用户名: 密码: 验证码:
表面修饰纳米极压抗磨剂的研制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改善材料的摩擦、磨损性能和润滑性能,不仅可以满足机械设备向高速、重载和高精度方向发展的需要,而且可以延长机械设备的使用寿命,对节约资源和环境保护意义重大。本论文针对现有极压抗磨添加剂产品存在的不足,基于原位摩擦化学理论,从表面修饰剂的选择入手,系统开展了材料设计、制备与性能评价等方面的研究工作。在合成表面修饰剂的基础上,制备了表面修饰纳米硼酸镧和纳米二硫化钼极压抗磨添加剂,通过对其结构表征和极压抗磨性能的研究,研制出具有抗磨减摩和原位摩擦化学处理双重功能的极压抗磨添加剂硼钼剂,并进行了应用研究。
     以五硫化二磷、十八烷醇、吡啶为主要原料,优化了表面修饰剂PyDDP的制备工艺,合成了本研究所用的表面修饰剂二烷基二硫代磷酸吡啶(PyDDP),对其产率影响因素和相关工艺条件进行了研究。
     分别以硬脂酸和PyDDP为表面修饰剂,以硼砂和硝酸镧为原料,在醇-水混合溶剂中合成了硬脂酸修饰纳米硼酸镧和PyDDP修饰纳米硼酸镧,并优化了合成工艺参数。以PyDDP为表面修饰剂,以钼酸钠、盐酸羟胺、硫化钠、稀硫酸为原料,合成了PyDDP修饰纳米MoS2。采用IR、TG-DTA、XRD等分析方法,对三种表面修饰纳米微粒进行了表征,并分析了表面修饰纳米硼酸镧和纳米二硫化钼的形成机制,结果表明,所制备的微粒是一种表面为有机物修饰且存在无机核的无机/有机复合微粒。采用SEM、EDXA等方法对钢球的表面形貌、表面元素进行了分析,研究了所制备的三种微粒的摩擦学机理。结果表明,硬脂酸根离子St-和PyDDP中的DDP-均可与La3+反应生成稳定的化合物LaSt3或者LaDDP3。在摩擦副表面起主要作用的是La、B、Mo等元素,镧和硼在基体表面形成复杂的化学反应膜和渗透层是添加剂具有良好抗磨性能的重要原因。而表面修饰纳米二硫化钼的减摩抗磨机理主要是将滑动摩擦部分转变为滚动摩擦的“滚珠轴承作用”,因而在添加剂浓度较低的情况下其极压性能和减摩性性能也比较突出。
     采用四球实验研究了所制备三种纳米微粒的极压抗磨性能,研究结果表明:三种微粒均具有良好的减摩和抗磨性能,可以降低摩擦、减少能量消耗,并可减少磨损、增强材料使用寿命,具有优异的节能环保特性。硬脂酸修饰纳米硼酸镧与PyDDP修饰纳米硼酸镧相比,后者在较低添加量下即具有较好的抗磨性能;PyDDP修饰纳米硼酸镧与纳米MoS2相比,前者减摩性能较好,而后者抗磨性能较好,为了兼顾减摩和抗磨性能,将两者按一定比例复配制成硼钼剂,研究结果表明硼钼剂具有更好的极压抗磨性能和降低摩擦系数的功能。
     以所制备的硼钼剂作为极压抗磨剂,以四球试验考察了其在成品发动机油中的摩擦学性能。实验室评价表明,其抗磨性与承载能力同市售发动机油相当,减摩性优于市售同类产品。台架试验结果表明:硼钼剂可以提高成品发动机油的抗磨性能和减摩能力,且其承载能力没有降低。
     本论文所制备的无机纳米极压抗磨剂具有性能优良、使用稳定、环保高效的特点,具有良好的应用前景,同时,本论文研究结果也验证了应用表面修饰无机纳米极压剂实现原位摩擦化学处理观点的正确性。
Modifying the antiwear and lubricating property of material has an important effectboth on the energy, resources savings and environmental protection. It not only satisfiesthe tendency of higher speed,heavier load and higher accuracy of the machine inventedwith modern scientific technology, but also lengthens their service life. According to theshortcomings of the current extreme pressure-antiwear additives product, two kinds ofextreme pressure-antiwear additives (surface modified lanthanum borate andmolybdenum disulfide) were prepared to realize material with the property of antiwearand anti friction and in-situ tribochemical treatment. A borate-molybdenum (B-Mo)agent was finally prepared and the application of the agent was investigated.
