用户名: 密码: 验证码:
稀土钒.硼.磷酸盐纳米材料的固相水热法构筑及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土含氧酸盐作为一类重要的功能性材料被广泛的研究和开发。随着纳米科技的发展,如何构筑此类物质的纳米结构材料也已成为一个研究热点。
     本论文首先探索和建立了一种简单的、温和的、绿色的、经济的构筑方法——固相水热法(Solid phase hydrothermal route,S-HT)或称为氧化物水热法(Oxides-Hydrothermal Method,O-HT)。它与经典的水热法的最主要的区别在于:O-HT路线选择的反应前驱体均为常温下不溶于水的氧化物,后者一般选用的反应前驱体是溶于水的稀土盐类。和后者相比其优点表现在:成本低、简化了工艺、无副产物、减少了环境污染,晶体的缺陷和杂质离子的污染少。
     利用稀土氧化物和五氧化二钒为前驱体经O-HT路线成功地构建了多种稀土正钒酸盐纳米结构材料。首次实现利用常态下不溶于水相的物质以水为介质的水热合成反应,证实了O-HT路线的可操作性。研究了体系的温度、时间、添加剂、酸度对产品的晶型、生长状况及形貌的影响;在O-HT反应体系下,实现LnVO_4纳米材料晶相和形貌的控制;实验发现利用红外光谱可以辅助判定LaVO_4的晶相类型;提出了稀土钒氧化合物在氧化物水热合成体系中的自磨-水解-结晶生长机制(Self-Milling Hydrolysis Crystallized Mechanism,SMHCM)及添加剂控制下的溶解-结晶机制;研究了YVO_4和Eu~(3+)掺杂的LaVO_4的荧光性能。
     在上述研究的基础上,在无任何助剂的条件下,又以稀土氧化物和三氧化二硼为原料经O-HT路线构筑了系列的稀土正硼酸盐棒、束或片状纳米材料,探讨了其合成条件。首次构建出多层自组装的纳米片状稀土正硼酸盐纳米材料(厚度大约50 nm,直径可达10-13μm),并证实硼酸钕具有不同于通常报道的六方相晶体结构;详细地考察了影响六方相硼酸钕纳米片状晶体生长和形貌的包括温度、时间、填充度和酸碱度等多种因素,热不可逆相变化特征,以及其形成因素;考察了六方相稀土硼酸盐纳米材料的构建的难易程度与稀土离子半径的递变规律;得到经O-HT路线合成硼酸铒和硼酸钇纳米材料的条件;通过稀土掺杂过程可以实现加速或减缓晶体生长的速率;探讨了Sm~(3+)和Dy~(3+)掺杂的LaBO_3纳米棒的荧光性能;揭示了合成稀土正硼酸在O-HT体系中的两步骤反应机制。
     对O-HT路线进行了有益的拓展,利用稀土氧化物与五氧化二磷或磷酸为前驱体、不控制溶液的酸碱度、无任何助剂的条件下合成了系列稀土正磷酸盐纳米棒(直径约为20-30 nm,长径比达400-500)和纳米粒子,探讨了温度、时间、P/La摩尔比、添加剂或溶剂对产品的晶相、尺寸及形貌的影响。在所考察的温度范围内,首次展示密闭的含水体系P/La摩尔比(≥1)对产品晶相没有影响,但是对产品的形貌有重要影响:首次展示了溶剂的变化对产品的形貌有重要影响;合成系列Sm~(3+)和Dy~(3+)掺杂的LaPO_4纳米棒;揭示了O-HT路线下,稀土磷酸盐REPO_4(RE=La—Dy)由六方相含水晶相向单斜无水相转变的生长过程。
     三类稀土无机化合物纳米材料经O-HT路线的成功获得,可以预见O-HT法不仅具有重要的研究价值和广泛的适用性,也具有广阔的应用前景。
Rare earth oxysalts have been widely investigated and applied as one series important functional materials. It has been a hot topic field how to product their nanostructure materials.
     The dissertation is devoted to quest for and establish a facile, eco-friend, low-cost mild approach to metal oxysalt nano-material, which is named as solid phase hydrothermal (S-HT) or oxides-hydrothermal method (O-HT). This method the most essentially differ from the classical hydrothermal method as follow: the former directly utilizes insoluble/slight-soluble oxides as precursors, and the latter uses soluble rare earth salt as reagent. Compared with the latter, the 0-HT method exhibits many advantages, such as no side-products, facile operation, low cost, special crystal structure and morphology, and the prefect crystallization.
     The series of REVO_4 (RE= La, Nd, Sm, Y) and rare earth ion doped REVO_4 nanomaterials are facilely fabricated by the O-HT route directly used insoluble V_2O_5 and RE_2O_3 as precursors under appropriate conditions. It is original to accomplish the hydrothermal synthesis reaction among common insoluble reagents in water system and substantiates the feasibility of the O-HT route. The influences of many factors included temperature, time, additives, pH value of the system on products are investigated. The pure rodlike monoclinic (m-) and tetragonal phase (t-) LaVO_4 nanocrystals also are controllably constructed via the oxides-hydrothermal approach. It is found that FTIR spectra can be used as a simple means to detect crystal phase of LaVO_4. The self-mill hydrolysis crystallized mechanism (SMHCM) and dissolution-precipitation mechanism controlled by additives are hypothesized to interpret the rare earth orthovanadate nanomaterials obtained and controlling phase transition in 0-HT system. The fluorescence pro
     perties of YVO_4 and Eu~(3+) doped LaVO_4 nanomaterials are investigated.
     Based on above result, By O-HT approach, the REBO_3 (RE= La, Nd, Sm, Dy, Gd, Er, Y) and some ion doped REBO_3 nanomaterials are firstly obtained by mixing stoichiometric rare earth oxide Ln_2O_3 and boric oxide B_2O_3 into proper deionized water in a surfactant-free system, and the formation conditions of the nanomaterials are investigated. Pseudo-vaterite NdBO_3 and its self-assembled layer-by-layer (SALBL) nanopancakes (the thickness ca.50nm with the size ca. 10-13μm) are originally obtained via the O-HT route. The influences of treatment time, temperature, filling ratio, and pH value of solution on the hexagonal NdBO_3 nanopancakes, the thermal stability and irreversible phase transition properties, and the formation factors of pseudo-vaterite NdBO_3 crystal in O-HT system are investigated. The relationship between ionic radium and crystal growth of hexagonal REBO_3 nanomaterials are discussed. The preparing condition of pure ErBO_3 and YBO_3 nanomaterials are ascertained in the O-HT routes. It is firstly found that the crystal growth rate can be modified by different ions doped processes. The fluorescence properties of Sm~(3+) and Dy~(3+) doped LaBO_3 nanorods are investigated. And the two-step reaction mechanism is found and confirmed.
