用户名: 密码: 验证码:
工业硅的冶金法提纯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染的双重压力导致世界范围内对新能源的研究探索。太阳能被认为是最清洁的能源,资源分布广泛,21世纪以来越来越受到重视,世界范围内掀起了利用太阳能的高潮。各国政府纷纷出台政策,推动了光伏产业的发展。但太阳能级硅材料却供不应求,阻碍了光伏产业的发展。
     传统的西门子法等化学法提纯工业硅技术由于污染严重、能耗高、成本高,发展受到限制。近年来发展起来的冶金法提纯工业硅技术具有环保、低能耗、成本低的优点,可以满足光伏产业的迅速发展。硼和磷含量是影响太阳能级硅产品质量的重要因素,通过冶金法的等离子和电子束等粒子技术可以较好的除去工业硅中的硼、磷杂质,但能耗依然很高,不符合低碳经济理念。
     本文研究采用造渣并结合真空吹气、酸洗的工艺路线,并利用自行设计的酸洗设备和真空熔炼炉,除去工业硅中的金属杂质以及硼和磷,达到提纯工业硅的目的。采用电感耦合等离子体发射光谱仪对样品进行分析。研究不同渣系、造渣时间、氧化造渣、酸洗等参数对硼和磷以及金属杂质去除效果的影响。通过以上研究获得以下主要结果:
     造渣工艺可以明显除去工业硅中的硼杂质,增加造渣时间、多次造渣可显著降低硅中的硼含量,但都存在一个饱和值。随着造渣次数的增加,最佳造渣时间减小;
     造渣过程中,通入氧气可以有效的降低硅中的硼和钙含量,除硼效果更为明显,同时增加氧分压可以促进工业硅中硼以及钙杂质的去除;
     采用Li2O-SiO2(-Al2O3)系渣剂,通过造渣可以显著地降低硅中的磷含量;重复造渣并结合酸洗过程,可以大幅度地除去工业硅中的磷。
     本研究的实验结果显示了冶金法在硅提纯方面的生命力和光明的前景。在本文的除磷研究基础上,进一步优化造渣剂组成及工艺,结合酸洗和定向凝固工艺,经过2-3次循坏,将有望通过非粒子束提纯工艺,通过冶金法路线将硅中的磷降低到符合太阳级硅的要求。
Energy crisis and environmental pollution led to the dual pressures of worldwide exploration for new energy research. Solar energy is considered to the most clean energy, resources are widely distributed, since the 21st century more and more attention are paid, set off a world-wide use of solar energy in the climax. Governments have introduced policies to promote the development of photovoltaic industry. But the shortage of solar grade silicon material has hampered the development of photovoltaic industry.
     Siemens conventional chemical methods such as purification of silicon as serious pollution, high energy consumption, high cost, development is restricted. Recent development of metallurgical silicon purification technology is environmentally friendly, low energy consumption, lower cost, to meet the rapid development of photovoltaic industry. Boron and phosphorus content of solar-grade silicon is an important factor in product quality, by metallurgical methods such as plasma and electron beam technology can be better to remove particles of silicon in boron and phosphorous impurities, but the energy consumption is still high, do not meet the low-Carbon economy concept.
     In this paper, combined with the vacuum by blowing slag making, pickling of the process line, and use self-designed vacuum melting furnace and pickling equipment, remove the metal impurities in silicon, and boron and phosphorus, industrial silicon to achieve the purpose of purification. By inductively coupled plasma emission spectrometer to analyze the samples. Of different slag, slagging time, slagging oxide, acid and other parameters of boron, phosphorus, and removal of metallic impurities. Through the above study are the following main results:
     Slagging process can significantly remove boron impurities in silicon to increase the slagging time, can significantly reduce the number slagging of boron in silicon, but there exists a saturation value. With the increase in the number slagging, the best time to reduce the slagging;
     Slagging process, which leads to oxygen can effectively reduce the silicon content of boron and calcium, in addition to boron effect is more obvious, while increasing the partial pressure of oxygen can promote the boron in silicon and calcium impurities removed;
     With Li2O-SiO2 (-Al2O3) system Java agent, you can significantly reduce the slagging of phosphorus in silicon content; with pickling process, can greatly remove phosphorus in silicon, and acid washing can only remove the surface of silicon block Metal impurities, and the smaller the benefit of silicon block the removal of metallic impurities.
