequenchenable ultra high strength steel 22MnB5. Annals of the CIRP,55/1/(2006), p 229-236.
    [20]Nemat-Nasser, S.,1999. Experimentally-based micromechanical modeling of metal plasticity with homogenization form micro-to-macro-scale properties. IUTAM Symposium on Micro-and Macrostructural Aspects of Thermoplasticity,101-113.
    [21]Johnson, G. R., Cook, W. H.,1983. A constitutive model and data for metals subjected to large strains,high strain-rates and high temperature. The 7th Symposium on Ballistic,541-547.
    [22]Tong, L., Stahel, S., Hora, P.,2005. Modeling for the FE simulation of warm metal forming processes. The 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes,625-629.
    [23]Ghosh A., Kikuchi N.1988. Finite Element Formulation for the Simulation of Hot Sheet Metal Forming Processes. International Journal of Engineering Science,26 Nr. 2,143-161.
    [24]Molinari A.M., Ravichandran G.2005. Constitutive modeling of the high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mechanics of Materials,37,737-752.
    [25]Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchenable ultra high strength steels with respect to a FE-based process design. SAE World Congress:Innovations in Steel and Applications of Advanced High Strength Steels for Automotive Structures, Paper No.2008-0853.
    [26]A. Turetta, A. Ghiotti and S. Bruschi, Investigation of 22MnB5 Formability in Hot Stamping Operations, Journal of Materials Processing Technology 177 (2006),396-400.
    [27]Hoffmann H, So H, Steinbeiss H (2007) Design of hot stamping tools with cooling system. Annals of the CIRP 2007,56/1:269-272.
    [28]Park K, Kim YS, The effect of material and process variables on the stamping formability of sheet materials, Journal of Materials Processing Technology,1995, 51(4):64-78
    [29]Cada R, Comparison of formability of steel strips, which are used for deep drawing of stampings, Journal of Materials Processing Technology,1996,60(1):283-290
    [30]Dae-Cheol Ko, Seung-Hoon Cha, Sang-Kon Lee, et al. Application of a feasible formability diagram for the effective design in stamping processes of automotive panels, Materials & Design,2010,31(3):1262-1275
    [31]Ma N., Hu P., Guo W., et al. Feasible methods applied to the design and manufacturing process of hot forming. IDDRG2009 conference, Golden, CO USA,2009, p.835~843.
    [32]马宁,胡平,闫康康,郭威,孟祥兵,翟述基. 高强度硼钢热成形技术研究及其应用,机械工程学报,2010,46(14),177-181.
    [33]金属材料薄板和薄带塑性应变比(r值)的测定,GB/T 5027-2007/ISO 10113:2006.
    [34]林忠钦,车身覆盖件冲压成形仿真[M],机械工业出版社,北京,2004.
    [35]Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels [J]. Journal of Materials Processing Technology,2006,177:452-455.
    [36]Koistien, D P, Marburgh RE. A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels. Acta Metallurgica,1959,7:59-60.
    [37]Greenwood GW, Johnson RH. The Deformation of Metals Under Small Stresses During Phase Transformations. Proc. R. Soc. Lond.,1965,283:403-422.
    [38]Denis S, Gautier E, Simon A, et al, Stress-phase transformation interactions-basic principles, modelling and calculation of internal stresses. Mater. Sci. Technol. 1985,1:805-814.
    [39]Lomakin VA, Transformation of austenite under nonisothermal cooling. Mech. and Machine,1958,2:20-25.
    [40]Kakeshita T, Wayman CM, Martensitic transformation in cermets with metastable austenitic binder:Ⅱ. TiC-Fe-Ni-C. Materials Science and Engineering A,1991, 147(1):85-92.
    [41]Kakeshita T, Fukuda T, Saburi T. Time-dependent nature and origin of displacive transformation. Science and Technology of Advanced Materials,2000,1(1):63-72
    [42]Porter DA, Easterling KE. Phase Transformations in Metals and Alloys. Van Nostrand Reinhold Co.,1981.
    [43]Frank FC. Capillary equilibria of dislocated crystals. Acta Crystallographica, 1951,4:497-501.
    [44]Fraunberger F, Klement EZ. Theorie der mehrphasentransformatoren mit anwendungsbeispielen. Z. Metallk.,1962,53:612-614.
    [45]Sinclair R, Mohamed H A, Lattice imaging study of a martensite-austenite interface. Acta Metallurgica,1978,26(4):623-628.
    [46]Brooks JW, Loretto MH, Smailman RE. In situ observations of the formation of martensite in stainless steel. Acta Metallurgica,1979,27(2):1829-38.
    [47]Hsu TY. Martensitic transformation under stress. Materials Science and Engineering A,2006,438:64-68.
    [48]Leblond JB, Mottet G, Devaux JC. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-ⅱ. study of classical plasticity for ideal-plastic phases. J. Mech. Phys. Solids,1986,34(4):411-432.