     The O-HT route is extended to prepare rare earth phosphates. Many REPO_4 (RE= La, Nd, Sm, Tb, Gd, Dy, Er, Y,) nanorods (the diameter ca. 20-30 nm with the aspect ca. 400-500) or nanoparticles are initially synthesized by mixing RE_2O_3 and P_2O_5 or H_3PO_4 via pH-free and additive-free oxides-hydrothermal process. The effects of time, temperature, P/La molar ratio on the products additive and solvent for LaPO_4 nanorods, and some factor for other lanthanum orthophosphate are investigated thoroughly. It is firstly demonstrated that the P/ La ratio (>1) can not influent the composition but the sizes and morphologies of products in the inspected O-HT system. It firstly confirmed that additives and solvent significantly influent the size and shapes of the LaPO_4 nanomaterials. It is firstly exhibited the phase transition growth mechanism of the REPO_4 (RE=La—Dy) nanomaterials in O-HT system.
     In summary, the O-HT route exhibits important applicable value in nanosciences and nanotechnologies, and great industizal prespect in future.
引文
铩颷1]Fan W,Zhao W,You L,et al.A simple method to synthesize single-crystalline lanthanideorthovanadate nanorods.J.Solid State Chem.2004,177,4399-440
    [2]Ishihara K,Ohara S,Yamamoto H.Direct condensation of carboxylic acids with alcoholscatalyzed by hafnium(Ⅳ)salts.Science.2000,290,1140-1142.
    [3]Yoshimura M.Soft solution processing:concept and realization of direct fabrication of shapederamics(nano-crystals,whiskers,films,nd/or patterns)in solutions without post-firing.J.Mater.Sci.2006,41,1299-1306
    [4]张莉莉,张维光,杨娟等.固相反应法制备系列K_2La_2Ti_3O_(10).材料科学与工程学报,2005,23,181-184
    [5]叶世海,吕江英,高学平,宋德瑛.球磨促进高温固相反应合成尖晶石相LiMn_2O_4.电源技术.2002,26(3),151-153
    [6]陈洪杰,李志伟,陶小军,等.超声波在纳米材料制备中的应用.化学研究,2005,16(1),104-107,112
    [7]禹日成,朱嘉林,李凤英,等.高压固相反应法合成具有理想Ruddlesden-Popper结构的Ca_4Mn_3O_(10)层状化合物.高压物理学报.2002,16(3),176-181
    [8]Wang X,Zhuang J,Peng Q,Li,Y.A general strategy for nanocrystal synthesis.Nature 2005,437(7055),121-124.
    [9]Sarkar R,Das S K,Banerjee G.Calcination effect on magnesium hydroxide and alunininmhydroxide for the development of magnesium aluminate spinel.Ceram.Intern.,2000,26,25-28.
    [10]Kim W,Saito F.Effect of grinding on synthesis of MgAl_2O_4 spinel from a powder mixture ofMg(OH)_2 and Al(OH)_3.Powd.Tech.2000,113,109-113.
    [11]Ping L R,Azad A M,Dung T W.Magnesium aluminate(MgAl2 O4)spinel produced viaself-heat-sustained(SHS)technique.Mater.Res.Bull,2001,36:1417-1430.
    [12]Cunha F N,Bradt R C.Synthesis of magnesium aluminate spinels from bauxite andmagnesias.J Am Ceram Soc,2002,85,2995-3003
    [13]Wang R,Pan W,Chen J,et al.Synthesis and sintering of LaPO_4 powder and its application.Mater Chem Phys,2003,79,30-36.
    [14]Fang Y P,Xu A W,Song R Q,et al.Systematic Synthesis and Characterization ofSingle-Crystal Lanthanide Orthophosphate Nanowires.J.Am.Chem.Soc,2003,125,16025-16034.
    [15]吴洪特,廖森,吴文伟.等低热固相合成磷酸镧及其结晶度 化工学报 2007,11,2943-2947
    [16]Wu Y,Wu T H,He Y M,et al.Low-temperature catalytic performance of nanostructured Ti-Ni-O prepared by modified sol-gel method.Surf.Rev.Lett.2007,14,611-615
    铩颷17]Bardelang D,Camerel F,Hotze A C G,et al.Sodium chains as core nanowires for gelation oforganic solvents from a functionalized nicotinic acid and its sodium salt.Chem.-A Eur J.2007,13,9277-9285
    [18]Kwon S G,Piao Y,Park J,et al.Kinetics of monodisperse iron oxide nanocrystal formationby "heating-up" process.J Am Chem Soc 2007,129,12571-12584
    [19]Andrievski R.A nanocrystalline high-melting point compound-based materials.J.Mater Sci1994,29,614-631
    [20]王中林 主编.纳米相和纳米结构材料--合成手册 北京 清华大学出版社 2002,2
    [21]Mackenzie JD,Bescher EP Chemical routes in the synthesis of nanomaterials using thesol-gel process.Acc.Chem.Res.2007,40,810-818
    [22]Padmanabhan SC,Pillai SC,Colreavy J,et al.A simple sol-gel processing for thedevelopment of high-temperature stable photoactive anatase titania.Chem.Mater.2007,19,4474-4481
    [23]Dave B C,Dunn B,Valentine J S,et al.Nanoconfined proteins and enzymes:Sol-gel-basedbiomolecular materials.ACS Symp.Series 1996,622,351-365
    [24]Schmidt H,Krug H.Sol-gel-based inorganic-organic composite-materials.ACS Symp.Series1994,572,183-194
    [25]Wang L C,Liu Q,Chen M,et al.Structural evolution and catalytic properties ofnanostructured Cu/ZrO_2 catalysts prepared by oxalate gel-coprecipitation technique.J.Phys.Chem.C 2007,111,16549-16557
    [26]Weng X L,Boldrin P,Abrahams I,et al.Direct syntheses of mixed ion and electronicconductors La_4Ni_3O_(10)and 3Ni_2O_7 from nanosized coprecipitates.Chem.Mater.2007,19,4382-4384
    [27]Liu C P,Li M W,Cui Z,et al.Comparative study of magnesium ferrite nanocrystallitesprepared by sol-gel and coprecipitation methods.J.Mater.Sci.2007,42,6133-6138
    [28]Wang S M,Lu M K,Zhou G J,et al.Systematic investigations into SrSnO3 nanocrystals(I)synthesis by using combustion and coprecipitation methods.J.Alloys Comp.2007,432,265-268
    [29]Ren G Q,Lin Z,Wang C,et al.Relationship between the coprecipitation mechanism,dopingstructure and physical properties of Zn_(1-x)Co_xS nanocrystallites.Nanotechnology 2007,18:Art.No.035705
    [30]Tao K,Dou H J,Sun K.Facile interracial coprecipitation to fabricate hydrophilicamine-capped magnetite nanoparticles.Chem.Mater.2006,18,5273-5278
    [31]Zhou Y F,Hong M C,Xu Y Q,et al.Preparation and characterization of beta P-BaB2O4nanoparticles via coprecipitation J.Cryst.Growth 2005,276,478-484
    [32]Li X,Zhang H B,Zhao M Y.Preparation of nanocrystalline LaFeO_3 using reverse dropcoprecipitation with polyvinyl alcohol as protecting agent.Mater.Chem.Phys.1994,37,132-135
    [33] Frankwicz P S, Ram S, Fecht H J. Enhanced microhardness in Zr_(65.0)Al_(7.5)Ni_(10.0)Cu_(17.5) amorphous rods on coprecipitation of nanocrystallites through supersaturated intermediate solid phase particles. Appl. Phys. Lett. 1996,68, 2825-2827
    [34] Sellappan P, Jayaram V, Chokshi A H, et al. Synthesis of bulk, dense, nanocrystalline yttrium aluminum garnet from amorphous powders. J. Am. Ceram. Soc. 2007, 90,3638-3641
    [35] Gaikwad S P, Dhesphande S B, Khollam Y B, et al. Coprecipitation method for the preparation of nanocrystalline ferroelectric CaBi_2Ta_2O_9. Mater. Lett. 2004,58,3474-3476
    [36] Xia C T, Shi Er W, Zhong W Z, et al. Preparation of BaTiO_3 by the hydrothermal method. J. Eur. Ceram. Soc. 1995,15, 1171-1176
    [27] Oka Y, Yao T, Yamamoto N. Hydrothermal Synthesis of Lanthanum Vanadates: Synthesis and Crystal Structures of Zircon-Type LaVO_4 and a New Compound LaV_3O_9. J. Solid StateChem. 2000,152, 486-491
    
    [38]施尔畏,陈之战,元如林,郑燕清著 水热结晶学.科学出版社,2004,09
    
    [39] Byrappa K, Yoshimura M. "Handbook of Hydrothermal Technology" Noyes Publications, Park Ridge, NJ, USA 2001.