     Phosphorus pentasulfide, octadecanol and pyridine were used as basic material tosynthesize the main surface modifying agent of this paper: pyridinium dialkyldithiophosphate (PyDDP). The technological conditions were thoroughly studied andfonfirmed. Using stearic acid and PyDDP, respectively, as modifying agent, borax andlanthanum nitrate as raw material, the stearic acid and PyDDP modified lanthanumborate nanoparticles were synthesized, respectively, in mixed alcohol-water solvents.Using PyDDP as the modifying agent, sodium molybdate, hydroxylamine hydrochloride,sodium sulfide and dilute sulfuric acid as raw material, the surface modifiedmolybdenum disulfide (MoS2) nanoparticles were synthesized. The technologicalparameters of the proceses were optimized. Infrared spectrum (IR), thermal gravity anddiffertial thermal analysis (TG-DTA), X-ray diffraction (XRD), Ultraviolet spectrum (UV)were used to characterize the structure of the three kind nanoparticles. The formationmechanism of the surface modified nanoparticles was initially analyzed and proposedand results showed that the three kinds of nanoparticles were modified by a layer oforganic material with an inorganic core. The tribological properties of three synthesizednanoparticles were studied by four-ball test. The surface morphology and elements wereanalyzed by SEM and EDXA. The tribological mechanism was discussed and impliedthat all synthesized nanoparticles had good extreme pressure property.
     The tribological properties showed that all synthesized stearic acid and PyDDPmodified lanthanum borate nanoparticles had good extreme pressure characteristics. BothSt-and DDP-can react with La3+ions to form thermol stable LaSt3or LaDDP3. The mainelements which affect on the friction properties might be owing to La,B and Mo. Thechemical reacted film and the physical penetrated layer formed by La and B in thefriction surface is the main contribution to the extreme pressure properties of themodified lanthanum borate nanoparticles. But for surface modified molybdenum disulfide (MoS2), the transformation of roll friction to sliding friction might be the mostimportant effect which induced good friction abilities even in low agent concentration.
     Four ball experiments were used to investigate the extreme pressure properties ofthe particles. Compared with steric acid modified lanthanum borate, PyDDP modifiedlanthanum borate possessed better anti-friction ability even in lower content in base oil.Further more, it was founded that PyDDP modified lanthanum borate and molybdenumdisulfide were favored on extreme pressure properties and friction reducing propertiesrespectively both in lower contents. So a new agent of B-Mo was formed with bi-component and possesses satisfied extream pressure properties and lower frictioncoefficient.
     Taking PyDDP modified PyDDPBMo with good extreme pressure property asextreme pressure-antiwear additive, the tribological properties of engine oil product werestudied. Results indicated that PyDDPBMo could improve the abrasion resistance andanti-friction of engine oil. The engine oil complex additive was prepared usingPyDDPBMo as one compoment. Laboratory test showed that the abrasion resistance andcarrying capacity of PyDDPBMo was also equivalent to that of other similar products inmarket.
引文
1潘元青,李久盛,梅建国.极压抗磨添加剂的最新研究与应用.汽车工艺与材料.2005,(10):6~10
    2李久盛,王永刚. ZDDP替代物的研究现状及发展趋势.润滑油与燃料.2006,16(1):1~5
    3J. M. Martin, T. Le-Mogne, P. Bilas. Effect of Oxi-dative Degradation onMechanisms of Friction Reduction by MoDTC. Proceedings of the28th Leeds-Lyon Symposium on Tribology. Vienne, Austria,2001.