    [49]Petit-Grostabussiat S, Taleb L, and Jullien JF. Experimental results on classical plasticity of steels subjected to structural transformations. International Journal of Plasticity,2004,20:1371-1386.
    [1]Hill R, A theory of the yielding and plastic flow of anisotropic metals, Roy. Soc. London Proc.,1948(193A):281.
    [2]Hershey A V, The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals, J. Appl. Mech.,1954(76):241.
    [3]Hosford W F, A generalized isotropic yield criterion, J. Appl. Mech.,1972(39):607.
    [4]Bassani J L, Yield characterization of metals with transversely isotropic plastic properties, Int. J. Mech. Sci.,1977(19):651.
    [5]Gotoh M, A theory of plastic anisotropy based on a yield function of fourth order (plane stress state), Int. J. Mech. Sci.,1977(19):505.
    [6]Wang N M and Tang S C, Analysis of bending effects in sheet forming operations, Proc. NUMIFORM'86 Conf.,1986:71-76.
    [7]Nakamachi E, A finite element simulation of the sheet metal forming process, Int. J. Num. Meth. Engng.,1988(25):282-292.
    [8]Nakamachi E, Computer aided simulation of sheet metal forming processes by thin shell finite element analysis, Proc.3rd ICTP,1990:1745.
    [9]Bathe K J, Finite element procedures in engineering analysis, Prentice Hull Inc. Englewood Cliffs, New Jersey,1982.
    [10]Bathe, K. J., ADINA—A finite element program for automatic dynamics incremental nonlinear analysis, Acoustics and Vibration Lab., Mech. Engng., Dept., MIT,1975.
    [11]柳玉起,板材成形塑性流动规律及起皱回弹的数值研究[D].吉林工业大学博士学位论文,1996.
    [12]林忠钦,车身覆盖件冲压成形仿真[M],机械工业出版社,北京,2004.
    [13]Bergman, G. Modeling and simultaneous forming and quenching[D]. Doctoral Theses, Lulea University of Technology, Schweden,1999.
    [14]Bergman, G., Oldenburg, M. A finite element model for thermo-mechanical analysis of sheet-metal forming. International Journal for Numerical Methods in Engineering, 2004 59,1167-1186.
    [15]MA Ning, HU Ping, SHEN Guozhe, et al. Model and numerical simulation of hot forming[C]//International Symposium on Automotive Steel, ISAS conference proceedings, September,2009, Dalian, China. Beijing:Metallurgical Industry Press, 2009:362-367.
    [16]Akerstrom, P., Bergman, G., Oldenburg, M. Numerical implementation of a constitutive model for simulation of hot stamping. Materials Science and Engineering, 2007 15,105-119.
    [17]Merklein, M., Lechler, J., Geiger, M.,2006. Characterisation of the flow properties of the quenchable ultra high strength steel 22MnB5. CIRP Annals Manufacturing Technology,2006,55,229-232.
    [18]Merklein, M., Lechler, J. Determination of material and process characteristics for hot stamping processes of quenchable ultra high strength steels with respect to a FE-based process design. SAE World Congress:Innovations in Steel and Applications of Advanced High Strength Steels for Automobile Structures,2008, Paper No.2008-0853.
    [19]马宁,胡平,郭威,热成形硼钢热、力及相变耦合关系研究,材料热处理学报,2010,12(5):33-40.
    [20][荷]Frnekel&smti,分子模拟—从算法到应用[M].化学工业出版社,2002.
    [21]马宁,复合材料湿热粘弹性理论及纳米尺度物质在固体表面运动模拟[M],硕士论文,大连理工大学,2005.
    [22]Ma N., Hu P., Shen G. Z., et al. Modeling, testing and numerical simulation on hot forming. AIP Conference Proceedings, Plenary lecture of NUMIFORM2010 (2010), p. 18-27.
    [23]Neubauer, I., Hubner, K., Wicke, T. Thermo-mechanically coupled analysis:The next step in sheet metal forming simulation.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,275-283.
    [24]Ma N., Hu P., Guo W., et al. Feasible methods applied to the design and manufacturing process of hot forming. IDDRG2009 conference, Golden, CO USA,2009, p.835-843.
    [25]Olle, P., Behrens, B. A., Weilandt, K., Lange, F. Numerical modeling of phase transformation in hot stamping and deep drawing. The 9st International Conference on Technology of Plasticity,2008, CIRP,1937-1942.
    [26]E. L. Wilson., Automation of the finite element method, A personal historical view, Finite Element Analysis Design.1993, Vol.13, p91-104.
    [27]C. A. Hall, Transfinite interpolation and applications to engineering problems, Theory of approximation,1976, Academic Press,p308-331.