    [40] Kennedy G.C. pressure-volume-temperature relations in water at elevatedtemperatures andpressures. Am. J. Sci. 1950,248, 540-564
    [41] Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature 2005, 437 (7055), 121-124.
    [42] Tan Y, Xue X, Peng Q, et al. Controllable fabrication and electrical performance of single crystalline Cu_2O nanowires with high aspect ratios. Nano Lett. 2007,7, 3723-3728.
    [43] Huo Z, Chen C, Chu D, et al. Systematic synthesis of lanthanide phosphate nanocrystals. Chem. A Eur. J. 2007,13,7708-7714.
    [44] Xu R, Xie T, Zhao Y, Li Y. Single-crystal metal nanoplatelets: cobalt, nickel, copper, and silver. Cryst. Growth Des 2007, 7,1904-1911.
    [45] Liu J, Li Y. General synthesis of colloidal rare earth orthovanadate nanocrystals. J Mater Chem 2007,17,1797-1803.
    [46] Lu J, Wei S, Yu W, Zhang H, Qian Y. Hydrothermal route to InAs semiconductor nanocrystals. Inorg.Chem.2004,43,4543-4545.
    [47] Jiang C, Zhang W, Zou G, Yu W, Qian Y. Precursor-induced hydrothermal synthesis offlowerlike cupped-end microrod bundles of ZnO. J Phys Chem B 2005,109,1361-1363.
    [48] Zheng W, Guo F, Qian Y. Growth of bulk ZnO single crystals via a novel hydrothermal oxidative pressure-relief route. Adv. Funct. Mater. 2005,15, 331-335
    [49] Liang J, Liu J, Xie Q, Bai S, Yu W, Qian Y. Hydrothermal growth and optical properties of doughnut-shaped Zno microparticles. J Phys Chem B.2005,109,9463-9467.
    [50] Su X, Xie Y, Chen Q, Qian Y. Hydrothermal preparation and characterization of nanocrystalline ZnS and CdS. Yingyong Huaxue 1996,13,56-57
    [51] Wei S, Lu J, Zeng L, Yu W, Qian Y. Hydrothermal synthesis of InP semiconductor nanocrystals. Chem Lett. 2002,10,1034-1035.
    [52] Jiang C, Zhang W, Zou G, Yu W, Qian Y. Synthesis and characterization of ZnSe hollow nanospheres via a hydrothermal route. Nanotechnology 2005,16,551-554.
    [53] Wan J, Wang Z, Chen X, Mu L, Qian Y. Shape-induced enhanced luminescent properties of red phosphors: Sr_2MgSi_2O_7:Eu~(3+) nanotubes. Eur J Inorg Chem 2005,20,4031-4034.
    [54] Zou G, Li H, Zhang D, Xiong K, Dong C, Qian Y. Well-aligned arrays of CuO nanoplatelets. J Phys Chem B 2006 , 110,1632-1637.
    [55] Xi G, Xiong K, Zhao Q, et al Nucleation-dissolution-recrystallization: A new growth mechanism for t-Selenium nanotubes. Cryst Growth Des 2006, 6,577-582.
    [56] Ma D, Zhang M, Xi G, et al. Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and Chainlike -Ag_2Se nanorods inside carbonaceous nanotubes. Inorg Chem 2006, 45, 4845-4849.
    [57] Xie Y, Qian Y, Wang W, et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science 1996,272(5270), 1926-1927
    [58] Tang K, Qian Y, Zeng J, et al. Solvothermal route to semiconductor nanowires. Adv. Mater 2003,15,448-450.
    [59] Lu J, Qi P, Peng Y, et al. Metastable MnS crystallites through solvothermal synthesis.Chem Mater 2001,13, 2169-2172.
    [60] Qian Y T. Solvothermal synthesis of nanocrystalline III-V semiconductors. Adv Mater 1999, 11,1101-1102.
    [61] Xu D, Liu Z, Liang J, Qian Y. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J Phys Chem. B 2005,109,14344-14349.
    [62] Li Y, Ding Y, Qian Y, et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe. Inorg Chem 1998,37, 2844-2845.
    [63] Hu J, Lu Q, Tang K, Qian Y, et al. Solvothermal reaction route to nanocrystalline semiconductors AgMS_2 (M = Ga, In). Chem Comm 1999,12,1093-1094.
    [64] Jiang Y, Wu Y, Zhang S, et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J Am Chem Soc. 2000,122,12383-12384.