    4M. I. Bouchet, J. M. Martin, T. L. Mogne.et al. Mechanisms of MoS2Ormationby MoDTC in Presence of ZnDTP:effect of Oxidative Degradation. Wear.2005,258:1643~1650
    5张爱华.国内外润滑油供需现状及发展趋势.中国石油和化工经济分析.2007,5:50~55
    6黄文轩.润滑油添加剂遇到的挑战和发展趋势.用油全方位.2007,5:58~62
    7欧风、李晓,《应用摩擦化学的节能润滑技术》.中国标准出版社,1991,137~158
    8张剑锋,周志芳.摩擦磨损与抗磨技术.天津:天津科技翻译出版社.1993,125~136
    9孙家枢.《金属的磨损》.北京:冶金工业出版社.1992,127~138
    10张景河等.《现代润滑油与燃料添加剂》.中国石化出版社,1991,36~56
    11X. Zeng, J. Li, X. Wu, T. Ren. The Tribological Behaviors of Hyd-roxylcontaining Dithiocarbamate–triazine Derivatives as Additives in Rapeseedoil. Tribol Int,2007,40:560~566
    12J.P.G.Farr. Molybdenum Disulfide in Lubrication-a Review. Wear,1975,35:1~25
    13A. Kadmiri, J. Amandrut. Tribochemistry of Cyclopentadienyl Organome-tallicCompounds. ASLE Transactions.1987,30(1):111~119
    14崔瑞敏,郭薇,周大鹏等.稀土元素在润滑油添加剂中的应用.化学与黏合.2006,28(1):47~50
    15P. S. Chen, J. X. Dong, G. X. Chen. The Preparation and Tribological Behaviorof Synthetic Praseodymium Dialkyl Dithiophosphate. in: Jin Y S ed. Proceedingsof1st International Symposium on Tribology(vol2). Beijing: InternationalAcadmic Publishers.1993.1010~1016
    16欧风.《合理润滑技术手册》.石油工业出版社.1993:580~592
    17乔玉林,方学敬,党鸿辛.一些磷-氮型极压抗磨添加剂的研究.摩擦学学报.1995,15(3):248~256
    18M. Klaus. How to Reduce Fretting Corrosion-influence of Lubricants. Trib-ology Internationl.1975,8(2):57~64
    19V. Normand, J.M. Martin, L. Ponsonnet. Micellar Calcium Borate as anAntiwear Additive. Tribol Lett.1998,5:235~246
    20S. Matsumoto, Y. Tanaka, H. Ishi. Sulfur Chemical State Analysis of DieselEmission of Vehicles using X-ray Absorption. Spectrochim Acta B,2006,61:991~994
    21W. Huang, B. Hou, P. Zhang. Tribological Performance and Action Mechanismof S-[2-(acetamido) thiazol-1-yl] Dialkyl Dithiocarbamate as Additive inRapeseed Oil.Wear.2004,256:1106~1113
    22W. Huang, J. Dong, G. A. Wu. Study of S-[2-(acetamido)benzothiazole-1-yl] N,Ndibutyl Dithiocarbamate as an Oil Additive in Liquid Paraffin. Tribol Int.2004,37:71~76
    23W. Huang, Y. Tan, J. Dong. Tribological Properties of the Film Formed byBorated Dioctyl Dithiocarbamate as an Additive in Liquid Paraffin. Tribol Int.2002,35:787~791
    24H. Wu, T.Ren. Tribological Performance and Chemistry of Films for Din-butylDithiocarbamate Derivatives in Rapeseed Oil. Chinese Sci Bull.2007,52:194~197
    25刘焕彬,陈小泉.纳米科学与技术导论.北京化学工业出版社.2006,124~135
    26F. Chinas-Castillo, H.A. Spikes, Mechanism of Action of Colloidal SolidDispersions. Trans. ASME.2003,125:552~557
    27J. Zhou, J. Yang, Z. Zhang. Study on the Structure and Tribological Properties ofSurface-modified Cu Nanoparticles. Mater Res Bull.1999,349:1361~1367
    28L. Rapoport, Y. Feldman, M. Homyonfer. Inorganic Fullerene-like Material asAdditives to Lubricantts: Structure–function Relationship. Wear.1999,229:975~982
    29S. Chen, W. Liu, L. Yu. Preparation of DDP-coated PbS Nanoparticles andInvestigation of the Antiwear Ability of the Prepared Nanoparticles as Ad-ditivein Liquid Paraffin. Wear.1998,218:153~158
    30Q. Xue, W. Liu, Z. Zhang. Friction and Wear Properties of a SurfacemodifiedTiO2Nanoparticle as an Additive in Liquid Paraffin. Wear.1997,213:29~32
    31W. Liu, S. Chen, An Investigation of the Tribological Behaviour of Surfa-cemodified ZnS Nanoparticles in Liquid Paraffin. Wear.2000,238:120~124
    32S. Chen, W. Liu, Characterization and Antiwear Ability of Non-coated ZnSNanoparticles and DDP-coated ZnS Nanoparticles. Mater Res Bull.2001,36:137~143
    33J. Zhou, Z. Wu, Z. Zhang. Study on an Antiwear and Extreme Pressure Additiveof Surface Coated LaF3Nanoparticles in Liquid Paraffin. Wear.2001,249:333~337
    34S. Chen, W. Liu. Oleic Acid Capped PbS Nanoparticles: Synthesis, Charac-terization and Tribological Properties. Mater Chem Phys.2006,98:183~189
    35Z.S. Hu, J.X. Dong, Study on Antiwear and Reducing Friction Additive ofNanometer Titanium Oxide. Wear.1998,216:92~96
    36Z.F.Zhang, W.M. Liu, Q.J. Xue. The Tribological Behaviors of Succinimide-modified Lanthanum Hydroxide Nanoparticles Blended with Zinc Dialky-ldithiophosphate as Additives in Liquid Paraffin. Wear.2001,248:48~54
    37S. Qiu, Z. Zhou, J. Dong. Preparation of Ni Nanoparticles and Evalua-tion oftheir Tribological Performance as Potential Additives in Oils. Tribol.2001,123:441~443
    38X. Tao, Z. Jiazheng, X. Kang. The Ball-bearing effect of diamond nanopa-rticlesas an oil additive, J. Phys. D,1996,29:2932–2937.