    [28]Iwata N, Matsui M and Gotoh M, An elastic plastic analysis of square cup drawing process:finite element simulation of deformation and breakage in sheet metal forming-2, J. JSTP,1992,33(381):1202-1207.
    [29]LeeJ. K, Park D. W., Oh S. IK. Simulation of deep drawing of square cup using an elasto-plastic finite element method. Numisheet'96, Dearborn, MI,1996:120-127.
    [30]Wang S. P., Nakamachi E. Nonlinear contact and friction modeling in dynamic explicit finite element analysis. Numisheet'96, Dearbom, MI,1996:9-16.
    [31]Saha P. K., Wilson W. R. D. Influence of plastic strain on friction in sheet metal forming. Wear,1994,172(2):167-173.
    [32]Hus T. C.,Liu C. C. "Internal Variable" effects in punch friction characterization Transactions of ASME, Jounal of Tribology,1998,121:510-516.
    [33]Stohr, T., Merklein, M., Lechler, J. Determination of frictional and thermal characteristics for hot stamping with respect to a numerical process design.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,293-300.
    [34]Ghiotti, A., Borsetto, F., Bruschi, S. Investigation of the high strength steel Al-Si coating during hot stamping operations. Key Engineering Materials, Vol. 410-411,2009,289-296.
    [35]Hardell, J., Prakash, B. High temperature friction and wear behavior of different tool steels during sliding against Al-Si-coated high strength steel. Tribology International,41 (2008) 7,663-671.
    [36]Dessain, Ch., Hein, P., Wilsius, J., Penazzi, L., Boher, Ch., Weikert, J. Experimental investigation of friction and wear in hot stamping of usibor 1500P. 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,217-227.
    [37]Yanagida, A., Azushima, A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test. CIRP Annals-Manufacturing Technology,2009,58,247-250.
    [38]Ma Ning, Hu Ping, Shen Guozhe, et al. Model and numerical simulation of hot forming[C]//International Symposium on Automotive Steel, ISAS conference proceedings, September,2009, Dalian, China. Beijing:Metallurgical Industry Press, 2009:362-367.
    [39]Lechler, J., Merklein, M.,2008. Hot stamping of ultra strength steels as a key technology for lightweight construction. Materials Science and Technology (MS&T), Pittsburgh, Pennsylvania,1698-1709.
    [40]Suehiro, M., Kusumi, K., Miyakoshi, T., Maki, J., Ohgami, M.,2003. Properties of aluminium-coated steels for hot-forming, Nippon Steel Technical Report No.88, 16-21.
    [41]Lenze, F. J., Banik, J., Sikora, S.,2008. Applications of hot formed parts for body in white. International Deep Drawing Research Group IDDRG,511-519.
    [42]Schweizerhof K and Hallquist J O. Explicit integration schemes and contact formulations for thin sheet metal forming [J]. V D I Beritche,1991,894:405-439.
    [43]申国哲,胡平,王锦程.改进的速度迭代弹塑性大变形动力半显式算法[J].同体力学学报,2003,24(4):463-468.
    [44]富田佳宏(著),胡平,李运兴,柳玉起译.数值弹塑性力学[M].吉林:吉林科学技术出版社.1995.
    [45]Lechler J, Merklein M. Hot stamping of ultra high strength steels as a key technology for-lightweight construction [J]. Materials Science and Technology (MS&T), October 5-9,2008,1698-1709.
    [46]Incropera F P, DeWitt D P. Fundamentals of Heat and Mass Transfer [J]. John Wiley & Sons,1990 3rd ed.0-471-51729-1.
    [47]Wang Xucheng. Finite Element Analysis of Temperature Field of Shells [J].8th SMIRT, 1985, B3/6.
    [48]Liu Haipeng, Hu Ping and Fu Zhengchun. Numerical Simulation of temperature controlled solid phase forming process of polymeric sheet [J]. Procedings of NUMISHEET2005, Detroit,2005,189-195.
    [49]Shen G. Z, Hu P, Zhang X K, et al. Spring-back simulation and tool surface compensation algorithm for sheet metal forming [J]. Proceedings of NUMISHEET2005, Detroit,2005,55-67.
    [50]Karbasian, H., Brosius, A., Tekkaya, A. E., Lechler, J., Merklein, M.,2008. Numerical process design of hot stamping processes based on verified thermo-mechanical characteristics. Materials Science and Technology (MS&T), Pittsburgh, Pennsylvania,1733-1743.
    [51]74.蒋友谅.非线性有限元法[M].北京,北京工业学院出版社.1988.
    [52]17.刘海鹏,聚合物板材热成形过程的三维有限元数值模拟,吉林大学博士论文,2003.
    [1]JENNER F, WALTER M, MOHAN R, et al. Evolution of phases and microstructure during heat treatment of aluminized low carbon steel [J]. Materials Science and Technology, 2008,10:1722-1732.