    [65] Wu C, Lei L, Zhu X, et al. Large-scale synthesis of titanate and anatase tubular hierarchitectures. Small. 2007, 3,1518 - 1522
    [66] Li BX, Xie Y, Xue Y. Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance. J. Phys. Chem. C. 2007, 111, 12181-12187
    [67] Yao Z, Zhu X, La X, Xie Y. Synthesis of novel Y-junction hollow carbon nanotrees. Carbon 2007,45,1566-1570
    [68] Zhang B, Ye XC, Dai W, et al. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni_3S_2 nanostructures grown directly on nickel foils. Chem A Eur J. 2006,12, 2337-2342
    [69] Zhang B, Ye X C, Dai W, et al. Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology 2006, 17, 385-390
    [70] Cao X B, Xie Y, Zhang S Y, et al. Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Adv Mater 2004,16,649-653
    [71] Li Z Q, Yang H, Ding Y, et al. Solution-phase template approach for the synthesis of Cu_2S nanoribbons. Dalton Trans. 2006,1,149-151
    [72] Gao P, Xie Y, Ye L, et al. From 2d nanoflats to 2d nanowire networks: a novel hyposulfite self-decomposition route to semiconductor FeS_2 nanowebs. Cryst. Growth Des 2006, 6, 583-587
    [73] Hou H W, Xie Y, Li Q. Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons. Cryst. Growth Des. 2005,5, 201-205
    [74] Xu F, Xie Y, Zhang X, et al. Single-crystalline gallium nitride microspindles: Synthesis, characterization, and thermal stability. Adv Funct Mater 2004,14, 464-470
    [75] Xiong Y J, Xie Y, Li Z Q, et al. Aqueous-solution growth of GaP and InP nanowires: A general route to phosphide, oxide, sulfide, and tungstate nanowires. Chem A Eur J. 2004,10, 654-660
    [76] Dong W Y, Sun Y J, Lee C W, et al. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J.Am. Chem. Soc. 2007,129,13894-13904
    [77] Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int Ed. 2007, 46, 7976-7979
    [78] Yan Y, Yang H F, Zhang F Q, et al. Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon. 2007, 45,2209-2216
    [79] Deng Y H, Yu T, Wan Y, et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem. Soc. 2007,129,1690-1697
    [80] Yu T, Zhang H, Yan X W, et al. Pore structures of ordered large cage-type mesoporous silica FDU-12s. J Phys Chem B. 2006,110,21467-21472
    
    [81] Zhang Z T, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures J. Am. Chem. Soc. 2001,123,5014-5021
    [82] Lu Q Y, Gao F, Zhao D Y. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett. 2002,2,725-728
    [83] Yan Z G, Zhang Y-W, You L-P, Si R, Yan C-H. General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate. J Cryst. Growth. 2004,262,408-414
    [84] Wang Y, Wu C, Wei J. Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation. J Luminescence. 2007,126,503-507
    铩颷85]Fang Y P,Xu A W,Qin A M,Yu R J.Selective synthesis of hexagonal and tetragonaldysprosium orthophosphate nanorods by a hydrothermal Method.Cryst.Growth Des.2005,5,1221-1225
    [86]Yu S-H,COlfen H,Antonietti M.Control of the morphogenesis of barium chromate by usingdouble-hydrophilic block copolymers as crystal growth modifiers.Chem.A.Eur.J.2002,8,2937-2945
    [87]Shi H.,Qi L.,Ma J.,Cheng H.Polymer-detected synthesis of penniform BaWO4nanostructures in reverse micelles.J.Am.Chem.Soc.2003,125,3450-3451.
    [88]Wu Y.Susmita B.Nanocrystalline hydroxyapatite:Micelle templated synthesis andcharacterization.Langmuir 2005,21,3232-3234
    [89]Fang Z M,Hong Q,Zhou Z H,et al.Oxidative dehydrogenation of propane over a series oflow-temperature rare earth orthovanadate catalysts prepared by the nitrate method.Catal.Lett.1999,61(1-2),39-44
    [90]Balasubramanian M R.Studies of the catalytic activities of some vanadium incorporatedperovskites.J.Indian Chem.Soc.1987,64,453-455
    [91]Fields R A,Birnbanro M,Fincher C L.Highly efficient neodymium-doped yttrium vanadate(Nd:YVO_4)diode-laser end-pumped laser.Appl.Phy.Lett.1987,51(23),1885-1886.
    [92]Buissette V,Huignard A,Gacoin T,et al.Luminescence properties of YVO_4:Ln(Ln=Nd,Yb,and Yb-Er)nanoparticles.Surf.Sci.2003,532-535,444-449.
    [93]Jia C J,Sun L D,You L P,et al.Selective Synthesis of Monazite- and Zircon-type LaVO_4Nanocrystals.J.Phys.Chem.B 2005,109,3284-3290
    [94]Isasi J,Veiga M L,Fernandez F,Pico C.Synthesis and structural characterization of solidsolutions:Li3xLa(1-x)VO4(0= x = 0.3),monazite-type.J.Mater.Sci.1996,31,4689-4692.
    [95]Bashir J,Khan M N.X-ray powder diffractiOn analysis of crystal structure of lanthanumorthovanadate.Mater.Lett.60(2006)470-473
    [96]Schwarz H..The phosphates,arsenates,and vanadates of the rare earths.Z.Anorg.Allgem.Chem.1963,323,44-56.
    [97]Zhang L,Hu Z,Lin Z,Wang G.Growth and spectral properties of Nd~(3+):LaVO_4 crystal.J.Crystal Growth.2004,260,460-463
    [98]Ropp R C,Carroll B.Precipitation of rare earth vanadates from aqueous solution.J.Inorg.Nucl.Chem.1977,39(8),1303-1307.
    [99]Stouwdam J W,Raudsepp M,van Veggel F C J M.Colloidal Nanoparticles of Lu~(3+)-DopedLaVO_4:Energy Transfer to Visible- and Near-Infrared-Emitting Lanthanide Ions.Langmuir2005,21,7003-7008
    [100]Oka Y,Yao T,Yamamoto N.Hydrothermal Synthesis of Lanthanum Vanadates:Synthesisand Crystal Structures of Zircon-Type LaVO_4 and a New Coropound LaV_3O_9.J.Solid StateChem.2000,152,486-491
    [101]Fan W,Zhao W,You L,et al.A simple method to synthesize single-crystalline lanthanideorthovanadate nanorods.J.Sol.Sta.Chem.2004,177,4399-440
    铩颷102]Jia C J,Sun L D,Luo F,et al.Structural transformation induced improved luminescentproperties for LaVO_4:Eu nanocrystals Appl.Phys.Lett.2004,84,5305.
    [103]Erdei S,Ainger F W,Cross L E,White W B.Hydrolyzed colloid reaction(HCR)technique for preparation of YVO_4,YPO_4 and YV_xP_(1-x)O_4.Mater.Lett.1994,21(2),143-147.
    [104]Balasubramanian M R.Studies of the catalytic activities of some vanadium incorporatedperovskites.J.Ind.Chem.Soc.1987,64,453-455.
    [105]Buissette V,Huignard A,Gacoin M,et al.Luminescence properties of YVO_4:Ln(Ln=Nd,Yb,and Yb-Er)nanoparticles.Surf.Sci.2003,532-535,444-449
    [106]Fang Z M,Hong Q,Zhou Z H,et al.Oxidative dehydrogenation of propane over a series oflow-temperature rare earth orthovanadate catalysts prepared by the nitrate method.Catal.Lett.1999,61,39-44.
    [107]Fields R A,Birnbaum M,Fincher C L.Highly efficient neodymium-doped yttrium vanadate(Nd:YVO_4)diode-laser end-pumped laser.Appl.Phy.Lett.1987,51,1885-1886.
    [108]Bashir J,Nasir Khan M.X-ray powder diffraction analysis of crystal structure of lanthanumorthovanadate.Mater.Lett.2006,60,470- 473.
    [109]Jia C J,Sun L D,You L P,et al.Selective synthesis of monazite- and zircon-type LaVO_4Nanocrystals.J.Phys.Chem.B.2005,109,3284-3290.
    [110]Isasi J,Veiga M L,Fernandez F,Pico C.Synthesis and structural characterization of solidsolutions:Li_(3x)La_(1-x)VO_4(0= x = 0.3),monazite-type.J.Mater.Sci.1996,31,4689-4692.
    [111]Palilla F C,Levine A K,Rinkevics M J.Rare earth-activated phosphors based on yttriumorthovanadate and related compounds.J.Electrochem.Soc.1965,112,776-779.