    39L. Rapoport, M. Lvovsky, I. Lapsker. Friction and Wear of Bronze PowderComposites Fullerene-like WS2Nanoparticles. Wear.2001,249:150~157
    40M. Lvovsky, R.P. Biro, Y. Feldman. Tribological Properties of WS2Nanoparticles under Mixed Lubrication.Wear.2003,255:785~793
    41L. Rapoport, V. Leshchinsky, M. Lvovsky. Superior Tribological Properties ofPowder Materials with Solid Lubricant Nanoparticles. Wear.2003,255:794~800
    42L. Rapoport, O. Nepomnyashchy, I. Lapsker. Behavior of Fullerene-likeWS2Nanoparticles under Severe Contact Conditions. Wear.2005,259:703~707
    43L. Rapoport, V. Leshchinsky, M. Lvovsky. Friction and Wear of PowderedComposites Impregnated with WS2Inorganic Fullerene-like Nanoparticles. Wear.2002,252:518~527
    44Q. Sunqing, D. Junxiu, C. Guoxu. Tribological Properties of CeF3Nanopar-ticles as Additives in Lubricating Oils. Wear.1999,230:35~38
    45T.T. Tsung, H. Chang, L.C. Chen. Process Development of a Novel arc SprayNanoparticle Synthesis System (ASNSS) for Preparation of a TiO2NanoparticleSuspension. Adv Manuf Technol.2004,4:879~885
    46Y.C. Lin, H. So. Limitations on use of ZDDP as an Antiwear Additive inBoundary Lubrication. Tribol Int.2004,37:25~33
    47T. Yokozumi, Y. Miyashita, K. Hayashi. Fabrication and Characteristics of HoleTransporting Material Stransition Metal Nanoparticle Composites. Thin SolidFilms.2004,449:173~179
    48K. Hayashi, Y. Kurosaka, Y. Osako. Electrical Properties of Composites ofTiO2-triphenylamine Derivatives. Thin Solid Films.2005,474:337~340
    49B. Bhushan. Introduction to Tribology. John Wiley&Sons, New York.2002,425.