     The results of this study show the metallurgical silicon purification method in terms of vitality and bright prospects. Phosphorus in this article based on the study, and further optimize the composition and process slag forming agent, combined pickling and directional solidification process, after 2 to 3 cycles, the non-particle beam through the purification process is expected to by metallurgical route will be in Silicon Phosphorus reduced to meet the requirements of solar-grade silicon.
引文
[1]黄泽全.可再生能源的开发和利用[J].人民论坛.2005,05:54-55
    [2]朱蒂.新能源新生活[J].资源与人居环境.2010,24:27
    [3]苗俊杰.“激励”可再生能源开发[J].瞭望新闻周刊.2004,17:29-31
    [4]马重芳.新能源技术的发展及应用[J].大众用电.2007,3:15
    [5]唐乾.新能源开发已成各国发展战略重点[J].资源与人居环境.2010,4:30-31
    [6]ROGERS I O. Handbook of semiconductor silicon technology[M]. New Jersey:Noyes Pub, 1990.33
    [7]Mukund R.Patel, Ph.D., P.E. Wind and Solar Power Systems[M]. New York:Library of Congress Cataloging-in-Publication Data,1999.138-144
    [8]蒋荣华,肖顺珍.中国多晶硅将占全球半壁江山[J].新材料科学.2010,5:12-20
    [9]裴立双.硅产业在新能源领域迎来机遇[J].中国金属通报.2010,43:36-37
    [10]肖甫.全球多晶硅市场分析[J].新材料产业.2009,9:12-23
    [11]严大洲.我国多晶硅生产现状与发展[J].有色金属.2001,1:6-8
    [12]刘向阳.多晶硅:我国光伏产业的瓶颈[J].太阳能.2006,3:15-17
    [13]徐云匕.冶金法制备太阳能级多晶硅工艺研究[D].[硕十学位论文].大连:大连理工大学,2007
    [14]阙端麟.硅材料科学与技术[M].杭州:浙江大学出版社,2000.1-4
    [15]佘思明.半导体硅材料学[M].长沙:中南工业大学山版社,1992.1-2
    [16]郝润蓉,方锡义,钮少冲.碳硅锗分族[M].北京:科学出版社,1998.105-131
    [17]何允平,王恩慧.工业硅生产[M].北京:冶金工业出版社,1996.1-5
    [18]路金辉.实用工业硅技术[M].北京:化学工业出版社,2005.1-19,114-116
    [19]师昌绪,李恒德.材料科学与工程手册(上、下卷)第十篇半导体材料篇[M].北京:化学工业山版社,2004.7-10
    [20]卜新平.国内外多晶硅行业现状与发展趋势[J].化学工业.2008,7:32-40
    [21]丁云.多晶硅的应用及生产技术[J].云南冶金.2007,5:69-76
    [22]何允平.工业硅生产的炉前操作与产品的高产、优质、低耗[J].铁合金.2002,2:21-24
    [23]高海涛.我国工业硅生产技术进展及发展方向[J].轻金属.1996,4:38-40
    [24]陈德胜.如何提高工业硅的产品质量[J].轻金属.2003,5:49-50
    [25]张芙玉,彭友盛,王惠民等.工业硅精制试生产[J].铁合金.2001,1:22-24
    [26]潘裕祥.西门子法生产纯硅工艺流程的发展[J].稀有金属.1985,4:72-73
    [27]杨涛.改良西门子法生产多晶硅工艺设计探讨[J].贵州化工.2009,6:7-8
    [28]蒋荣华,肖顺珍.多内外多晶硅发展现状[J].半导体技术.2001,11:7-8
    [29]冯瑞华,马廷灿,姜山等.太阳能级多晶硅制备技术与工艺[J].新材料产业.2007,5:59-62
    [30]杨德仁.太阳电池用多晶硅材料的现状和发展[J].中国建设动态(阳光能源).2007,1: 36-37
    [31]Yasuhiko Sakaguchi. Production of high purity silicon by carbothermic reduction of silica using Ac-arc furnace with heated shaft[J]. ISIJ.1992,32(5):643
    [32]Tynyshtykbaev K B. Direct carbothermal receiving of solar grade silicon[J]. Mater Sci Eng.2006,134:296
    [33]Geerligs L J. Solar-grade silicon by a direct route based on carbothemic reduction of silica: Requirements and production technology[J/OL]. http /www. ecn.nl/docs/libracy/report/2002/rx 02042.pdf
    [34]Nohira T, YasudaK, TtoY. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nature Materials.2003,2:397
    [35]马文会,戴永年,杨斌等.太阳能级硅制备新技术研究进展[J].新材料产业.2006,10:12~15
    [36]Zhang Taisheng,Chen Mingbo. New Methods for the production of solar grade silicon[C]. PV Technologies, Systems and Applications[A].(美)戈斯瓦米,赵玉文.2007世界太阳能大会论文集(英文版)(C).北京:清华大学出版社.2007,9:1174-1178