    [112]Rambabu U,Amalnerkar D P,Kale B B,Buddhudu S.Fluorescence spectra of Eu~(3+)-dopedLnVO_4(Ln=La and Y)powder phosphors.Mater.Res.Bull.2000,35,929-.
    [113]Jia C J,Sun L D,You L P,et al.Selective synthesis of monazite- and zircon-type LaVO_4Nanocrystals.J.Phys.Chem.B.2005,109,3284-3290.
    [114]Yan R,Sun X,Wang X,et al.Crystal structures,anisotropic growth,and optical properties:controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials.Chem.-Eur.J.2005,11,2183-2195.
    [115]Chen X Y,Yang L,Cook R E,et al.Crystallization,phase transition and optical propertiesof the rare-earth-doped nanophosphors synthesized by chemical deposition.Nanotechnology.2003,14,670-674.
    [116]Fan W,Song X,Bu Y,et al.Selected-control hydrothermal synthesis and formationmechanism of monazite- and zircon-Type LaVO_4 Nanocrystals.J.Phys.Chem.B.2006,110,23247-23250.
    [117]Fan W,Zhao W,You L,et al.A simple method to synthesize single-crystalline lanthanideorthovanadate nanorods.J.Solid State Chem.2004,177,4399-4403
    [118]Schwarz H.The phosphates,arsenates,and vanadates of the rare earths.Z.Anorg.Allgem.Chem.1963,323,44-56.
    铩颷119]Zhang L,Hu Z,Lin Z,Wang G.Growth and spectral properties of Nd~(3+):LaVO_4 crystal.J.Cryst.Growth.2004,260,460-463.
    [120]Ropp R C,Carroll B.Precipitation of rare earth vanadates from aqueous solution.J.Inorg.Nucl.Chem.1977,39,1303-1307.
    [121]Stouwdam J W,Raudsepp M,van Veggel F C J M.Colloidal nanoparticles of Ln~(3+)-dopedLaVO_4:energy transfer to visible- and near-infrared-emitting Lanthanide ions.Langmuir.2005,21,7003- 7008.
    [122]Oka Y,Yao T,Yamamoto N.Hydrothermal Synthesis of Lanthanum Vanadates:Synthesisand Crystal Structures of Zircon-Type LaVO_4 and a New Compound LaV_3O_9.J.Solid StateChem.2000,152,486-491.
    [123]Eckert J O Jr,Hung-Houston C C,Gersten B L,et al.Kinetics and mechanisms ofhydrothermal synthesis of barium titanate.J.Am.Ceram.Soc.1996,79,2929-2932.
    [124]Wang X,Zhuang J,Peng O,Li,Y.D.A general strategy for nanocrystal synthesis.Nature2005,437,121-125.
    [125]Liao H W,Wang Y F,Liu X M,et al.Hydrothermal preparation and characterization ofluminescent CdWO_4 nanorods.Chem.Mater.2000,12,2819.
    [126]Erdei S,Ainger F W,Cross L E,White W B.Hydrolyzed colloid reaction(HCR)technique for preparation of YVO_4,YPO_4 and YV_xP_(1-x)O_4.Mater.Lett.1994,21,143-147.
    [127]Nakamoto K.Infrared and Raman Spectra of Inorganic and Coordination Compounds.N.Y.:John Wiley & Sons,1986,4th Edition,pp.138.
    [128]Bashir J,Nasir Khan M.X-ray powder diffraction analysis of crystal structure of lanthanumorthovanadate.Mater.Lett.2006,60,470-473
    [129]Yu M,Lin J,Wang S B.Effects of x and R~(3+)on the luminescent properties of Eu~(3+)innanocrystalline YV_xtP_(1-x)O_4:Eu~(3+)and RVO_4:Eu~(3+)thin-film phosphors.Appl.Phys.A 2004,80,353-357.
    [130]Jia C J,Sun L D,Luo F,et al.Structural transformation induced improved luminescentproperties for LaVO_4:Eu nanocrystals.Appl.Phys.Lett.2004,84,5305-5308.
    [131]Haase M,Riwotzki K,Meyssamy H,Komowsid A.Synthesis and properties of colloidallanthanide-doped nanocrystals.J.Alloys Comp.2000,303-304,191.
    [132]Judd B R.Optical absorption intensities of rare earth ions.Phys.Rev.1962,127,750.
    [133]Ofelt G S.Intensities of crystal spectra of rare-earth ions.J.Chem.Phys.1962,37,511.
    [134]Pinceloup P,Courtois C,Vicens J,et al.Evidence of a dissolution-precipitation mechanismin hydrothermal synthesis of barium titanate powders.J.Eur.Ceram Soc.1999,19,973-977.
    [135]Zhong W,Xia C,Shi E,et al.Formation mechanism of barium titanate nanocrystals underhydrothermal conditions.Sci.in China(Ser.E).1997,40,479-488.
    [136]Hertl W.Kinetics of barium titanate synthesis.J.Am.Ceram.Soc.1988,71,879.
    [137] Vayssieres L, Beermann N, Lindquist S E, Hagfeldt A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to Iron(III) oxides. Chem. Mater. 2001,13,233.
    [138] Failini G, Albeck S, Weiner S, Addadi L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science. 1996, 271, 67-69.
    [139] Belcher A M, Wu X H, Christensen R J, et al. Control of crystal phase switching and orientation by soluble mollusk-shell proteins. Nature 1996,381, 56-58.
    [140] Barbero B P, Cadus L E. Sm-V-O catalytic system for oxidative dehydrogenation of propane. Appl Catal A: General 2003,244,235-249.
    [141] Li K T, Chi Z H. Selective oxidation of hydrogen sulfide on rare earth orthovanadates and magnesium vanadates. Appl Catal A: General 2001, 206,197-203.
    [142] Ramakrishnan P, Chatterjee A, Alexander G, Singh H. Spectral properties and emission efficiencies of GdVO4 phosphors. Appl Phys A: Mater Sci Proc. 2002, 74,153-162.
    [143] Katsumata T, Takashima H, Ozawa H, et al. Flux growth of yttrium ortho-vanadate crystals. J. Crystal Growth. 1995,148,193-196.
    [144] Huang C H, Chen J C, Hu C. YVO_4 single-crystal fiber growth by the LHPG method. J. Crystal Growth. 2000, 211,237-241
    [145] Riwotzki, K.; Haase, M. Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO_4:Ln (Ln ) Eu, Sm, Dy). J. Phys. Chem. B. 1998,102,10129-10135
    [146] Chen L, Liu Y, Huang K. Hydrothermal synthesis and characterization of YVO_4-based phosphors doped with Eu~(3+) ion. Mater. Res. Bull. 2006,41,158-166
    [147] Zhang, H.; Fu, X.; Niu, S.; Sun, G.; Xin, Q.. Low temperature synthesis of nanocrystalline YVO_4:Eu via polyacrylamide gel method. J. Sol. St. Chem. 2004,177, 2649-2654
    [148] Su X Q, Yan B. In situ chemical co-precipitation synthesis of YVO_4: RE (RE = Dy~(3+), Sm~(3+), Er~(3+)) phosphors by assembling hybrid precursors. J. Non-Cryst. Solid 2004,351, 3542-3546.