    50夏延秋等.纳米级金属粉对润滑油摩擦磨损性能的影响.润滑与密封.1999,3:33~36
    51张志梅.纳米级金属粉改善润滑油摩擦学性能的研究.润滑与密封.2000,2:37~40
    52于鹤龙,许一,王晓丽等.纳米铜润滑油添加剂的制备及其性能研究.装甲兵工程学院学报.2006,20(5):86~89
    53徐滨士.纳米表面工程.北京,化学工业出版社.2004,228
    54L. Rapoport, V. Leshchinsky, Y. Volovik, et al. Modification of Con-tactSurfaces by Fullerene-like Solid Lubricant Nanoparticles. Surface and CoatingsTechnology.2003,163:405~412
    55史佩京,刘谦,于鹤龙等.纳米铜微粒作为润滑油添加剂的分散方法及其摩擦学性能研究.石油炼制与化工.2005,363:33~38
    56Z. S.Hu, J.X.Dong, G. X. Chen, et al. Preparation and Tribological Properties ofNanoparticle Lanthanum Borate. Wear.2000,243:43~47
    57L. Sun, J. F. Zhou, Z. J. Zhang, et al. Synthesis and Tribological Behavior ofSurface Modified (NH4)3PMo12O40Nanoparticles. Wear.2004,256:176~181
    58S. Tarasov, A. Kolubaev, S. Belyaev, et a.l Study of Friction Reduction byNanocopper Additives to Motoroil. Wear.2002(252):63~69
    59L. Yuh, B. S. Xu, Y. Xu, et a.l Design for In-situ Repair of Wear-out-failure Partsby Environment-friendly Nanocopper Additive. Journal of central southuniversity of technology.2005,12(S2):215~220
    60赵修臣,宣瑜,刘颖等.纳米Sn粒子的制备及其作润滑油添加剂的摩擦学性能研究.润滑与密封.2007,32(1):108~111
    61陈爽.油酸修饰纳米粒子的摩擦学性能比较.润滑与密封.2007,32(2):108~110
    62陈爽,刘维民,欧忠文等.油酸表面修饰PbO纳米微粒作为润滑油添加剂的摩擦学性能研究.摩擦学学报.2001,21(5):344~347
    63陈爽,刘维民.修饰剂对PbO纳米粒子摩擦学性能的影响.润滑与密封.2006,6:24~28
    64王九,陈波水,黄维九.纳米粒子添加剂在润滑剂中的应用和开发.江苏化工.2001,6:13~17
    65颜皓,梁海萍,张法智.高碱值硫化烷基酚钙抗磨机制分析.润滑与密封.2007,32(9):100~106
    66胡建强,胡役芹,马玉红.二烷基二硫代磷酸复酯镉的合成及摩擦学性能研.2007,22(4):37~40
    67胡建强,一种高效极压抗磨复合添加剂.合成润滑材料.2006,33(3):18~22
    68沃恒洲,胡坤宏,胡献国.纳米二硫化钼作为机械油添加剂的摩擦学特性研究.摩擦学学报.2004,24(1):33~37
    69赵修臣,刘颖,余智勇等.纳米粒子作润滑油添加剂的研究与展望.润滑与密封.2003,6:80~83
    70V.N. Bakunin, A.Y. Suslov, G. N. Kuzmina, et al. Synthesis and Application foInorganic Nanoparticles as Lubricant Components a Review. Journal ofNanoparticle Research.2004,6:273~284
    71张继辉,陈国需.润滑油自修复添加剂的研究现状及设想.润滑油.2003,18:6~8
    72S. S. Perry, W. T. Tysoe. Frontiers of Fundamental Tribological research.Tribology Letters.2005,19(3):151~161
    73刘雄民.纳米微粒及其在润滑油脂中的应用.摩擦学学报.2003,23:265~268
    74J. Yuansheng, L. Shenghua, Z. Zhengye, et al. In Situ MechanochemicalReconditioning of Worn Ferrous Surfaces. Tribology International.2004,37:561~567
    75杨鹤,李生华,金元生.修复剂羟基硅酸镁存在时钢摩擦副的摩擦磨损特性研究.摩擦学学报.2005,25(4):308~331
    76王晓丽,徐滨士,许一等.纳米铜润滑剂的摩擦磨损特性及其机理研究.摩擦学学报,2007,27(3):233~240
    77郭志光,顾卡丽,徐建生.纳米润滑添加剂的润滑自修复效应.材料保护,2003,36:22~24
    78张继辉,陈国需,杨汉民等.纳米锌粉自修复性能的研究.合成润滑材料,2004,31:1~3
    79李小红,刘峰,张治军等.DNS-Am型可分散性SiO2纳米微粒的表征及摩擦学性能.润滑与密封,2005,170(4):1-3
    80黄文轩.润滑剂添加剂应用指南.北京,中国石化出版社,2004
    81连亚峰,党鸿辛.稀土元素的摩擦学研究发展概况.摩擦学学报,1993,13(2):183~188