    [2]FAN D W, KIM H S, BIROSCA S, et al. Critical review of hot stamping technology for automotive steels [C]. MS&T Conference Proceedings. Detroit:MS&T,2007:28-33.
    [3]HEIN P, KEFFERSTEIN R, DAHAN Y. Hot stamping of USIBOR 1500P:part and process analysis based on numerical simulation [C]. New Development in Sheet Metal Forming Technology Conference Proceedings. Stuttgart, Germany:University Stuttgart,2006: 163-175.
    [4]HOFFNANN H, SO H, STEINBEISS H. Design of hot stamping tools with cooling system[J], CIRP Annals-Manufacturing Technology,2007,56(1):269-272.
    [5]PETIPIERRE A B I. CFD simulations of pressure loss in pipes with different geometries [D]. Lulea, Sweden:Lulea University of Technology,2007.
    [6]CHENG Y T, CHENG C M. Scaling approach to conical indentation in elastic-plastic solids with work hardening [J]. J. Appl. Phys,1998,84:1284-1289.
    [7]DAO M, CHOLLACOOP N, VAN VLIET K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Mater,2001,49(19): 3899-3918.
    [8]YANG J, CHEN H S. Dynamic response of initially stressed functionally graded rectangular thin plates [J]. Composite Structures,2001,54:497-508.
    [9]Ma Ning, Hu Ping, Guo Wei, et al. Feasible methods applied to the design and manufacturing process of hot forming [J]. IDDRG2009 conference, Golden, CO USA,2009, 835-843
    [10]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J].汽车与配件,2009(45):28-30.(Ma Ning, Hu Ping, Guo Wei. Technology and equipment of hot forming for ultra high strength steel [J]. Automobile & Parts,2009(45):28-30. (in Chinese))
    [11]Altan T. Hot-stamping boron-alloyed steels for automotive parts [J]. Stamping Journal, December 2006,40-41.
    [12]Makinouchi A. Sheet metal forming simulation in industry. Journal of Material Processing Technology [J].1996,60:19-26.
    [13]Ma Ning, Zhang Zonghua, Hu Ping, Research on a new type of metal composite material in hot forming and its application, Advance Materials Research,2011,156:582-591.
    [14]马宁,胡平,翟述基,郭威. 高强度钢板热成形技术及其工程实现,汽车工艺与材料,2009(12):28-30.
    [15]Dodd Andrew:Manufacturing Engineering, Vol.121(11) (1998), p.57-65.
    [16]L Zheng and T. Wierzbicki:International Journal of Crashworthiness, Vol.9(2) (2004), p.155.
    [1]马宁,张宗华,胡平,郭威,刘书田,申国哲.热成形金属复合材料的微观结构及力学行为研究,材料工程,2010(12):47-53.
    [2]Ma N., Hu P., Guo W., et al. Feasible methods applied to the design and manufacturing process of hot forming. IDDRG2009 conference, Golden, CO USA,2009, p.835~843.
    [3]Ma Ning, Hu Ping, Shen Guozhe, et al. Model and numerical simulation of hot forming[C]// International Symposium on Automotive Steel, ISAS conference proceedings, September,2009, Dalian, China. Beijing:Metallurgical Industry Press,2009:362-367.
    [4]Joseph C, Benedy K. Light metals in automotive applications. Light Metal Age 2000; 58(10):34-35.
    [5]Zhang Y, Zhu P, Chen GL. Lightweight Design of Automotive Front Side Rail Based on Robust Optimization. Thin-walled Structures 2007; 45(7-8):670-676.
    [6]Zheng L, Wierzbicki T. Quasi-static crushing of S-shaped aluminum front rail. International Journal of Crashworthiness 2004; 9(2):155-173.
    [7]马宁,申国哲,张宗华等,高强度钢板热冲压材料性能研究及在车身设计中的应用,机械工程学报,2011,网络版已发行.
    [8]张宗华,刘书田,唐智亮。蜂窝夹芯圆柱结构轴向冲击的耐撞性研究。2009’中国力学学会学术大会,郑州,CCTAM2009-003208
    [9]Maddever W., Guinehut S., Use of Aluminum Foam to Increase Crash Box Efficiency[J], SAE 2005 World Congress & Exhibition Technical Papers, 2005-01-0704.
    [10]Zhang Zonghua, Liu Shutian, Tang Zhiliang. Crashworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads. Thin-Walled Structures 2009; 48(1):9-18.
    [11]Kulkarni S. C., A novel energy absorber design technique for an idealized force-deformation performance[J], SAE 2008 World Congress & Exhibition Technical Papers,2008-01-0184.
    [12]Sun Hongtu, Hu Ping, Ma Ning, Shen Guozhe, Liu bo, Zhou Dinglu. Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact [J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2010,23:345-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700