    [149] Li Y, Hong G. Synthesis and luminescence properties of nanocrystalline YVO_4:Eu~(3+). J. Solid State Chem. 2005,178,645-649
    [150] Wu X, Tao Y, Mao C, et al. In situ hydrothermal synthesis of YVO_4 nanorods and microtubes using (NH_4)_(0.5)V_2O_5 nanowires templates. J. Crystal Growth 290 (2006) 207-212
    [151] Wu, H.; Xu, H.; Su, Q.; Chen, T.; Wu, M.. Size- and shape-tailored hydrothermal synthesis of YVO_4 crystals in ultra-wide pH range conditions. J. Mat. Chem. 2003,13,1223-1228.
    [152] Erdei S, Ainger F W, Ravichandran D, et al. Preparation of Eu~(3+): YVO_4 red and Ce~(3+), Tb~(3+):LaPO_4, green phosphors by hydrolyzed colloid reaction (HCR) technique. Mater. Lett. 1997, 30, 389-393
    [153] Xia C T, Shi Er W, Zhong W Z, Guo J K. Preparation of BaTiO_3 by the hydrothermal method. J. Eur. Ceram. Soc. 1995,15,1171-1176
    [154] Huignard A, Buissette V, Laurent G, et al. Synthesis and Characterizations of YVO_4:Eu. Colloids Chem. Mater. 2002,14, 2264-2269
    [155] Huignard A, Gacoin T, Chaput F, et al.. Synthesis and luminescence properties of colloidal lanthanide doped YVO_4. Mater. Res. Soc. Sym. Proc. 2001, 667 (Lum.& Lum. Mater.), G4.5/1-G4.5/6.
    [156] Blasse G, Bril A. Characteristic luminescence. I. Absorption and emission spectra of some important activators. II. Efficiency of phosphors excited in the activator. III. Energy transferand efficiency. Philips Technical Review 1970,31, 304-332.
    [157] Blasse G. Some considerations and experiments on concentration quenching of characteristic broad-band fluorescence. Philips Research Reports 1968, 23(4), 344-361
    [158] Unoki H, Oka K. Synthesis of single crystals of rare earth vanadates by using infrared-radiation-converging furnace. Denshi Gijutsu Sogo Kenkyusho Iho 1983, 47,1089-1097
    [159] Gaur Kanchan, Tripathi A K, Lal H B. Unusual magnetic behavior of light rare earth vanadates at higher temperature. J. Mater. Sci. Lett. 1983, 2,371-374.
    [160] Lou L, Boyer D, Bertrand-Chadeyron G, et al. Sol-gel waveguide thin film of YBO_3: Eupreparation and characterization. Opt. Mater. 2000,15,1-6.
    [161] Wei Z G, Sun L D, Jiang X C, et al. Correlation between size dependent luminescent properties and local structure around Eu~(3+) ions in YBO_3:Eu nanocrystals:An XAFS study. Chem. Mater. 2003,15,3011-3017.
    [162] Chaminade J P, Viraphong O, Guillen F, et al. Crystal growth and optical properties of new neutron detectors Ce~(3+): Li_6R(BO_3)_3 (R=Gd, Y). IEEE Trans. Nucl. Sci. 2001,48,1158-1161.
    [163] Kwon I E, Yu B Y, Bae H, et al. Luminescence properties of borate phosphors in the UV/VUV region. J. Luminescence. 2000,87-89,1039-1041.
    [164] Kolis J W, Giesber H G. Acentric orthorhombic lanthanide borate crystals, method for making, and applications thereof. Patent No. US 2005022720, USA, 2005.
    [165] Knitel M. New Inorganic Scintillators and Storage Phosphors for Detection of Thermal Neutrons. Delft University Press, Delft, 1998.
    [166] Miyasaki Y, Aoki M, Sugimoto K, et al. Plasma display panel showing improved luminous, service life, and reliability and preparation of boron oxide-coated green phosphor particles by autoclaving. Patent No. JP 2005183246, Japan, 2005.
    [167] Giesber H G, Ballato J, Pennington W T, et al. Hydrothermally grown borate single crystals for deep ultraviolet and nonlinear optical applications. Glass Technology. 2003,44,42-45
    [168] Chadeyron G, Arbus A, Fournier M T, et al Influence de la methode de synthese sur les propridtes luminescentes de YBO_3: Eu~(3+) de structure vaterite. C.R. Acad. Sci. Paris. 1995, 320,199-203
    [169] Takada T, Yamamoto H, Kageyama K. Synthesis and microwave dielectric properties of xRe_2O_(3-y)B_2O_3 (Re = La, Nd, Sm, Dy, Ho and Y) compounds. Japan. J. Appl. Phy. Parti. 2003,42,6162-1670.
    [170] Smith R.C. Hacskaylo, M. The capacitor is formed by depositing a stoichiometric thin film of a rare. earth borate as the dielectric. 1969, Patent No. US 3470018. (USA).
    [171] Denning J H, Ross S D. Vibrational spectra and structures of some rare earth borates. Conference Digest-Institute of Physics(London)1971,3(Rare Earths Actinides,Short Pap.
    Conf.),234-236
    铩颷172]Laperches J P,Tarte P.Spectres d'absorption infrarouge de borates de terres rares.Spectrochim.Acta.1966,22,1201-1210
    [173]Kriz H M,Bray P J.On the Crystal Structure of YBO_3,a Vaterite-Type Borate.J.Chem.Phys.1969,51,3624-3645.
    [174]Cohen-Adad M Th,Aloui-Lebbou O,Goutaudier C,et al.Gadolinium and Yttrium Borates:Thermal Behavior and Structural Considerations.J.Solid State Chem.2000.154.204-213
    [175]杨智,任敏,林建华,等.稀十硼酸盐的结构及其真空紫外(VUV)荧光性质.高等学校化学学报.1988,9,1339-1343
    [176]Antic-Fidancev E,Aride J,Chaminade J,et al.The aragonite-type neodymium borateNdBO_3:Energy levels,crystal field,and paramagnetic susceptibility calculations.J.SolidState Chem.1992,97,74-81;
    [177]Keszler D A,Sun H.Structure of ScBO_3.Acta Crystallogr.C 1988,44,1505-1507.
    [178]Laureiro Y,Veiga M L,Fernandez F.et al Synthesis,characterization and magneticproperties of LnBO3(Ln=Nd,Gd,Tb,Dy,Ho and Er).J.Less-Common.Metals.1990,157,335-341.
    [179]Levin E M,Roth R S,Martin J B.Polymorphism of ABO_3-type rare earth borates.Am.Mineralogist.1961,46,1030-1055
    [180]Chadeyron G,El-Ghozzi M,Mahiou R,et al.Revised structure of the orthoborate YBO_3.J.Solid State Chem.1997,128,261-266.
    [181]Corbel G,Leblanc M,Antic-Fidancev E,et al.Luminescence analysis and subsequentrevision of the crystal structure of triclinic L-EuBO_3.J.Alloys Compd.1999,287,71-78.
    [182]Ren M,Lin J H,Dong Y,et al.Structure and Phase Transition of GdBO_3.Chem.Mater.1999,11,1576-1580.