    82牛坚,张晓峰,叶滨.自组装技术制备稀土Y润滑薄膜的研究.润滑与密封,2007,32(12):80~81
    83颜建辉,张厚安,唐思文.稀土强韧化MoSi2材料的摩擦学性能.润滑与密封,2007,32(6):37~39
    84胡小平,张厚安,颜建辉,等.油润滑下MoSi2材料的摩擦磨损性能.中国机械工程,2006,17(15):1630~1634
    85J. P. DONER. Noise Characteristics of Rolling Bearing Greases. LubricationEngineering.2000,56(10):36~40
    86Z. Y.Yang. Influences of Gas Flow Rates on Melting of Particles of HVOFSprayed CoCrW Coating and Coating Properties. Rare Metals,2004,23(1):53~58
    87J. M. Miguel, J. M. Guilemany, B. G. Mellor, et al.Acoustic Emission Study onWC-Co Thermal Sprayed Coatings. Mater Sci Eng A.2003,352(1-2):55~63
    88M. E. Sikoraki, J. S. Courtney. A Correlation Between Static Adhesion Data andthe Dynamic Friction Coefficients For Two Cobalt Alloys and Iron UnderVacuum Conditions. ASLE Trans.1973,(7):73~81
    89B. Uxkeydh, J. Ohnsonrl. Friction and Wear of Hexagonal Metals and Alloys asRelated to Crystal Structure and Lattice Parameters in Vacuum. ASLE Trans.1966,(9):121~135
    90H. E. Slinkey. Solid Lubricant Materials for High Temperature Review. NASA.Technical Notee.1969, D-531
    91Q. Qing, J. Dong. Tribological Properties of CeF3Nanoparticles as Additives inLubricating oils. Wear.1999,30(2):35~38
    92Y.W. Kima, K. Chunga, N.S. Kim, et al. Synergistic Lubricating Effect ofSeveral Ashless Dithiocarbamates with Mo-donor Additives. TribologyInternational.2007,40:397~404
    93陈波水,董浚修,陈国需.二烷基二硫代磷酸镧的制备及性能研究.合成润滑材料,1995,22(1):1~4
    94陈波水,董浚修,陈国需.二烷基二硫代磷酸铕的摩擦磨损性能研究.摩擦学学报,1994,14(2):153~157
    95陈波水,董浚修,陈国需.二烷基二硫代磷酸钆的制备及其摩擦磨损性能研究.稀有金属,1994,18(2):130~135
    96B. S. Chen, J. X. Dong, G. X. Chen. The Preparation and Tribological Behaviorof Synthetic Praseodymium Dialkyldithiophosphate. Beijing: InternationalAcadmic Publishers.1993
    97冯玉杰,田言,孙晓君等.二烷基二硫代磷酸钕的摩擦磨损性能研究.中国稀土学报,2002,20(3):207~211
    98Y. Tian, N. Q. Ren, Y. J. Feng. Investigation on tribological behaviors ofneodymiumdialkyldithiophosphate. Journal of Harbin Institute of Technology,2004,11(1):34~37
    99冯玉杰,孙丽欣,孙晓君等.烷基硫代磷酸稀土盐的制备及摩擦学特性研究.哈尔滨工业大学学报,2002.34(3):324~328
    100孙丽欣,冯玉杰,卢延欣等.表面修饰氟化镧微粉的制备及极压性能研究.哈尔滨工业大学学报,2002,34(2):211~213
    101张平余,巩清叶.磷酸镧和二烷基二硫代磷酸锌及其复合添加剂对通用锂基脂摩擦学性能的影响.中国稀土学报,2002,20(5):409~413
    102陈波水,方建华,王九等.水介质中硼酸盐-氯化镧的摩擦磨损性能研究.中国稀土学报,2008,26(1):46~49
    103刘仁德,陶德华,张建华等.有机混合稀土化合物与有机锡化合物作为润滑添加剂的协同效应.中国稀土学报,2004,22(2):225~228
    104张择抚,刘维民,薛群基.含氮有机物修饰的纳米三氟化镧的摩擦学性能研究.摩擦学学报,2000,20(3):217~219
    105Z. F. Zhang, W. M. Liu, X. Qunji. The Effect of LaF3Nanoclustermodified withSuccinimide on the Lubricating Performance of Liquid Paraffin for Steel-on-steel System. Tribology International.2001,34:83~88.