    [37]郑春蕊,李艳,陈志耕等.多晶硅生产与产业发展概述[J]. Industrial & Science Tribune.2008,7:55-56
    [38]李义春.多晶硅将走向低能耗低成本更环保[J].半导体·光伏行业.2010,6:54-55
    [39]Chandra P. Khattak, David B. Joyce, Frederick Schmid. A simple process to remove boron from metallurgical grade silicon[J]. Solar Energy materials & Solar Cells.2002,74:77-89
    [40]Yang Chunmei, Chen hongyu. Research progress of new techniques of solar grade silicon[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni.2009,48 (2):147-148
    [41]Yu Zhanliang, Ma Wenhui, Dai Yongnan, et al. Removval of iron and aluminum impurities from metallurgical grade-silicon with hydrometallurgical route[A]. Transactions of Nonferrous Metals Society of China[C].2007,17:1030-1033
    [42]Xu Wenting, Ma Wenhui, Yang Bin, et al. Thermodynamic Fundamental of Purification of Silicon[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni.2007,46 (6):88-89
    [43]黄莹莹,郭辉,黄建明等.精炼法提纯冶金硅至太阳能级硅的研究进展[J].功能材料.2007,9:1397-1399
    [44]Wei Kuixian, Ma Wenhui, Dai Yongnian, et al. Study on Phosphorus Removed from Metallurgical Grade Silicon by Vacuum Distillation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni.2007,46 (6):69-70
    [45]Wei Kuixian, Ma Wenhui, Yang Bin, et al. Study on volatilization rate of silicon in multicrystalline silicon preparation from metallurgical grade silicon[J]. Vacuum.2011,85: 749-754
    [46]Ma Wenhui, Wei Kuixian, Yang Bin, et al. Vacuum distillation refining of metallurgical ical grade silicon (Ⅱ)—inetics on removal of phosphorus from metallurgical grade silicon[J]. Transactions of Nonferrous Metals Society of China.2007,17:1026-1029
    [47]罗大伟,李廷举,张国粱.冶金法制备太阳能级硅的研究进展[A].中国机械工程学会铸 造分会一2009中国铸造活动周论文集[C].辽宁2009,725-734
    [48]J.C.S.Pires, J.Otubo, A.F.B.Braga, et al. The purification of metallurgical grade silicon by electron beam melting[J]. Materials Prosessing Technology.2005,169:16-20
    [49]罗大伟,刘宁,卢一平等.等离子体提纯太阳能级硅材料的工艺进展[J].铸造技术.2009,30(7):945-948
    [50]M.Benmansour, S.Rousseau, D.Morvan. Effects of the DC bias in a molten silicon bath on its purification and hydrogenation by RF thermal plasma[J]. Surface & Coatings Technology.2008,203:839-843
    [51]吕东,马文会,伍继君等.冶金法制备太阳能级多晶硅新工艺原理及研究进展[J].材料导报.2009,3:30-32
    [52]M.A.Martorano, J.B.Ferreira Neto, T.S.Oliveira, et al. Refining of metallurgical silicon by directional solidification[J]. Materials Science and Engineering B.2011,176:217-226
    [53]李水根,刘仪柯,廖卫兵等.太阳能级多晶硅产业发展及其制备工艺概述[J].新余高专学报.2010,4:81-83
    [54]铁生年,李昀珺,李星.太阳能级多晶硅材料研究进展[J].硅酸盐学报.2009,8:1447-1451
    [55]王新国,丁伟中,沈虹等.金属硅的氧化精炼[J].中国有色金属学报.2002,8(4):827-828
    [56]K.Santhy, T.Sowmya and S.Raman Sankranarayanan. Effect of Oxygen to Silicon Ratio on the Viscosity of Metallurgical Slags[J]. ISIJ International.2005,45(7):1014-1018
    [57]棚桥满,新保洋一郎,藤泽敏治等.Na2O-CaO-SiO2渣系(饱和Si02)熔渣和熔融硅之间的硼的分配活动[J].资源和材料.2002,118:497-505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700