    [183]Meyer H J.Tdclinic orthoborates of the rare earths.Naturwissenschaften.1972,59,215.
    [184]Boehlhoff R,Bambauer H U,Hoffmann W Z.Crystal structure of high lanthanum borate.Kristallogr.,Kristallgeometde,Kristallphys.,Kristallchem.1971,133,386-395.
    [185]Lemanceau S.G,Bertrand-Chadeyron R,Mahiou M.et al.Synthesis and characterization ofH-LnBO_3 orthoborates(Ln=La,Nd,Sm,and Eu).J.Solid State Chem.1999,148,229-235
    [186]Huppertz H,von der Eltz B,Hoffmann R D,Piotrowski H.Multianvil High-PressureSyntheses and Crystal Structures of the New rare-earth oxoborates x-DyBO_3 and-x-ErBO_3.J.Solid State Chem.2002,166,203-212.
    [187]Huang Y.,Duan X.,Cui Y.,et al.Logic Gates and Computation from Assembled NanowireBuilding Blocks.Science.2001,294,1313-1317.
    [188]Cui Y,Wei Q,Park H,Lieber C M.Nanowire nanosensors for highly-sensitive,selectiveand integrated detection of biological and chemical species.Science.2001,293,1289-1292
    [189]Black C T,Murray C B,Sandstrom R L,Sun S.Spin-dependent tunneling in self-assembledcobalt-nanocrystal superlattices.Science.2000,290,1131-1134.
    [190] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996,271, 933-937
    [191] Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnol ogyAngew. Chem. Int. Ed. 2002,41,2446 -2461.
    [192] Lin J, Huang Y, Zhang J, et al. Preparation and characterization of lanthanum borate nanowires. Mater. Lett. 2007, 61,1596-1600
    [193] Klassen N V, Shmurak S Z, Shmytko I M, et al. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt. Nuclear instruments and methods in physics research. Section A, Accelerators 2005,537,144-148
    [194] Zhou Y, Xu Y, Hong M, Chen B. 2005, Patent No. CN 1768988 (China)
    [195] Wang Y, Endo T, He L, Wu C. Synthesis and photoluminescence of Eu~(3+)-doped (Y,Gd)BO3 phosphors by a mild hydrothermal process. J. Crystal Growth. 2004, 268, 568-574.
    [196] Jiang X C, Yan C H, Sun L D, et al. Hydrothermal homogeneous urea precipitation of hexagonal YBO_3:Eu~(3+) nanocrystals with improved luminescent properties. J. Solid State Chem. 2003,175, 245 - 251.
    [197] Smith R C, Hacskaylo M. The capacitor is formed by depositing a stoichiometric thin film of a rare. earth borate as the dielectric. 1969, Patent No. US 3470018. (USA);
    [198] Boyer D, Bertrand-Chadeyron G, Mahiou R, et al. Synthesis dependent luminescence efficiency in Eu~(3+) doped polycrystalline YBO_3. J. Mater. Chem. 1999,9,211-214;
    [199] Bertrand-Chadeyron G, El-Ghozzi M, Boyer D, et al. Orthoborates processed by soft routes : correlation luminescence structures. J. Alloys Compds. 2001,317-318,183-185
    [200] Yu B., Badaec N A. Kostromina, Influence of cationic poly electrolytes on absorption spectra of Pyrogallyc Red an its Complex with Molybdenum. Ukrainskii, Khimicheskii Zhurnal (Russian Ed). 1986,52,1171-1174.
    [201] Giesber H, Ballato J M,. Pennington W T Jr, J. et al. Spectroscopy properties of Er~(3+) and Eu~(3+) doped acentric LaBO_3 and GdBO_3. SPIE- Inter. Soc. Optical Engin. 2001,4452,1-6.
    [202] Giesber H G, Ballato J M, Pennington W T, et al. Synthesis and characterization of optically nonlinear and light emitting lanthanide borates. Inform. Sci. 2003,149,61-68.
    [203] Lemanceau S, Bertrand-Chadeyron G, Mahiou R, et al. Synthesis and characterization of H-LnBO_3 orthoborates (Ln = La, Nd, Sm, and Eu). J. Solid State Chem. 1999,148, 229-235.
    [204] Denning J H, Ross S D. Vibrational spectra and structures of some rare earth borates. Spectr. Acta, A. 1972,28,1775-1785.
    [205] Laperches J P, Tarte P. Infrared absorption spectra of rare earth borates. Spectrochim. Acta. 1966, 22,1201-1210.
    [206] Penn R L, Oskam G, Strathmann T J, et al. Veblen. Epitaxial assembly in aged colloids. J.Phys. Chem. B 2001,105, 2177-2182.
    [207] Pinceloup P, Courtois C, Vicens J, et al. Hydrothermal synthesis of nanometer- sized barium titanate powders: control of barium/titanium ratio, sintering, and dielectric properties. J. Am. Ceram. Soc. 1999, 82,3049-3056
    [208] Kim F, Kwan S, Akana J, Yang P. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001,123,4360-4361.
    [209] Cao G, Song X, Yu H, et al. Hydrothermal synthesis of sodium tungstate nanorods and nanobundles in the presence of sodium sulfate. Mater. Res. Bull. 41 232-236 (2006).
    [210] Kriz H M, Bray P J. On the crystal Structure of YBO_3, a vaterite-type borate. J. Chem. Phys. 1969, 51,3624-3625.
    [211] Cohen-Adad M Th, Aloui-Lebbou O, Goutaudier C, et al. Gadolinium and Yttrium borates: thermal behavior and structural considerations. J. Solid State Chem. 2000,154, 204-213.
    [212] Kennedy G C. Pressure-volume-temperature relations in water at elevated temperatures. and pressures. Am. J. Sci. 1950,248,540-564;
    
    [213] Weast R C. Handbook of physics and Chemistry, CRC Press, BocaRoton, FL, 1983,192;
    [214] Dudziak K H, Franck E U. Measurements of water viscosity up to 560 and 3500 bars. Ber.Bunsenges. Phys. Chem. 1966,70,1120-1128.
    [215] Henry J Y. Study of hydrothermal formation conditions of rare earth borates TBO_3, pseudo-vaterite. Mater. Res. Bull. 1976,11,577-583.
    [216] Levin E M, Roth R S, Martin J B. Polymorphism of ABO_3-type rare earth borates. Am. Mineralogist. 1961,46,1030-1055
    [217] Yada M, Mihara M, Mouri S, et al. Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 2002,14, 309-313
    [218] Wang X., Li Y.D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed. 2002,41,4790-4793
    [219] Takita Y, Qing X, Takami A, et al. Oxidative dehydrogenation of isobutane to isobutene IIIReaction mechanism over CePO_4 catalyst. Appl. Catal. A Gen, 2005,296, 63-69
    [220] Xu A W, Fang Y P,You L P, Liu, H.Q. A simple method to synthesize Dy(OH)_3 and Dy_2O_3 nanotubes J. Am. Chem. Soc. 2003,125,1494-1495
    [221] Zhang Y, Li Y, Yin Y. Red photoluminescence and morphology of Eu~(3+) doped Ca_3La_3(BO_3)_5 phosphors. J. Alloys and Comp. 2005, 400, 222-226.