    106M. H. Stephen. Nano-lubrication: Concept and Design. Tribology International,2004,37:537
    107G. Caixiang, L. Qingzhu, G. Zhuoming, et al. Study on Application of CeO2andCaCO3Nanoparticles in Lubricating Oils. Journal of Rare Earths.2008,26(2):163~167
    108赵修臣,刘颖,余智勇等.纳米粒子作润滑油添加剂的研究与展望,润滑与密封,2003(6):80~83
    109W. J. Huang, F. F. Li, C. Y. Peng. Tribological Properties of Oil-solubleSamarium Isooctoxyborate. Trans. NonferrousMet. Soc. China,2002,12(1):173~177
    110黄之杰,费逸伟,尚振锋.纳米材料作为润滑油添加剂的应用与发展趋势.润滑油,2005,20(2):21~25
    111J. F. Zhou, Z. S. Wu, Z. J. Zhang, et al. Study on an anti-wear and extreme pressure additive of surface coated LaF3nanoparticles in liquid paraffin. Wear,2001,249:333~337.
    112吴志申,陶小军,周静芳等. CeF3纳米微粒的合成、结构及摩擦学行为研究.稀土,2001,22(5):1~4
    113梁起,张治军,薛群基. LaPO4纳米微粒的制备及表征.物理化学学报,1998,14(10):945~948
    114梁起,张顺利,张治军等. La2(C2O4)3纳米微粒的摩擦学行为研究.化学通报,1999,6:48~51
    115Z. S. Hu, J. X. Dong, G. X. Chen, et al. Preparation and Tribological P-ropertiesof Nanoparticle Lanthanum Borate. Wear.2000,243:43~47
    116Z. F. Zhang, W. M. Liu, Q. J. Xue. Study on Lubricating Mechanisms of La(OH)3Nanocluster Modified by Compound Containing Nitrogen in LiquidParaffin. Wear.1998,218:139~144
    117罗勇新,吴茂英,李慧芝.稀土化合物用作润滑油极压抗磨剂研究进展.辽宁化工,2007,36(4):253~256
    118冯玉杰,孙晓君,李培志等.表面修饰纳米硼酸镧的制备及极压抗磨性能研究.材料科学与工艺,2002,10(2):203~206
    119顾彩香,顾卓明,陈志刚等.环保型纳米润滑材料的研究.机械设计与制造,2006,(2):106~108
    120顾彩香,李庆柱,李磊等.纳米粒子润滑油的抗磨减摩机理.机械工程材料,2007,31(10):1~6
    121顾彩香,李庆柱,李磊等.新型环保润滑油配方的研制.机械设计,2007,24(1):51~54
    122顾卓明,顾彩香, Saw Thandar Shwe.含纳米CeO2,Cu混合物添加剂润滑油摩擦学性能研究.材料热处理学报,2007,28(增刊):292~295
    123Y. Pingping, J. Xiaoxia, L. Shu. Preparation of NiMoO2S2Nanoparticle andInvestigation of its Tribological Behavior as Additive in Lubricating Oils.Wear.2002,253:572~575
    124聂芊,陈平,李健.二烷基二硫代磷酸镧/铕混合稀土有机化合物在润滑油中的摩擦性能.润滑与密封,2005(1):66~67
    125乔玉林,徐滨士,李长青等.表面修饰的硼酸盐润滑油添加剂的制备与分析.材料保护,1997,30(6):11~16
    126R E Warren. New Chemistry in Gear Lubricant-Borate Extern Pressure Additive.In. Trans. Proc of Nat Cof on Power.6th Aannual Meeting,1979
    127Z. Yi, Y. Haibin, W. Youfu. Synthesis of Magnesium Borate (Mg2B2O5)Nanowires, Growth Mechanism and their Lubricating Properties. MaterialsResearch Bulletin.2007,265:3924~3932
    128叶毅.纳米硼酸镧对润滑油抗磨性能影响的研究.润滑与密封,2000,2:22~24
    129杨建军.纳米CdS粒度控制的动力学效应.中国科学(B辑),2000,30(1):42~48
    130张治军.表面修饰纳米微粒的化学制备及摩擦学行为的研究.中国科学院兰州化学物理研究所博士论文.1996,37-39
    131P. S. Chen, J. X. Dong, G. X. Chen. The Preparation and Tribological Behaviorof Synthetic Praseodymium Dialkyl Dithiophosphate. in: Jin Y S ed.Proceedingsof1st International Symposium on Tribology(vol2). Beijing: InternationalAcadmic Publishers.1993:1010~1016
    132史佩京,乔玉林,许一等.含有机镧/铈-钼复合润滑添加剂的摩擦学性能及协同润滑机制.中国稀土学报,2005,23:125~129
    133孙磊.硬脂酸修饰磷钼酸铵纳米微粒的抗磨性能研究.电子显微学报.2001,20(4):360~361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700