    [222] Riwotzki K, Kornowski A, Kornowski A, et al. Liquid-phase synthesis of doped nanoparticles colloids of luminescing LaPO_4:Eu and CePO_4:Tb particles with a narrow particle size distribution. J. Phys. Chem. B. 2000, 104, 2824 -2828
    [223] Amezawa K, Tomii Y, Yamamoto N. High temperature protonic conduction in LaPO_4 doped with alkaline earth metals. Solid State Ionics, 2005,176,135-141
    [224] Valerie B, Melanie M, Thierry G, et al. Colloidal synthesis of luminescent rhabdophane LaPO_4:Ln~(3+)·xH_2O (Ln) Ce, Tb, Eu; x~- 0.7) nanocrystals. Chem Mater. 2004,16: 3767-3773.
    [225] Maestro P, Huguenin D. Industrial applications of rare earths: which way for the end of the century. J Alloys Compds. 1995, 225,520-528.
    [226] Haase M, Riwotzki K, Meyssamy H, et al. Synthesis and properties of colloidal lanthanide-doped nanocrystals. J Alloys Compds. 2000, 303-304, 191-197.
    铩颷227]Diaz-Guillén J A,Fuentes A F,Gallini S,et al.A rapid method to obtain nanometricparticles of rhabdophane LaPO_4·nH_2O by mechanical milling.J Alloys Compd,2007,427:87-93.
    [228]丁士进,徐宝庆.Ln(BO_3,PO_4)[Ln=La,Y]基质中Ce~(3+)、Tb~(3+)、Gd~(3+)的光谱.光谱学与光谱分析,2001,21,275-278.
    [229]丁士进,徐宝庆.La(BO_3,PO_4)[Ce,1nb,Gd]的发光研究.功能材料与器件学报,2001,7,21-26.
    [230]朱汇,熊光楠.Eu~(2+)在磷酸镧中的发光及Ce~(3+)→Eu~(2+)的能量传递.发光学报,2003,24,234-238.
    [231]Lenggoro I W,Xia B,Hiroaki M,et al.Synthesis of LaPO_4:Ce,Tb phosphor particles byspray pyrolysis.Mater Lett,2001,50:92-95.
    [232]Lucas S,Champion E,Bernache-Assollant D,et al.Rare earth phosphate powdersRePO_4·nH_2O(Re=La,Ce or Y)Ⅱ.Thermal behavior.J Solid State Chem.2004,177,1312-1320.
    [233]Assaaoudi H,Ennaciri A,Rulmont A,et al.Gadolinium orthophosphate weinschenkite typeand phase change in rare earth orthophosphates.Phase Trans,2000,72,1-13.
    [234]施尔畏,夏长泰.水热法的应用与发展.无机材料学报,1996,11(2),193-206.
    [235]Hirano M,Kato E.Hydrothermal synthesis and sintering of fine powders in CeO_2-ZrO_2system.J Ceram Soc Japan,1996,104,958-963.
    [236]Cho W S,Yoshimura M.Structural evolution of crystallized SrWO_4 film synthesized by asolution reaction assisted by electrochemical dissolution of tungsten at room temperature.Eur J Solid State & Inorg Chem,1997,34,895-904.
    [237]Xu W P,Zheng L R,Xin H P,et al.Application of hydmthermal mechanism fortailor-making pemvskite titanate films.Proc -Int Symp Electret,1996:617-622.
    [238]Chen Q W,Qian Y T,Chen Z Y,et al.Hydrothermalepitaxy of highly oriented TiO_2 thinfilms on silicon.Appl Phys Lett,1995,66,1608-1610.
    [239]Chen Q W,Wu W B,Qian Y T,et al.Inducing phase decomposition and superconductivityof Bi_2Sr_2CaCu_2O_y single crystals treated in sulfur atmosphere at low temperature.PhysStatus Solidi A:Appl Res,1995,151(1):K5-K8
    [240]蔡少华,党华.李沅英等.水热法合成CaWO_4荧光体的研究.高等学校化学学报,1998,19(5):693-697.
    [241]Chang H A,Kai B T,Guo Z S,et al.Hydrothermal preparation of luminescent PbWO_4nanocrystallites.Mater Lett,2002,57(3):565-568.
    [242]Riwotzki K,Meyssamy H,Koruowski A,Haase M.Liquid-phase synthesis of dopednanoparticles:colloids of lurninescing LaPO_4:Eu and CePO_4:Tb Particles with a Narrowparticle size distribution.J.Phys.Chem.B,2000,104,2824 -2828.
    [243]Yu L,Song H,Lu S,et al.Luminescent properties of LaPO_4:Eu Nanoparticles andnanowires.J.Phys.Chem.B.2004,108,16697-16702
    [244]Wu C F,Wang Y H,Jie W.Hydrothermal syntehsis and luminescent properties of LnPO_4: Tb (Ln = La, Gd) phosphors under VUV excitation. J Alloys Compds, 2007,436,383-386
    [245] Fang Y P, Xu A W, Song R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 2003, 125, 16025- 16034.
    [246] Hezel A, Ross S D. Forbidden transitions in the infrared spectra of tetrahedral anions. III. Spectra-structure correlations in perchlorates, sulfates, and phosphates of the formula MXO_4.Spectrochimica Acta, 1966, 22, 1949-1961.
    [247] Onoda H, Nariai H, Maki H, Motooka I. Syntheses of various rare earth phosphates from some rare earth compounds. Mater. Chem. Phy. 2002, 73,19-23
    [248] Yu L, Song H,. Liu Z, et al. Electronic transition and energy transfer processes in LaPO_4-Ce~(3+)/Tb~(3+) Nanowires. J. Phys. Chem. B 2005,109,11450-11455
    [249] Zhang Y., Guan H. The growth of lanthanum phosphate (rhabdophane) nanofibers via the hydrothermal method. Mater. Res. Bull. 2005,40,1536-1543
    [250] Yan Z G, Zhang Y W, You L P, et al. General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate. J. Cryst. Growth. 2004,262,408-414
    [251] Cole J M, Lees M R, Howard J A K, et al. Crystal Structures and Magnetic Properties of Rare-Earth Ultraphosphates, RP_5O_(14)(R = La, Nd, Sm, Eu, Gd). J Solid State Chem, 2000, 150,377-382.
    [252] Onoda H, Nariai H, Maki H, et al. Addition of urea or biuret on synthesis of rhabdophane-type neodymium and cerium phosphates. J Mater Syn Proc, 2002,10,121-126.
    [253] Kijkowskal R, Cholewka E, Duszak B. X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution. JMater. Sci 2003, 38,223- 228
    [254] Kijkowska R. Thermal decomposition of lanthanide orthophosphates synthesized through crystallisation from phosphoric acid solution. Thermochimica Acta 2003; 404:81-88
    [255] Fujishiro Y, Ito H, Sato T, Okuwaki A. Synthesis of monodispersed LaPO_4 particles using the hydrothermal reaction of an La(edta) chelate precursor and phosphate ions. J Alloys Compds 1997, 252,103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700